An Improved Chinese Word Segmentation System with Conditional Random Field

Hai Zhao, Chang-Ning Huang and Mu Li
Microsoft Research Asia,
49, Zhichun Road, Haidian District,
Beijing, P. R. China, 100080
Email: {f-hzhao,cnhuang}@msrchina.research.microsoft.com,
muli@microsoft.com

Abstract
In this paper, we describe a Chinese word segmentation system that we developed for the Third SIGHAN Chinese Language Processing Bakeoff (Bakeoff-2006). We took part in six tracks, namely the closed and open track on three corpora, Academia Sinica (CKIP), City University of Hong Kong (CityU), and University of Pennsylvania/University of Colorado (UPUC). Based on a conditional random field based approach, our word segmenter achieved the highest F measures in four tracks, and the third highest in the other two tracks. We found that the use of a 6-tag set, tone feature of Chinese character and assistant segmenters trained on other corpora further improve Chinese word segmentation performance.

1 Introduction
Conditional random field (CRF) is a statistical sequence modeling framework first introduced into language processing in (Lafferty et al., 2001). Work by Peng et al. first used this framework for Chinese word segmentation by treating it as a binary decision task, such that each Chinese character is labeled either as the beginning of a word or not (Peng et al., 2004).

Since two participants, Ng and Tseng in Bakeoff-2005, gave the best results in almost all test corpora (Low et al., 2005), (Tseng et al., 2005), we continue to improve CRF-based tagging method of Chinese word segmentation on their track. Our implementation used CRF++ package Version 0.41 by Taku Kudo.

In our system, a Chinese character is labeled by a tag which stands for its position in the Chinese word that the character belongs to. We handle closed test and open test in the same way. The difference is that those features concerned with additional linguistic resources are added in the feature set of closed test to produce the feature set used in open test.

2 Tag Set Selection
Character based tagging method for Chinese word segmentation, either based on maximum entropy or CRF, views Chinese word segmentation as a label tagging problem, which is described in detail in (Ratnaparkhi, 1996).

The probability model and corresponding feature function is defined over the set $H \times T$, where H is the set of possible contexts (or any predefined condition) and T is the set of possible tags. Generally, a feature function can be defined as follows,

$$
 f(h, t) = \begin{cases}
 1, & \text{if } h = h_i \text{ is satisfied and } t = t_j \\
 0, & \text{otherwise,}
 \end{cases}
$$

where $h_i \in H$ and $t_j \in T$.

For convenience, features are generally organized into some groups, which used to be called feature templates. For example, a bigram feature template C_1 stands for the next character occurring in the corpus after each character.

\[1\text{http://chasen.org/ taku/software/CRF++/}\]
As for tag set, there are two kinds of schemes that are used to distinguish the character position in a word in the previous work, i.e., 4-tag set and 2-tag set. The details are listed in Table 1. Notice Xue and Ng use a 4-tag set in maximum entropy model. While Peng and Tseng used a 2-tag set in CRF model.

Table 1: Tag sets in Chinese word segmentation in the previous work

<table>
<thead>
<tr>
<th>Function</th>
<th>Tag</th>
<th>Function</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin</td>
<td>B(LL)</td>
<td>start</td>
<td>Start</td>
</tr>
<tr>
<td>middle</td>
<td>M(MM)</td>
<td>continuation</td>
<td>NoStart</td>
</tr>
<tr>
<td>end</td>
<td>E(RR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>single</td>
<td>S(LR)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generally speaking, activated feature functions in practice like (1) are determined by both feature template and tag set. In the existing work, tag set is specified beforehand. To effectively perform tagging for those long words, we extend the 4-tag set of Ng/Xue into a 6-tag set. Two tags, ‘B2’ and ‘B3’, are added into a 4-tag set to form a 6-tag set, each additional tag stands for the second and the third character position in a Chinese word, respectively.

3 Feature Templates for Closed Test

The feature template set we selected for closed test is shown in Table 2. We give an explanation to feature template (e) and (f).

Feature template (e) is improved from the corresponding one in (Low et al., 2005). \(T_n, n = -1, 0, 1 \) stands for predefined class. There are four classes defined: numbers represent class 1, those characters whose meanings are dates represent class 2, English letters represent class 3, and other characters represent class 4.

As for feature template (f), \(To(C_0) \) stands for the tone of current character. There are five possible types of tones for Chinese characters in mandarin, we just assign 0, 1, 2, 3 and 4 as feature values. For example, consider some characters, ‘中’, 国’, ‘很’, ‘大’ and ‘吗’, \(To(C_0) \) is 1, 2, 3, 4 and 0, respectively.

4 Feature Templates for Open Test

In open test, we use two kinds of additional feature templates to improve the performance upon closed test.

4.1 External Dictionary

This method was firstly introduced in (Low et al., 2005). We continue to use the online dictionary from Peking University downloadable from the Internet\(^2\), consisting of about 108,000 words of length one to four characters. If there is some sequence of neighboring characters around \(C_0 \) in the sentence that matches a word in this dictionary, then we greedily choose the longest such matching word \(W \) in the dictionary. The following features derived from the dictionary are added:

\[
\text{(g) } L_{t_0} \\
\text{(h) } C_n t_0(n = -1, 0, 1)
\]

where \(t_0 \) is the boundary tag of \(C_0 \) in \(W \), and \(L \) is the number of characters in \(W \).

4.2 Assistant Segmenter

We observed that although there exists different segmentation standards, most words are still segmented in the same way according to different segmentation standards. Thus, though those segmenters trained on different corpora will give some different segmentation results, they agree on most cases. In fact, we find that it is feasible to customize a pre-defined standard into any other standards with TBL method in (Gao, 2005). And it is also valuable to incorporate different segmenters into one segmenter based on the current standard. For convenience, we call the segmenter subjected to the current standard main segmenter, and the other assistant segmenters.

A feature template will be added for an assistant segmenter:

\[
\text{(i) } t(C_0)
\]

Table 2: Feature templates

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Feature</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Unigram</td>
<td>(C_n, n = -1, 0, 1)</td>
<td>The previous (current, next) character</td>
</tr>
<tr>
<td>b</td>
<td>Bigram</td>
<td>(C_nC_{n+1}, n = -1, 0)</td>
<td>The previous (next) character and current character</td>
</tr>
<tr>
<td>c</td>
<td>Jump</td>
<td>(C_{-1}C_1)</td>
<td>The previous character and next character</td>
</tr>
<tr>
<td>d</td>
<td>Punctuation</td>
<td>(Pu(C_0))</td>
<td>Current character is a punctuation or not</td>
</tr>
<tr>
<td>e</td>
<td>Date, Digital and Letter</td>
<td>(T_{-1}T_0T_1)</td>
<td>Types of previous, current and next character</td>
</tr>
<tr>
<td>f</td>
<td>Tone</td>
<td>(To(C_0))</td>
<td>Tone of current character</td>
</tr>
</tbody>
</table>

where \(t(C_0) \) is the output tag of the assistant segmenter for the current character \(C_0 \). For example, consider character sequence ‘我们都是中国人’, an assistant segmenter gives the tag sequence ‘BESSBES’ according to its output segmentation, then \(t(C_0) \) by this assistant segmenter is ‘B’, ‘E’, ‘S’, ‘S’, ‘B’, ‘E’, and ‘S’ for each current character, respectively.

In our system, we integrate all other segmenters that are trained on all corpora from Bakeoff-2003, 2005 and 2006 with the feature set used in closed test. The segmenter, MSRSeg, described in (Gao, 2003) is also integrated.

Our assistant segmenter method is more convenient compared to the additional training corpus method in (Low et al., 2005). Firstly, the performance of additional corpus method depends on the performance of the trained segmenter that carries out the corpus extraction task. If the segmenter is not well-trained, then it cannot effectively extract the most wanted additional corpus to some extent. Secondly, additional corpus method is only able to integrate useful corpus, but it cannot integrate a well-trained segmenter while the corpus cannot be accessed. Finally, additional corpus method is very difficult to use in CRF model, the reason is that the increase of corpus can lead to a dramatic increase of memory and time consuming in this case, while assistant segmenters just lead to little increase of memory and time consuming in training.

It is more interesting that we may also regard the external dictionary method as another assistant segmenter in some degree, that is, a maximal matching segmenter with the specified external dictionary. Thus, all of our additional methods in open test can be viewed as assistant segmenter ones.

5 Evaluation Results

We took part in six segmentation tasks in Bakeoff-2006, namely the closed and open track on three corpora, Academia Sinica (CKIP), City University of Hong Kong (CityU), and University of Pennsylvania/University of Colorado (UPUC).

The comparison between our official results and best results in Bakeoff-2006 are shown in Table 3. Our system achieved the highest F measures in four tracks, and the third highest in the other two tracks. However, a format error unfortunately occurred in the open test of UPUC corpus as we submitted our final results. Thus an abnormal result in this task is obtained, the official F measure in open test is the same as that in closed test. We get the actual F measure of 0.953 after the bug is fixed.

The results in MSRA corpus from our evaluation are listed in Table 4.

Table 4: Comparison between our results and best results of Bakeoff-2006 on MSRA corpora

<table>
<thead>
<tr>
<th>Type</th>
<th>F Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bakeoff-2006</td>
</tr>
<tr>
<td>Closed Test</td>
<td>0.963</td>
</tr>
<tr>
<td>Open Test</td>
<td>0.979</td>
</tr>
</tbody>
</table>

The sizes of training corpora (in number of characters) and difference of our results between open
Table 3: Comparison between our official results and best results of Bakeoff-2006

<table>
<thead>
<tr>
<th>Type</th>
<th>Participant</th>
<th>F measures on Different Corpora</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CKIP</td>
</tr>
<tr>
<td>Closed</td>
<td>Best results of Bakeoff-2006</td>
<td>0.958</td>
</tr>
<tr>
<td>Test</td>
<td>Our results</td>
<td>0.958</td>
</tr>
<tr>
<td>Open</td>
<td>Best results of Bakeoff-2006</td>
<td>0.959</td>
</tr>
<tr>
<td>Test</td>
<td>Our results</td>
<td>0.959</td>
</tr>
</tbody>
</table>

Test and closed test are shown in Table 5. This illustrates how much assistant segmenters improve the performance of segmentation in different sizes of training corpora, also, this shows how the size of training corpus affects the improvement contributed by assistant segmenters.

Table 5: The sizes of training corpora and difference of our results between open test and closed test

<table>
<thead>
<tr>
<th>F Measures</th>
<th>CKIP</th>
<th>CityU</th>
<th>MSRA</th>
<th>UPUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{open} - F_{closed}$</td>
<td>0.001</td>
<td>0.006</td>
<td>0.012</td>
<td>0.020</td>
</tr>
<tr>
<td>Size of training corpus</td>
<td>9M</td>
<td>2.9M</td>
<td>2.3M</td>
<td>0.88M</td>
</tr>
</tbody>
</table>

References

