6.1 Multivariable Normal Distribution

Definition 6.1. Let \(X \sim N(\mu, \Sigma) \) be a \(p \times 1 \) random vector, where \(\mu \) is a \(p \times 1 \) vector and \(\Sigma \) is a positive definite matrix, with probability density function:

\[
p(X) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (X - \mu)^T \Sigma^{-1} (X - \mu)\right)
\]

where \(\mathbb{E}(X) = \mu \), \(\text{Cov}(X) = \Sigma \).

Take \(X \) into two parts, i.e. \(X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix}, \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix}, \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \)

where \(X^{(1)} \) is \(q \times 1 \) and \(X^{(2)} \) is \((p-q) \times 1 \), so as \(\mu^{(1)}, \mu^{(2)} \)

Let’s define \(X_{2.1} = X^{(2)} - \Sigma_{21} \Sigma_{11}^{-1} X^{(1)} \)

Theorem 6.1. If \(X \sim N_p(\mu, \Sigma) \) then

1. \(X^{(1)} \sim N_q(\mu^{(1)}, \Sigma_{11}), \quad X^{(2)} \sim N_{p-q}(\mu^{(2)}, \Sigma_{22}) \)
2. \(X^{(1)} \) and \(X_{2.1} \) are independent
3. \(X^{(2)}|X^{(1)} \sim N_{p-q}(\mu^{(2)} + \Sigma_{21} \Sigma_{11}^{-1} (x^{(1)} - \mu^{(1)}), \Sigma_{22.1}) \)

where

\[
\mu_{2.1} = \mu^{(2)} - \Sigma_{21} \Sigma_{11}^{-1} \mu^{(1)}
\]

and

\[
\Sigma_{22.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}
\]

is the Schur Complement of \(\Sigma_{11} \).

Remarks: The Jacobian of transform \((X^{(1)}, X^{(2)}) \rightarrow (X^{(1)}, X_{2.1})\) is 1.

Proof.

\[
Z = \begin{pmatrix} X^{(1)} \\ X_{2.1} \end{pmatrix} = \begin{pmatrix} I & 0 \\ -\Sigma_{21} \Sigma_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix}
\]

That makes \(dZ = \det \begin{pmatrix} I & 0 \\ -\Sigma_{21} \Sigma_{11}^{-1} & I \end{pmatrix} dX \)

obviously, \(\det \begin{pmatrix} I & 0 \\ -\Sigma_{21} \Sigma_{11}^{-1} & I \end{pmatrix} = 1. \)
Let $B = \begin{pmatrix} I & 0 \\ -\Sigma_{21}^{-1} & I \end{pmatrix}$, then $X = B^{-1}Z$.

The above derivations are also established if replacing X with $X - \mu$. Hence, we have $X - \mu = B^{-1}Z$. Since the Jacobian from X to Z is 1, we can derive the p.d.f of Z easily (just ignoring the constants):

$$(X - \mu)^T \Sigma^{-1} (X - \mu) = Z^T (B^{-1})^T \Sigma^{-1} B^{-1} Z$$

$$= Z^T \left(-\Sigma_{21}^{-1} + \frac{1}{2} \Sigma_{11} \Sigma_{22}^{-1} \right) Z$$

$$= Z^T \left(\Sigma^{-1}_{11} \Sigma_{22}^{-1} \right) Z$$

So Z forms a Gaussian Distribution with variance matrix $\begin{pmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22}^{-1} \end{pmatrix}$.

Since the covariance is 0, so $X^{(1)}$ and $X_{2.1}$ are independent. Now we have proved the proposition 1 and 2 in theorem 1.

Let consider the constant part $|\Sigma|^{\frac{1}{2}}$ to confirm our conclusion.

$$|B \Sigma B^T| = \left| \begin{array}{cc} \Sigma_{11} & 0 \\ 0 & \Sigma_{22}^{-1} \end{array} \right| = |\Sigma_{11}| |\Sigma_{22}^{-1}| = |B|^2 |\Sigma|$$

$$\Rightarrow |\Sigma| = |\Sigma_{11}| |\Sigma_{22}^{-1}|$$

$$\Rightarrow |\Sigma|^{\frac{1}{2}} = |\Sigma_{11}|^{\frac{1}{2}} |\Sigma_{22}^{-1}|^{\frac{1}{2}}$$

So, the p.d.f of Z is

$$p(Z) = \frac{1}{(2\pi)^{\frac{1}{2}} |\Sigma_{11}|^{\frac{1}{2}} |\Sigma_{22}^{-1}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} Z^{(1)^T} \Sigma_{11}^{-1} Z^{(1)} \right) \exp \left(-\frac{1}{2} Z^{(2)^T} \Sigma_{22}^{-1} Z^{(2)} \right)$$

Corollary 6.1. Σ is positive definite \iff $\Sigma_{11}, \Sigma_{22}^{-1}$ is positive definite.

Now let’s prove the proposition 3 in theorem 1. Since $X^{(1)}$ is a constant in conditional probability, we have

$$X^{(2)} = X_{2.1} + \Sigma_{21} \Sigma_{11}^{-1} X^{(1)}$$

$$\Rightarrow \mathbb{E}(X^{(2)} | X^{(1)}) = \mu_{2.1} + \Sigma_{21} \Sigma_{11}^{-1} X^{(1)}$$

$$\Rightarrow \text{Cov}(X^{(2)} | X^{(1)}) = \Sigma_{22.1}$$

That’s all of the proving of theorem 6.1.

Theorem 6.2. If $C = \Sigma^{-1}$, i.e. $C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1}$, then

1. $C_{22}^{-1} = \Sigma_{22.1}$
2. $C_{11}^{-1}C_{12} = -\Sigma_{12}\Sigma_{22}^{-1}$

Proof.

\[
\begin{pmatrix}
I & 0 \\
-\Sigma_{21}\Sigma_{11}^{-1} & I
\end{pmatrix}
\begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{pmatrix}
\begin{pmatrix}
I & -\Sigma_{11}^{-1}\Sigma_{12} \\
0 & I
\end{pmatrix}
=
\begin{pmatrix}
\Sigma_{11} & 0 \\
0 & \Sigma_{22,1}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{pmatrix} =
\begin{pmatrix}
I & 0 \\
-\Sigma_{11}^{-1}\Sigma_{12} & I
\end{pmatrix}
\begin{pmatrix}
\Sigma_{11} & 0 \\
0 & \Sigma_{22,1}
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
0 & I
\end{pmatrix}
\]

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix} =
\begin{pmatrix}
I & -\Sigma_{11}^{-1}\Sigma_{12} \\
0 & I
\end{pmatrix}
\begin{pmatrix}
\Sigma_{11}^{-1} & 0 \\
0 & \Sigma_{22,1}^{-1}
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
-\Sigma_{21}\Sigma_{11}^{-1} & I
\end{pmatrix}
\]

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix} =
\begin{pmatrix}
\Sigma_{11}^{-1} + \Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22,1}^{-1}\Sigma_{21}\Sigma_{11}^{-1} & -\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22,1}^{-1} \\
-\Sigma_{22,1}^{-1}\Sigma_{21}\Sigma_{11}^{-1} & \Sigma_{22,1}^{-1}
\end{pmatrix}
\]

So, $C_{22}^{-1} = \Sigma_{22,1}$. And

\[
C_{11}^{-1}C_{12} = (\Sigma_{11}^{-1} + \Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22,1}^{-1}\Sigma_{21}\Sigma_{11}^{-1})(-\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22,1}^{-1})
\]

\[
= -\Sigma_{11}\Sigma_{22}^{-1} - \Sigma_{12}\Sigma_{22,1}^{-1}
\]

\[
= -\Sigma_{11}\Sigma_{22}^{-1} - \Sigma_{12}(\Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12})^{-1}
\]

\[
= -\Sigma_{12}\Sigma_{22}^{-1}
\]

\[
\square
\]

6.2 Matrix Variate Distribution

Let $X = (X_1, X_2, \ldots, X_n)^T$, $X_i \in \mathbb{R}^p$ and $X_i \sim N(\mu_i, \Sigma)$. If

\[
p(X) = \prod_{i=1}^{n} p(X_i)
\]

\[
= \prod_{i=1}^{n} \frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{n}{2}}} \exp\left(\frac{1}{2} (X_i - \mu_i)^T \Sigma^{-1} (X_i - \mu_i)\right)
\]

\[
= \frac{1}{(2\pi)^{\frac{np}{2}}|\Sigma|^{\frac{n}{2}}} \exp\left(-\frac{1}{2} \text{tr}(\Sigma^{-1} \sum_{i=1}^{n} (X_i - \mu_i)(X_i - \mu_i)^T)\right)
\]

Suppose $\mu = (\mu_1, \mu_2, \ldots, \mu_n)^T$, then

\[
p(X) = \frac{1}{(2\pi)^{\frac{np}{2}}|\Sigma|^{\frac{n}{2}}} \exp\left(-\frac{1}{2} \text{tr}(\Sigma^{-1}(X - \mu)^T I(X - \mu))\right)
\]

\[
= \frac{1}{(2\pi)^{\frac{np}{2}}|\Sigma|^{\frac{n}{2}}} \exp\left(-\frac{1}{2} \text{etr}(-\frac{1}{2} \Sigma^{-1}(X - \mu)^T I(X - \mu))\right)
\]

We call X is Matrix-variate normal distributed.

Homework 1 If $\text{vec}(X^T) \sim N_{np}(\text{vec}(\mu^T), BA \otimes A)$, show the p.d.f of X is

\[
\frac{1}{(2\pi)^{\frac{np}{2}}|A|^{\frac{n}{2}}|B|^{\frac{n}{2}}} \exp\left(-\frac{1}{2} \text{tr}(A^{-1}(X - \mu)^T B^{-1}(X - \mu))\right)
\]
Definition 6.2 (Wishart Distribution). If \(S = X^T X \), where the \(n \times p \) matrix \(X \) is \(N(0, I_n \otimes \Sigma) \), then \(S \) is positive definite and is said to have the Wishart distribution with \(n \) degrees of freedom and covariance matrix \(\Sigma \). We will write that \(S \) is \(W_p(\Sigma, n) \), the subscript on \(W \) denoting the size of the matrix \(S \).

Theorem 6.3. If \(S \) is \(W_p(\Sigma, r) \) with \(r \geq p \) then the density function of \(S \) is

\[
p(S) = \frac{|S|^{\frac{r-p-1}{2}} \exp(-\frac{1}{2} \text{tr}(\Sigma^{-1} S))}{2^{\frac{p(p+1)}{4}} \pi^{\frac{p(p-1)}{4}} |\Sigma|^{\frac{r}{2}} \prod_{i=1}^{p} \Gamma(r+i-1)}, r \geq p
\]

In Bayesian statistics, in the context of the multivariate normal distribution, the Wishart distribution is the conjugate prior to the precision matrix \(\Omega = \Sigma^{-1} \), where \(\Sigma \) is the covariance matrix.

Splitting \(S \) into parts of \(q \) and \(p-q \), i.e. \(S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \)

where \(S_{11} \) is \(q \times q \) and \(S_{22} \) is \((p-q) \times (p-q) \). So as \(\Sigma \).

Theorem 6.4. Let \(S \sim W_p(\Sigma, r) \), \(S_{11.2} = S_{11} - S_{12} S_{22}^{-1} S_{21}, \Sigma_{11.2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \) then

1. \(S_{11} \sim W_q(\Sigma_{11}, r), S_{22} \sim W_{p-q}(\Sigma_{22}, r) \)
2. \(S_{11.2} \sim W_q(\Sigma_{11.2}, r-(p-q)) \)
3. \(S_{11.2} \) and \((S_{12}, S_{22}) \) are independent.
4. \(S_{12}|S_{22} \sim N_{q,p-q}(\Sigma_{12} \Sigma_{22}^{-1} S_{22}, \Sigma_{11.2} \otimes S_{22}) \)

Proof. Making the transformation

\[
\begin{cases}
S_{11.2} = S_{11} - S_{12} S_{22}^{-1} S_{21} \\
B_{12} = S_{12} \\
B_{22} = S_{22}
\end{cases}
\]

i.e. \((S_{11}, S_{12}, S_{22}) \rightarrow (S_{11.2}, B_{12}, B_{22})\). Since

\[
(d(S_{11.2}, B_{12}, B_{22})) = (d(S_{11.2}, S_{12}, S_{22}))
= (d(S_{11} - S_{12} S_{22}^{-1} S_{21}, B_{12}, B_{22}))
= (d(S_{11}, B_{12}, B_{22}))
= (d(S_{11}, S_{12}, S_{22}))
\]

So the Jacobian is 1. Hence, we can replace \(S \) with \(S_{11.2}, B_{12}, B_{22} \).
First, we have $|S| = |S_{11,2}| |S_{22}| = |S_{11,2}| |B_{22}|$. Second, in the trace part, we have

$$tr(\Sigma^{-1} S) = tr \left(\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \right)$$

$$= tr(C_{11}S_{11}) + 2tr(C_{21}S_{12}) + tr(C_{22}S_{22})$$

$$= tr(C_{11}S_{11}) + 2tr(C_{12}B_{21}) + tr(C_{22}B_{22})$$

(since $S_{11} = S_{11,2} + S_{12} S_{22}^{-1} S_{21}$)

$$= tr(C_{11}S_{11,2}) + tr(C_{11}B_{12}B_{22}^{-1}B_{21}) + 2tr(C_{12}B_{21}) + tr(C_{22}B_{22})$$

(using theorem 6.2)

$$= tr(\Sigma_{11,2}^{-1} S_{11,2}) + tr(C_{11}B_{12}B_{22}^{-1}B_{21}) + 2tr(C_{12}B_{21}) + tr(\Sigma_{22}^{-1} B_{22})$$

$$+ tr((C_{21} C_{11}^{-1} C_{12}) B_{22})$$

We can see that $tr(\Sigma_{11,2}^{-1} S_{11,2})$ is corresponding to $p(S_{11,2})$, $tr(\Sigma_{22}^{-1} B_{22})$ is corresponding to $p(B_{22})$. And to prove $S_{11,2}$ and (B_{12}, B_{22}) are independent, we should have

$$p(S_{11,2}, B_{12}, B_{22}) = p(S_{11,2})p(B_{12}, B_{22}) = p(S_{11,2})p(B_{12}|B_{22})p(B_{22})$$

So, the residue terms should be corresponding to $p(B_{12}, B_{22})$, which is the 4th proposition in theorem 6.4. Now we rewritten them to show that they are corresponding to $N_{q,p-q}(\Sigma_{12} \Sigma_{22}^{-1} S_{22}, \Sigma_{11,2} \otimes S_{22})$.

$$tr(C_{21} C_{11}^{-1} C_{12} B_{22}) + tr(C_{11} B_{12} B_{22}^{-1} B_{21}) + 2tr(C_{12} B_{21})$$

$$= tr(C_{11} (B_{12} + C_{11}^{-1} C_{12} B_{22}) B_{22}^{-1} (B_{12} + C_{11}^{-1} C_{12} B_{22})^T)$$

$$= tr(\Sigma_{11,2} (B_{12} - \Sigma_{12} \Sigma_{22}^{-1} B_{22}) B_{22}^{-1} (B_{12} - \Sigma_{12} \Sigma_{22}^{-1} B_{22})^T)$$

Finally, we have $|\Sigma| = |\Sigma_{11,2}||\Sigma_{22}|$.

Now we have proved that the p.d.f of S can be decomposed into terms S_{22}, $S_{11,2}$ and $S_{12}|S_{22}$.

The following theorem is used to solve the problem: how to sample from a Wishart distribution.

Theorem 6.5. Let $S \sim W_p(I_p, r)$ and $S = T^T T$ where $T = (t_{i,j})$ is an upper triangle matrix, $t_{i,i} > 0$ then

1. $t_{i,j}$ $1 \leq j \leq i \leq p$ are independently distributed.
2. $t_{i,i}^2 \sim \chi^2_{r-i+1}$
3. $t_{i,j} \sim N(0, 1)$ $1 \leq j < i \leq p$

Proof. First, we have

$$|S|^\frac{1}{2}(r-p-1)etr(-\frac{1}{2}S) = \left(\prod_{i=1}^{p} t_{ii}^{2(r-p-1)} \right)etr(-\frac{1}{2} \sum_{1 \leq j < i \leq p} t_{i,j}^2)$$

6 - 5
According to Theorem 5.6, we have $J(S \rightarrow T) = 2^p \prod_{i=1}^{p} \pi^{p-i+1}_{ii}$. Also, we have $\text{tr}(S) = \text{tr}(T^T T)$. Thus,

$$p(T) \propto \prod_{1 \leq j < i \leq p} \exp(-\frac{1}{2}t_{ij}^2) \prod_{i=1}^{p} (t_{ii})^{\frac{r-1}{2}} |J(S \rightarrow T)|$$

$$\propto \prod_{1 \leq j < i \leq p} \exp(-\frac{1}{2}t_{ij}^2) \prod_{i=1}^{p} (t_{ii})^{\frac{r-1}{2}} \exp(-\frac{1}{2}t_{ii}^2)$$

$\prod_{1 \leq j < i \leq p} \exp(-\frac{1}{2}t_{ij}^2)$ denote the independent standard normal distributions of $t_{i,j}$. $\prod_{i=1}^{p} (t_{ii})^{\frac{r-1}{2}} \exp(-\frac{1}{2}t_{ii}^2)$ denote the independent distributions χ^2_{r-1}. \hfill \Box

Wishart distribution is a generalization to multiple dimensions of the chi-squared distribution. If $p = 1$ and $\Sigma = 1$ then this distribution is a chi-squared distribution with r degrees of freedom.

Definition 6.3. S^{-1} is said to have an inverse Wishart Distribution $W_{p}^{-1}(\Sigma, r)$ if its p.d.f. $(M = S^{-1})$

$$f(M) = \frac{|M|^{-\frac{r+p+2}{2}} \text{etr}(-\frac{1}{2}\Sigma^{-1}M^{-1})}{2^{\frac{p(p-1)}{4}} \pi^{\frac{p(p-1)}{4}} |\Sigma|^{\frac{r}{2}} \prod_{i=1}^{p} \Gamma(\frac{r+1-i}{2})} \tag{1}$$

Theorem 6.6. Let A and B be independent where $A \sim W_p(\Sigma, r_1)$, $B \sim W_p(\Sigma, r_2)$, with $r_1 \geq p$, $r_2 \geq p$. Put $A + B = T^T T$. T is upper triangular. And $A = T^T U T$. Let U be an $m \times m$ symmetric matrix. Then $0 < U < I$, and

1. $A + B$ and U are independent
2. $A + B \sim W_p(\Sigma, r_1 + r_2)$
3. $p(u) \propto |U|^{r_1 - p - 1 + \frac{r_2 - p - 1}{2}} |I - U|^\frac{r_2 - p - 1}{2}$

$p(U)$ is called matrix-variate Beta Distribution.

Homework 2 Prove theorem 6.6.