Generative verses discriminative classifier

Eric Xing
Lecture 2, August 12, 2010

Reading:
Generative and Discriminative classifiers

- Goal: Wish to learn $f: X \rightarrow Y$, e.g., $P(Y|X)$

- Generative:
 - Modeling the joint distribution of all data

- Discriminative:
 - Modeling only points at the boundary
Generative vs. Discriminative Classifiers

- **Goal:** Wish to learn \(f: X \rightarrow Y \), e.g., \(P(Y|X) \)

- **Generative classifiers** (e.g., Naïve Bayes):
 - Assume some functional form for \(P(X|Y), P(Y) \)
 - This is a ‘**generative**’ model of the data!
 - Estimate parameters of \(P(X|Y), P(Y) \) directly from training data
 - Use Bayes rule to calculate \(P(Y|X=x) \)

- **Discriminative classifiers** (e.g., logistic regression)
 - Directly assume some functional form for \(P(Y|X) \)
 - This is a ‘**discriminative**’ model of the data!
 - Estimate parameters of \(P(Y|X) \) directly from training data
Suppose you know the following

- Class-specific Dist.: $P(X|Y)$

 \[
 p(X \mid Y = 1) = p_1(X; \mu_1, \Sigma_1)

 \]

 \[
 p(X \mid Y = 2) = p_2(X; \mu_2, \Sigma_2)

 \]

- Class prior (i.e., "weight"): $P(Y)$

- This is a **generative model** of the data!

Bayes classifier:

\[
P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}
\]
Optimal classification

- **Theorem:** Bayes classifier is optimal!

 - That is

 $$
 error_{true}(h_{Bayes}) \leq error_{true}(h), \quad \forall h(x)
 $$

- **How to learn a Bayes classifier?**
 - Recall density estimation. We need to estimate $P(X|y=k)$, and $P(y=k)$ for all k
Gaussian Discriminative Analysis

- learning $f: X \rightarrow Y$, where
 - X is a vector of real-valued features, $X_n = <X_{n,1}, \ldots, X_{n,m}>$
 - Y is an indicator vector

- What does that imply about the form of $P(Y|X)$?
 - The joint probability of a datum and its label is:
 \[
 p(x_n, y_n^k = 1 | \mu, \sigma) = p(y_n^k = 1) \times p(x_n | y_n^k = 1, \mu, \sigma)
 = \pi_k \frac{1}{(2\pi \sigma^2)^{1/2}} \exp\left\{ -\frac{1}{2\sigma^2} (x_n - \mu_k)^2 \right\}
 \]
 - Given a datum x_n, we predict its label using the conditional probability of the label given the datum:
 \[
 p(y_n^k = 1 | x_n, \mu, \sigma) = \frac{\pi_k \frac{1}{(2\pi \sigma^2)^{1/2}} \exp\left\{ -\frac{1}{2\sigma^2} (x_n - \mu_k)^2 \right\}}{\sum_{k'} \pi_{k'} \frac{1}{(2\pi \sigma^2)^{1/2}} \exp\left\{ -\frac{1}{2\sigma^2} (x_n - \mu_{k'})^2 \right\}}
 \]
Conditional Independence

- X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

\[
(\forall i, j, k) P(X = i | Y = j, Z = k) = P(X = i | Z = k)
\]

Which we often write

\[
P(X \mid Y, Z) = P(X \mid Z)
\]

- e.g.,

\[
P(\text{Thunder} \mid \text{Rain, Lightning}) = P(\text{Thunder} \mid \text{Lightning})
\]

- Equivalent to:

\[
P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)
\]
Naïve Bayes Classifier

- When X is multivariate-Gaussian vector:
 - The joint probability of a datum and its label is:
 \[
 p(x_n, y_n^k = 1 \mid \mu, \Sigma) = p(y_n^k = 1) \times p(x_n \mid y_n^k = 1, \mu, \Sigma)
 \]
 \[
 = \pi_k \frac{1}{(2\pi \Sigma) \frac{1}{2}} \exp \left\{ -\frac{1}{2} (x_n - \mu_k)^T \Sigma^{-1} (x_n - \mu_k) \right\}
 \]

- The naïve Bayes simplification
 \[
 p(x_n, y_n^k = 1 \mid \mu, \sigma) = p(y_n^k = 1) \times \prod_j p(x_{n,j} \mid y_n^k = 1, \mu_{k,j}, \sigma_{k,j})
 \]
 \[
 = \pi_k \prod_j \frac{1}{(2\pi \sigma_{k,j}^2) \frac{1}{2}} \exp \left\{ -\frac{1}{2\sigma_{k,j}^2} (x_{n,j} - \mu_{k,j})^2 \right\}
 \]

- More generally:
 \[
 p(x_n, y_n \mid \eta, \pi) = p(y_n \mid \pi) \times \prod_{j=1}^m p(x_{n,j} \mid y_n, \eta)
 \]
 - Where $p(\cdot \mid \cdot)$ is an arbitrary conditional (discrete or continuous) 1-D density
The predictive distribution

- Understanding the predictive distribution

\[p(y^k_n = 1 | x_n, \bar{\mu}, \Sigma, \pi) = \frac{p(y^k_n = 1, x_n | \bar{\mu}, \Sigma, \pi)}{p(x_n | \bar{\mu}, \Sigma)} = \frac{\pi_k N(x_n, | \mu_k, \Sigma_k)}{\sum_{k'} \pi_{k'} N(x_n, | \mu_{k'}, \Sigma_{k'})} \]

- Under naïve Bayes assumption:

\[p(y^k_n = 1 | x_n, \bar{\mu}, \Sigma, \pi) = \frac{\pi_k \exp \left\{ - \sum_j \left(\frac{1}{2\sigma^2_{k,j}} (x^j_n - \mu^j_k)^2 - \log \sigma_{k,j} - C \right) \right\}}{\sum_{k'} \pi_{k'} \exp \left\{ - \sum_j \left(\frac{1}{2\sigma^2_{k',j}} (x^j_n - \mu^j_{k'})^2 - \log \sigma_{k',j} - C \right) \right\}} \]

- For two class (i.e., \(K=2 \)), and when the two classes have the same variance, ** turns out to be a logistic function

\[p(y^1_n = 1 | x_n) = \frac{1}{1 + e^{-\theta^T x_n}} \]
The decision boundary

- The predictive distribution

\[p(y_n^1 = 1 | x_n) = \frac{1}{1 + \exp\left\{-\sum_{j=1}^{M} \theta_j x_n^j - \theta_0\right\}} = \frac{1}{1 + e^{-\theta^T x_n}} \]

- The Bayes decision rule:

\[\ln \frac{p(y_n^1 = 1 | x_n)}{p(y_n^2 = 1 | x_n)} = \ln \left(\frac{1}{1 + e^{-\theta^T x_n}} \right) = \theta^T x_n \]

- For multiple class (i.e., \(K>2\)), * correspond to a softmax function

\[p(y_n^k = 1 | x_n) = \frac{e^{-\theta_k^T x_n}}{\sum_j e^{-\theta_j^T x_n}} \]
Generative vs. Discriminative Classifiers

- Goal: Wish to learn $f: X \rightarrow Y$, e.g., $P(Y|X)$

- Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for $P(X|Y)$, $P(Y)$
 This is a 'generative' model of the data!
 - Estimate parameters of $P(X|Y)$, $P(Y)$ directly from training data
 - Use Bayes rule to calculate $P(Y|X=x)$

- Discriminative classifiers:
 - Directly assume some functional form for $P(Y|X)$
 This is a ‘discriminative’ model of the data!
 - Estimate parameters of $P(Y|X)$ directly from training data
Linear Regression

- The data:
 \[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_N, y_N)\]

- Both nodes are observed:
 - \(X\) is an input vector
 - \(Y\) is a response vector

(we first consider \(y\) as a generic continuous response vector, then we consider the special case of classification where \(y\) is a discrete indicator)

- A regression scheme can be used to model \(p(y|x)\) directly, rather than \(p(x,y)\)
Linear Regression

- Assume that Y (target) is a linear function of X (features):
 - e.g.:
 $$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
 - let's assume a vacuous "feature" $x_0=1$ (this is the intercept term, why?), and define the feature vector to be:
 $$x = [1, x_1, x_2]$$
 - then we have the following general representation of the linear function:
 $$\hat{y} = x^T \theta$$

- Our goal is to pick the optimal θ. How!
 - We seek θ that minimize the following cost function:
 $$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_i(x_i) - y_i)^2$$
The Least-Mean-Square (LMS) method

- Consider a **gradient descent** algorithm:
 \[
 \theta_j^{t+1} = \theta_j^t - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \\
 \]

- Now we have the following descent rule:
 \[
 \theta_j^{t+1} = \theta_j^t + \alpha \sum_{i=1}^n (y_i - \bar{x}_i^T \theta^t) x_i^j
 \]

- For a single training point, we have:
 \[
 \theta_j^{t+1} = \theta_j^t + \alpha (y_i - \bar{x}_i^T \theta^t) x_i^j
 \]

- This is known as the LMS update rule, or the Widrow-Hoff learning rule
- This is actually a "stochastic", "coordinate" descent algorithm
- This can be used as a on-line algorithm
Probabilistic Interpretation of LMS

Let us assume that the target variable and the inputs are related by the equation:

\[y_i = \theta^T x_i + \epsilon_i \]

where \(\epsilon \) is an error term of unmodeled effects or random noise.

Now assume that \(\epsilon \) follows a Gaussian \(N(0,\sigma) \), then we have:

\[
p(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}\right)
\]

By independence assumption:

\[
L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T x_i)^2}{2\sigma^2}\right)
\]
Hence the log-likelihood is:

\[l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2 \]

Do you recognize the last term?

Yes it is:

\[J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (x_i^T \theta - y_i)^2 \]

Thus under independence assumption, LMS is equivalent to MLE of \(\theta \)!
Classification and logistic regression
The logistic function

\[g(z) = \frac{1}{1 + e^{-z}} \]
Logistic regression (sigmoid classifier)

- The condition distribution: a Bernoulli
 \[p(y \mid x) = \mu(x)^y (1 - \mu(x))^{1-y} \]
 where \(\mu \) is a logistic function
 \[\mu(x) = \frac{1}{1 + e^{-\theta^T x}} \]

- We can use the brute-force gradient method as in LR

- But we can also apply generic laws by observing the \(p(y \mid x) \) is an exponential family function, more specifically, a generalized linear model (see future lectures …)
Training Logistic Regression: MCLE

- Estimate parameters $\theta = <\theta_0, \theta_1, ..., \theta_m>$ to maximize the **conditional likelihood** of training data.

- Training data $D = \{(x_1, y_1), \ldots, (x_N, y_N)\}$

- Data likelihood $= \prod_{i=1}^{N} P(x_i, y_i; \theta)$

- Data conditional likelihood $= \prod_{i=1}^{N} P(x_i | y_i; \theta)$

$$\theta = \arg \max_{\theta} \ln \prod_{i} P(y_i | x_i; \theta)$$
Expressing Conditional Log Likelihood

\[l(\theta) \equiv \ln \prod_i P(y_i | x_i; \theta) = \sum_i \ln P(y_i | x_i; \theta) \]

- Recall the logistic function:
 \[\mu = \frac{1}{1 + e^{-\theta^T x}} \]

and conditional likelihood:
\[P(y | x) = \mu(x)^y (1 - \mu(x))^{1-y} \]

\[l(\theta) = \sum_i \ln P(y_i | x_i; \theta) = \sum_i y_i \ln \frac{u(x_i)}{1 - \mu(x_i)} + (1 - y_i) \ln(1 - \mu(x_i)) \]

\[= \sum_i y_i \ln \frac{u(x_i)}{1 - \mu(x_i)} + \ln(1 - \mu(x_i)) \]

\[= \sum_i y_i \theta^T x_i - \theta^T x_i + \ln(1 + e^{-\theta^T x_i}) \]

\[= \sum_i (y_i - 1) \theta^T x_i + \ln(1 + e^{-\theta^T x_i}) \]
Maximizing Conditional Log Likelihood

- The objective:

\[
l(\theta) = \ln \prod_i P(y_i|x_i; \theta)
\]

\[
= \sum_i (y_i - 1)\theta^t x_i + \ln(1 + e^{-\theta^t x_i})
\]

- Good news: \(l(\theta)\) is concave function of \(\theta\)

- Bad news: no closed-form solution to maximize \(l(\theta)\)
The Newton’s method

- Finding a zero of a function

\[\theta^{t+1} := \theta^t - \frac{f(\theta^t)}{f'(\theta^t)} \]
The Newton’s method (con’d)

- To maximize the conditional likelihood $l(\theta)$:

$$l(\theta) = \sum_i (y_i - 1)\theta^T x_i + \ln(1 + e^{-\theta^T x_i})$$

since l is convex, we need to find θ^* where $l'(\theta^*)=0$!

- So we can perform the following iteration:

$$\theta^{t+1} := \theta^t + \frac{l'(\theta^t)}{l''(\theta^t)}$$
The Newton-Raphson method

- In LR the θ is vector-valued, thus we need the following generalization:

$$\theta^{t+1} := \theta^t + H^{-1} \nabla_{\theta^t} l(\theta^t)$$

- ∇ is the gradient operator over the function

- H is known as the Hessian of the function
The Newton-Raphson method

- In LR the θ is vector-valued, thus we need the following generalization:

$$\theta^{t+1} := \theta^t + H^{-1} \nabla_{\theta} l(\theta^t)$$

- ∇ is the gradient operator over the function

$$\nabla_{\theta} l(\theta) = \sum_i (y_i - u_i)x_i = X^T(y - u)$$

- H is known as the Hessian of the function

$$H = \nabla_{\theta} \nabla_{\theta} l(\theta) = \sum u_i (1 - u_i) x_i x_i^T = X^T RX$$

where $R_{ii} = u_i (1 - u_i)$
Iterative reweighed least squares (IRLS)

- Recall in the least square est. in linear regression, we have:

\[\theta = (X^TX)^{-1}X^Ty \]

which can also derived from Newton-Raphson

- Now for logistic regression:

\[
\begin{align*}
\theta^{t+1} &= \theta^t + H^{-1}\nabla_{\theta^t} l(\theta^t) \\
&= \theta^t - (X^T RX)^{-1}X^T (u - y) \\
&= (X^T RX)^{-1}\{X^T RX \theta^t - X^T (u - y)\} \\
&= (X^T RX)^{-1}X^T Rz
\end{align*}
\]
Generative vs. Discriminative Classifiers

- **Goal:** Wish to learn \(f: X \rightarrow Y \), e.g., \(P(Y|X) \)

- **Generative classifiers** (e.g., Naïve Bayes):
 - Assume some functional form for \(P(X|Y) \), \(P(Y) \)
 - This is a ‘**generative**’ model of the data!
 - Estimate parameters of \(P(X|Y) \), \(P(Y) \) directly from training data
 - Use Bayes rule to calculate \(P(Y|X=x) \)

- **Discriminative classifiers**:
 - Directly assume some functional form for \(P(Y|X) \)
 - This is a ‘**discriminative**’ model of the data!
 - Estimate parameters of \(P(Y|X) \) directly from training data
Naïve Bayes vs Logistic Regression

- Consider Y boolean, X continuous, X=<X_1 ... X_m>
- Number of parameters to estimate:

\[
p(y \mid x) = \frac{\pi_k \exp\left\{-\sum_j \left(\frac{1}{2\sigma^2_{k,j}}(x_j - \mu_{k,j})^2 - \log \sigma_{k,j} - C\right)\right\}}{\sum_k \pi_k \exp\left\{-\sum_j \left(\frac{1}{2\sigma^2_{k',j}}(x_j - \mu_{k',j})^2 - \log \sigma_{k',j} - C\right)\right\}}
\]

\[
\mu(x) = \frac{1}{1 + e^{-\theta^T x}}
\]

- Estimation method:
 - NB parameter estimates are uncoupled
 - LR parameter estimates are coupled
Naïve Bayes vs Logistic Regression

- Asymptotic comparison (# training examples → infinity)
 - when model assumptions correct
 - NB, LR produce identical classifiers
 - when model assumptions incorrect
 - LR is less biased – does not assume conditional independence
 - therefore expected to outperform NB
Naïve Bayes vs Logistic Regression

- Non-asymptotic analysis (see [Ng & Jordan, 2002])

- Convergence rate of parameter estimates – how many training examples needed to assure good estimates?

 NB order log m (where m = # of attributes in X)
 LR order m

- NB converges more quickly to its (perhaps less helpful) asymptotic estimates
Some experiments from UCI data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.
Robustness

- The best fit from a quadratic regression
- But this is probably better ...
Bayesian Parameter Estimation

- Treat the distribution parameters θ also as a random variable
- The \textit{a posteriori} distribution of θ after seeing the data is:

$$p(\theta | D) = \frac{p(D | \theta) p(\theta)}{p(D)} = \frac{p(D | \theta) p(\theta)}{\int p(D | \theta) p(\theta) d\theta}$$

This is Bayes Rule

\[
\text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}
\]

The prior $p(.)$ encodes our prior knowledge about the domain
Regularized Least Squares and MAP

What if \((A^T A)\) is not invertible?

\[
\hat{\beta}_{\text{MAP}} = \arg \max_{\beta} \log p \left(\{ (X_i, Y_i) \}_{i=1}^{n} | \beta, \sigma^2 \right) + \log p(\beta)
\]

\[
\log \text{likelihood} \quad \log \text{prior}
\]

I) Gaussian Prior

\[
\beta \sim \mathcal{N}(0, \tau^2 I) \quad p(\beta) \propto e^{-\beta^T \beta / 2\tau^2}
\]

\[
\hat{\beta}_{\text{MAP}} = \arg \min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \| \beta \|_2^2
\]

Closed form: HW

Ridge Regression

Prior belief that \(\beta\) is Gaussian with zero-mean biases solution to “small” \(\beta\)
Regularized Least Squares and MAP

What if \((A^T A)\) is not invertible?

\[
\hat{\beta}_{\text{MAP}} = \arg \max_{\beta} \log p(\{ (X_i, Y_i) \}_{i=1}^{n} | \beta, \sigma^2) + \log p(\beta)
\]

log likelihood \hspace{2cm} log prior

II) Laplace Prior

\[\beta_i \sim_{\text{iid}} \text{Laplace}(0, t) \quad p(\beta_i) \propto e^{-|\beta_i|/t}\]

\[
\hat{\beta}_{\text{MAP}} = \arg \min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \| \beta \|_1
\]

Closed form: HW \hspace{2cm} constant(\sigma^2, t)

Prior belief that \(\beta\) is Laplace with zero-mean biases solution to “small” \(\beta\)
Ridge Regression vs Lasso

\[
\min_{\beta} (A\beta - Y)^T (A\beta - Y) + \lambda \text{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \text{pen}(\beta)
\]

Ridge Regression:
\[\text{pen}(\beta) = \|\beta\|_2^2\]

Lasso:
\[\text{pen}(\beta) = \|\beta\|_1\]

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high-dimensional problems – don’t have to store all coordinates!
Case study: predicting gene expression

The genetic picture

causal SNPs

CGTTTC\textcolor{red}{ACTGTA}\textcolor{red}{CAATT}

a univariate phenotype:

i.e., the expression intensity of a gene
Association Mapping as Regression

<table>
<thead>
<tr>
<th>Phenotype (BMI)</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual 1</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual 2</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual N</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Benign SNPs**
- **Causal SNP**
Association Mapping as Regression

<table>
<thead>
<tr>
<th>Phenotype (BMI)</th>
<th>Genotype</th>
</tr>
</thead>
</table>
| **Individual 1** | 2.5 | ...0......1...0........0...
| **Individual 2** | 4.8 | ...1......1...1........1...
| **:** | | |
| **Individual N** | 4.7 | ...2......2...1........0...

\[
y_i = \sum_{j=1}^{J} x_{ij} \beta_j
\]

SNPs with large \(|\beta_j|\) are relevant.
Experimental setup

- Asthma dataset
 - 543 individuals, genotyped at 34 SNPs
 - Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
 - \(X = 543 \times 34 \) matrix
 - \(Y = \) Phenotype variable (continuous)

- A single phenotype was used for regression

- Implementation details
 - Iterative methods: Batch update and online update implemented.
 - For both methods, step size \(\alpha \) is chosen to be a small fixed value \((10^{-6}) \). This choice is based on the data used for experiments.
 - Both methods are only run to a maximum of 2000 epochs or until the change in training MSE is less than 10-4
Convergence Curves

- For the batch method, the training MSE is initially large due to uninformed initialization.
- In the online update, N updates for every epoch reduces MSE to a much smaller value.

![Log-log plot of training MSE versus epochs](image)
The Learned Coefficients
The results from B and O update are almost identical. So the plots coincide.

The test MSE from the normal equation is more than that of B and O during small training. This is probably due to overfitting.

In B and O, since only 2000 iterations are allowed at most. This roughly acts as a mechanism that avoids overfitting.
Summary

- Naïve Bayes classifier
 - What’s the assumption
 - Why we use it
 - How do we learn it

- Logistic regression
 - Functional form follows from Naïve Bayes assumptions
 - For Gaussian Naïve Bayes assuming variance
 - For discrete-valued Naïve Bayes too
 - But training procedure picks parameters without the conditional independence assumption

- Gradient ascent/descent
 - General approach when closed-form solutions unavailable

- Generative vs. Discriminative classifiers
 - Bias vs. variance tradeoff
Appendix
Parameter Learning from \textit{iid} Data

- Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (\textit{iid}), fully observed, training cases

$$D = \{x_1, \ldots, x_N\}$$

- Maximum likelihood estimation (MLE)
 1. One of the most common estimators
 2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

$$L(\theta) = P(x_1, x_2, \ldots, x_N; \theta)$$

$$= P(x_1; \theta)P(x_2; \theta), \ldots, P(x_N; \theta)$$

$$= \prod_{i=1}^{N} P(x_i; \theta)$$

 3. pick the setting of parameters most likely to have generated the data we saw:

$$\theta^* = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \log L(\theta)$$
Example: Bernoulli model

- **Data:**
 - We observed N iid coin tossing: $D = \{1, 0, 1, \ldots, 0\}$

- **Representation:**

 Binary r.v: $x_n = \{0, 1\}$

- **Model:**

 $$P(x) = \begin{cases} 1 - \theta & \text{for } x = 0 \\ \theta & \text{for } x = 1 \end{cases} \Rightarrow P(x) = \theta^x (1 - \theta)^{1-x}$$

- **How to write the likelihood of a single observation x_i?**

 $$P(x_i) = \theta^{x_i} (1 - \theta)^{1-x_i}$$

- **The likelihood of dataset $D = \{x_1, \ldots, x_N\}$:**

 $$P(x_1, x_2, \ldots, x_N \mid \theta) = \prod_{i=1}^{N} P(x_i \mid \theta) = \prod_{i=1}^{N} \left(\theta^{x_i} (1 - \theta)^{1-x_i} \right) = \theta^{\sum_{j=1}^{x_j}} (1 - \theta)^{\sum_{i=1}^{1-x_j}} = \theta^{\text{\#head}} (1 - \theta)^{\text{\#tails}}$$
Maximum Likelihood Estimation

- Objective function:
 \[
 \ell(\theta; D) = \log P(D | \theta) = \log \theta^n (1 - \theta)^n = n_h \log \theta + (N - n_h) \log(1 - \theta)
 \]

- We need to maximize this w.r.t. \(\theta \)

- Take derivatives wrt \(\theta \)
 \[
 \frac{\partial \ell}{\partial \theta} = \frac{n_h}{\theta} - \frac{N - n_h}{1 - \theta} = 0
 \]
 \[\Rightarrow \hat{\theta}_{MLE} = \frac{n_h}{N} \quad \text{or} \quad \hat{\theta}_{MLE} = \frac{1}{N} \sum_i x_i \]

- Sufficient statistics
 - The counts, \(n_h \), where \(n_k = \sum_i x_i \), are **sufficient statistics** of data \(D \)
Overfitting

- Recall that for Bernoulli Distribution, we have

\[\hat{\theta}_{ML}^{\text{head}} = \frac{n^{\text{head}}}{n^{\text{head}} + n^{\text{tail}}} \]

- What if we tossed too few times so that we saw zero head?
 We have \(\hat{\theta}_{ML}^{\text{head}} = 0 \), and we will predict that the probability of seeing a head next is zero!!!

- The rescue: "smoothing"
 - Where \(n' \) is known as the pseudo- (imaginary) count

\[\hat{\theta}_{ML}^{\text{head}} = \frac{n^{\text{head}} + n'}{n^{\text{head}} + n^{\text{tail}} + n'} \]

- But can we make this more formal?
Bayesian Parameter Estimation

- Treat the distribution parameters θ also as a random variable
- The a posteriori distribution of θ after seeing the data is:

$$p(\theta | D) = \frac{p(D | \theta)p(\theta)}{p(D)} = \frac{p(D | \theta)p(\theta)}{\int p(D | \theta)p(\theta)d\theta}$$

This is Bayes Rule

$$\text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}$$

The prior $p(.)$ encodes our prior knowledge about the domain
Frequentist Parameter Estimation

Two people with different priors $p(\theta)$ will end up with different estimates $p(\theta|D)$.

- Frequentists dislike this “subjectivity”.
- Frequentists think of the parameter as a fixed, unknown constant, not a random variable.
- Hence they have to come up with different "objective" estimators (ways of computing from data), instead of using Bayes’ rule.
 - These estimators have different properties, such as being “unbiased”, “minimum variance”, etc.
 - The maximum likelihood estimator, is one such estimator.
Discussion

\(\theta\) or \(p(\theta)\), this is the problem!
Bayesian estimation for Bernoulli

- **Beta distribution:**

\[P(\theta; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1}(1 - \theta)^{\beta-1} = B(\alpha, \beta)\theta^{\alpha-1}(1 - \theta)^{\beta-1} \]

 - When \(x\) is discrete

\[\Gamma(x + 1) = x\Gamma(x) = x! \]

- **Posterior distribution of \(\theta\):**

\[P(\theta | x_1, \ldots, x_N) = \frac{p(x_1, \ldots, x_N | \theta)p(\theta)}{p(x_1, \ldots, x_N)} \propto \theta^{n_h}(1 - \theta)^{n_t} \times \theta^{\alpha-1}(1 - \theta)^{\beta-1} = \theta^{n_h + \alpha - 1}(1 - \theta)^{n_t + \beta - 1} \]

 - Notice the isomorphism of the posterior to the prior,
 - such a prior is called a **conjugate prior**
 - \(\alpha\) and \(\beta\) are hyperparameters (parameters of the prior) and correspond to the number of “virtual” heads/tails (pseudo counts)
Bayesian estimation for Bernoulli, con'd

- Posterior distribution of θ:

$$P(\theta | x_1, \ldots, x_N) = \frac{p(x_1, \ldots, x_N | \theta) p(\theta)}{p(x_1, \ldots, x_N)} \propto \theta^{n_h} (1 - \theta)^{n_t} \times \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = \theta^{n_h + \alpha - 1} (1 - \theta)^{n_t + \beta - 1}$$

- Maximum a posteriori (MAP) estimation:

$$\theta_{MAP} = \arg \max_{\theta} \log P(\theta | x_1, \ldots, x_N)$$

- Posterior mean estimation:

$$\theta_{Bayes} = \frac{\int \theta p(\theta | D) d\theta}{\int p(\theta | D) d\theta} = C \int \theta \times \theta^{n_h + \alpha - 1} (1 - \theta)^{n_t + \beta - 1} d\theta = \frac{n_h + \alpha}{N + \alpha + \beta}$$

- Prior strength: $A = \alpha + \beta$
 - A can be interpreted as the size of an imaginary data set from which we obtain the pseudo-counts
Effect of Prior Strength

- Suppose we have a uniform prior ($\alpha=\beta=1/2$), and we observe $\tilde{n} = (n_h = 2, n_t = 8)$
- Weak prior $A = 2$. Posterior prediction:

$$p(x = h \mid n_h = 2, n_t = 8, \tilde{\alpha} = \bar{\alpha} \times 2) = \frac{1+2}{2+10} = 0.25$$

- Strong prior $A = 20$. Posterior prediction:

$$p(x = h \mid n_h = 2, n_t = 8, \tilde{\alpha} = \bar{\alpha} \times 20) = \frac{10+2}{20+10} = 0.40$$

- However, if we have enough data, it washes away the prior. e.g., $\tilde{n} = (n_h = 200, n_t = 800)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2
Example 2: Gaussian density

- **Data:**
 - We observed N iid real samples:
 \[D = \{-0.1, 10, 1, -5.2, \ldots, 3\} \]

- **Model:**
 \[P(x) = \left(2\pi\sigma^2\right)^{-1/2} \exp\left\{-\frac{(x - \mu)^2}{2\sigma^2}\right\} \]

- **Log likelihood:**
 \[
 \ell(\theta; D) = \log P(D | \theta) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{\sigma^2}
 \]

- **MLE:** take derivative and set to zero:
 \[
 \frac{\partial \ell}{\partial \mu} = \left(1/\sigma^2\right) \sum_{n} (x_n - \mu)
 \]
 \[
 \frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n} (x_n - \mu)^2
 \]

 \[\mu_{MLE} = \frac{1}{N} \sum_{n} (x_n) \]
 \[\sigma^2_{MLE} = \frac{1}{N} \sum_{n} (x_n - \mu_{ML})^2 \]
MLE for a multivariate-Gaussian

- It can be shown that the MLE for μ and Σ is

$$
\mu_{MLE} = \frac{1}{N} \sum_n (x_n)
$$

$$
\Sigma_{MLE} = \frac{1}{N} \sum_n (x_n - \mu_{ML})(x_n - \mu_{ML})^T = \frac{1}{N} S
$$

where the scatter matrix is

$$
S = \sum_n (x_n - \mu_{ML})(x_n - \mu_{ML})^T = \left(\sum_n x_n x_n^T \right) - N \mu_{ML} \mu_{ML}^T
$$

- The sufficient statistics are $\Sigma_n x_n$ and $\Sigma_n x_n x_n^T$.
- Note that $X^T X = \sum_n x_n x_n^T$ may not be full rank (e.g. if $N < D$), in which case Σ_{ML} is not invertible.
Bayesian estimation

- Normal Prior:
 \[P(\mu) = \left(2\pi\sigma_0^2\right)^{-1/2} \exp\left\{ -\frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right\} \]

- Joint probability:
 \[P(x, \mu) = \left(2\pi\sigma_0^2\right)^{-N/2} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 \right\} \times \left(2\pi\sigma_0^2\right)^{-1/2} \exp\left\{ -\frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right\} \]

- Posterior:
 \[P(\mu | x) = \left(2\pi\tilde{\sigma}^2\right)^{-1/2} \exp\left\{ -\frac{(\mu - \tilde{\mu})^2}{2\tilde{\sigma}^2} \right\} \]

where \[\tilde{\mu} = \frac{N / \sigma^2}{N / \sigma^2 + 1 / \sigma_0^2} \bar{x} + \frac{1 / \sigma_0^2}{N / \sigma^2 + 1 / \sigma_0^2} \mu_0 \]

and \[\tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right)^{-1} \]
Bayesian estimation: unknown μ, known σ

$$
\mu_N = \frac{N / \sigma^2}{N / \sigma^2 + 1 / \sigma_0^2} \bar{x} + \frac{1 / \sigma_0^2}{N / \sigma^2 + 1 / \sigma_0^2} \mu_0, \quad \tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \right)^{-1}
$$

- The posterior mean is a convex combination of the prior and the MLE, with weights proportional to the relative noise levels.
- The precision of the posterior $1/\sigma^2_N$ is the precision of the prior $1/\sigma^2_0$ plus one contribution of data precision $1/\sigma^2$ for each observed data point.

- Sequentially updating the mean
 - $\mu^* = 0.8$ (unknown), $(\sigma^2)^* = 0.1$ (known)
 - Effect of single data point
 $$
 \mu_1 = \mu_0 + (x - \mu_0) \frac{\sigma_0^2}{\sigma^2 + \sigma_0^2} = x - (x - \mu_0) \frac{\sigma_0^2}{\sigma^2 + \sigma_0^2}
 $$
 - Uninformative (vague/flat) prior, $\sigma^2_0 \rightarrow \infty$
 $$
 \mu_N \rightarrow \mu_0
 $$