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Inference and LearningInference and Learning
 We now have compact representations of probability 

distributions:  GM

 A BN M describes a unique probability distribution P

 Typical tasks:

 Task 1: How do we answer queries about P?

 We use inference as a name for the process of computing answers to such 
queries

 Task 2: How do we estimate a plausible model M from data D? Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.
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iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.



Inferential Query 1: 
LikelihoodLikelihood

 Most of the queries one may ask involve evidenceq y

 Evidence xv is an assignment of values to a set Xv of nodes in the GM 
over varialbe set X={X1, X2, …, Xn}

 Without loss of generality Xv={Xk+1, … , Xn}, 

 Write XH=X\Xv as the set of hidden variables, XH can be or X

 Simplest query: compute probability of evidence
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 this is often referred to as computing the likelihood of  xv



Inferential Query 2: 
Conditional Probability

 Often we are interested in the conditional probability 

Conditional Probability

p y
distribution of a variable given the evidence

VHVH xXxXxXX ),(),()|( PPP

 this is the a posteriori belief in XH, given evidence xv

 
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)|(
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P

this is the a posteriori belief in XH, given evidence xv

 We usually query a subset Y of all hidden variables XH={Y,Z}
and "don't care" about the remaining Z:and don t care  about the remaining, Z:

 
z

VV xzZYxY )|,()|( PP
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 the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(Y|xv) is called a marginal prob.



Applications of a posteriori Belief
 Prediction: what is the probability of an outcome given the starting 

?

Applications of a posteriori Belief

condition

 the query node is a descendent of the evidence

A CB
?

q y

 Diagnosis: what is the probability of disease/fault given symptoms

A CB
?

 the query node an ancestor of the evidence

 Learning under partial observation

A CB

g p
 fill in the unobserved values under an "EM" setting (more later)

 The directionality of information flow between variables is not 
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y
restricted by the directionality of the edges in a GM
 probabilistic inference can combine evidence form all parts of the network



Inferential Query 3: 
Most Probable Assignment

 In this query we want to find the most probable joint 

Most Probable Assignment

assignment (MPA) for some variables of interest

 Such reasoning is usually performed under some given 
evidence xv, and ignoring (the values of) other variables Z:

 
z

VyVyV xzZYxYxY )|,(maxarg)|(maxarg|* PP

 this is the maximum a posteriori configuration of Y.
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Complexity of Inference

Thm:

Complexity of Inference

Thm:
Computing P(XH=xH| xv) in an arbitrary GM is NP-hard

 Hardness does not mean we cannot solve inference

 It implies that we cannot find a general procedure that works efficiently 
for arbitrary GMsy

 For particular families of GMs, we can have provably efficient 
procedures
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Approaches to inferenceApproaches to inference

 Exact inference algorithmsg

 The elimination algorithm
 Belief propagationp p g
 The junction tree algorithms      (but will not cover in detail here)

 Approximate inference techniques Approximate inference techniques

 Variational algorithmsVariational algorithms 
 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
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Inference on General BN via 
Variable Elimination

General idea:

Variable Elimination

 Write query in the form

  ii paxPXP 1 )|(),( e

 this suggests an "elimination order" of latent variables to be marginalized  

 Iteratively

 
nx x x i

ii paxPXP
3 2

1 )|(),( e

 Iteratively

 Move all irrelevant terms outside of innermost sum
 Perform innermost sum, getting a new term

I t th t i t th d t Insert the new term into the product

 wrap-up
),()|( eXPXP 1
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Hidden Markov ModelHidden Markov Model

y2 y3y1 yT...

p(x y) = p(x x y y )
A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
p(x, y) = p(x1……xT, y1, ……, yT) 

= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)

C diti l b bilitConditional probability:
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Hidden Markov ModelHidden Markov Model

y2 y3y1 yT...
Conditional probability:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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A Bayesian network

A food web

A Bayesian network

A food web

B A

DC

E FE F

G H
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What is the probability that hawks are leaving given that the grass condition is poor?



Example: Variable Elimination
 Query: P(A |h) B A

Example: Variable Elimination

 Need to eliminate: B,C,D,E,F,G,H

 Initial factors:

B A

DC

 Choose an elimination order: H,G,F,E,D,C,B

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

 Step 1: 
 Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):h~

 This step is isomorphic to a marginalization step:

),|~(),( fehhpfemh 
B A

DC
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Example: Variable Elimination
 Query: P(B |h) B A

Example: Variable Elimination

 Need to eliminate: B,C,D,E,F,G

 Initial factors:

B A

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

 Step 2: Eliminate G
t compute

1)|()( 
g

g egpem
B A

DC)()()|()|()|()|()()( fememafPdcePadPbcPbPaP h
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Example: Variable Elimination
 Query: P(B |h) B A

Example: Variable Elimination

 Need to eliminate: B,C,D,E,F

 Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h




 Step 3: Eliminate F
t

),()|(),|()|()|()()( ff h

 compute


f
hf femafpaem ),()|(),(

)()|()|()|()()( eamdcePadPbcPbPaP

B A

DC
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),(),|()|()|()()( eamdcePadPbcPbPaP f
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Example: Variable Elimination
 Query: P(B |h) B A

Example: Variable Elimination

 Need to eliminate: B,C,D,E

 Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h




 Step 4: Eliminate E
t

),(),|()|()|()()(
),()|(),|()|()|()()(

eamdcePadPbcPbPaP
ff

f

h



B A

DC

 compute


e
fe eamdcepdcam ),(),|(),,(

)()|()|()()( dcamadPbcPbPaP

B A

DC
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Example: Variable Elimination
 Query: P(B |h) B A

Example: Variable Elimination

 Need to eliminate: B,C,D

 Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h




),,()|()|()()(

),(),|()|()|()()(

dcamadPbcPbPaP

eamdcePadPbcPbPaP

e

f





 Step 5: Eliminate D
 compute  ed dcamadpcam ),,()|(),(

B A

C
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Example: Variable Elimination
 Query: P(B |h) B A

Example: Variable Elimination

 Need to eliminate: B,C

 Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP

h

h




),()|()()(
),,()|()|()()(

),(),|()|()|()()(

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP

d

e

f






 Step 6: Eliminate C
 compute  dc cambcpbam ),()|(),(

B A
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Example: Variable Elimination
 Query: P(B |h) B A

Example: Variable Elimination

 Need to eliminate: B

 Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP

h

h



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camdcPbPaP
dcamadPdcPbPaP
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d

e

f



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 Step 7: Eliminate B
 compute

),()()( bambPaP c

 cb bambpam ),()()(
A
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Example: Variable Elimination
 Query: P(B |h) B A

Example: Variable Elimination

 Need to eliminate: B

 Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP

h

h


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),()|()()(
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camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP

d

e

f






 Step 8: Wrap-up
)()(

),()()(
amaP

bambPaP

b

c




,)()()~,( amaphap b  b amaphp )()()~(
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Complexity of variable 
elimination
 Suppose in one elimination step we compute

elimination


x

kxkx yyxmyym ),,,('),,( 11 


k

xmyyxm )()(' y

This requires 
 multiplications





i

cikx i
xmyyxm

1
1 ),(),,,( y

 CXk )Val()Val( Y p

─ For each value of x, y1, …, yk, we do k multiplications


i

Ci
)()(

 additions

─ For each value of y1, …, yk , we do |Val(X)| additions


i

Ci
X )Val()Val( Y
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Complexity is exponential in number of variables in the 
intermediate factor



Elimination CliquesElimination Cliques
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Understanding Variable 
EliminationElimination
 A graph elimination algorithm

B A

DC

E F

B A
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E F

B A

DC
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E F

B A

DC

E F

B A

DC

E

B A

C

B A A

moralization

G H G H G

graph elimination

 Intermediate terms correspond to the cliques resulted from 
elimination
 “good” elimination orderings lead to small cliques and hence reduce complexitygood  elimination orderings lead to small cliques and hence reduce complexity

(what will happen if we eliminate "e" first in the above graph?)

 finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found 
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p y

 Applies to undirected GMs



From Elimination to Belief 
PropagationPropagation
 Recall that Induced dependency during marginalization is p y g g

captured in elimination cliques
 Summation <-> elimination
 Intermediate term <-> elimination cliqueq

A

B A

C
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B A A

A
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DC
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DC
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 Can this lead to an generic 
inference algorithm?
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Tree GMsTree GMs

Undirected tree: a 
unique path between 

Directed tree: all 
nodes except the root 
ha e e actl one

Poly tree:  can have 
multiple parents
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any pair of nodes have exactly one 
parent



Equivalence of directed and 
undirected trees
 Any undirected tree can be converted to a directed tree by choosing a root 

undirected trees

node and directing all edges away from it

 A directed tree and the corresponding undirected tree make the same 
conditional independence assertionsp

 Parameterizations are essentially the same.

 Undirected tree: Undirected tree:

 Directed tree: 

 Equivalence:
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 Evidence:?



From elimination to message 
passingpassing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.

Place the resultant factor back on the list Place the resultant factor back on the list

 For a TREE graph:
 Choose query node f as the root of the tree
 View tree as a directed tree with edges pointing towards from f
 Elimination ordering based on depth-first traversal
 Elimination of each node can be considered as message-passing (or Belief Propagation) Elimination of each node can be considered as message passing (or Belief Propagation) 

directly along tree branches, rather than on some transformed graphs
 thus, we can use the tree itself as a data-structure to do general inference!!
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Message passing for treesMessage passing for trees

Let m (x ) denote the factor resulting from
f

Let mij(xi) denote the factor resulting from 
eliminating variables from bellow up to i, 
which is a function of xi:

i This is reminiscent of a message sent 
from j to i.

j

k l
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k l
mij(xi) represents a "belief" of xi from xj!



 Elimination on trees is equivalent to message passing along q g p g g
tree branches!

f

ii

j
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k l



The message passing protocol:The message passing protocol:
 A two-pass algorithm:p g

X1

(X ) (X )

X

m21(X 1)

m32(X 2) m42(X 2)

m12(X 2)

X2

X3
X4

m32(X 2) m42(X 2)
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m24(X 4)
3

m23(X 3)



Belief Propagation (SP-algorithm): 
Sequential implementationSequential implementation
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Belief Propagation (SP-algorithm): 
Parallel synchronous implementationParallel synchronous implementation

 For a node of degree d, whenever messages have arrived on any subset of d-1 node, 
compute the message for the remaining edge and send!
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compute the message for the remaining edge and send!
 A pair of messages have been computed for each edge, one for each direction
 All incoming messages are eventually computed for each node



Correctness of BP on treeCorrectness of BP on tree

 Collollary: the synchronous implementation is "non-blocking"

 Thm: The Message Passage Guarantees obtaining all 
marginals in the tree

 What about non-tree?
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Inference on general GMInference on general GM
 Now, what if the GM is not a tree-like graph?

 Can we still directly run message 
i t l l it d ?message-passing protocol along its edges?

 For non-trees, we do not have the guarantee that message-passing g g p g
will be consistent!

 Then what? Then what?
 Construct a graph data-structure from P that has a tree structure, and run message-passing 

on it!
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 Junction tree algorithm



Elimination Clique
 Recall that Induced dependency during marginalization is 

Elimination Clique
p y g g

captured in elimination cliques
 Summation <-> elimination
 Intermediate term <-> elimination cliqueq

A

B A

C
A

B A A

A

E F
A
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A

DC
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 Can this lead to an generic 
inference algorithm?
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A Clique TreeA Clique Tree
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From Elimination to Message 
Passing

 Elimination  message passing on a clique tree

Passing

 Elimination  message passing on a clique tree
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
e dcam ),,(
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E hm
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
e

fg eamemdcep ),()(),|(
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 Messages can be reused



From Elimination to Message 
PassingPassing

 Elimination  message passing on a clique tree Elimination  message passing on a clique tree
 Another query ...

B A

C

B A A

cm bm
A

E F
A

DC

A

DC

em

dm
fm

E F

H

E

G

DC

E

gm
hm
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 Messages mf and mh are reused, others need to be recomputed



The Shafer Shenoy AlgorithmThe Shafer Shenoy Algorithm
 Shafer-Shenoy algorithmy g

 Message from clique i to clique j :

  S )(
 Clique marginal 

 


 
iji

i
SC jk

kiikCji S
\

)(

 SCp )()( 
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A Sketch of the Junction Tree 
AlgorithmAlgorithm 
 The algorithmg

 Construction of junction trees --- a special clique tree

 Propagation of probabilities --- a message-passing protocol

 Results in marginal probabilities of all cliques --- solves all 
queries in a single run

 A generic exact inference algorithm for any GM A generic exact inference algorithm for any GM

 Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

 Many well-known algorithms are special cases of JT
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 Forward-backward, Kalman filter, Peeling, Sum-Product ...



The Junction tree algorithm for HMMThe Junction tree algorithm for HMM
 A junction tree for the HMM

),( 11 xy ),( 21 yy ),( 32 yy ),( TT yy 1

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 

y yy yy yy

)( 2y )( 3y )( Ty
)( 1y )( 2y

 Rightward pass ),( 22 xy ),( 33 xy ),( TT xy
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 This is exactly the backward algorithm! 
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SummarySummary
 The simple Eliminate algorithm captures the key algorithmic 

Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

 The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

 This graph interpretation will also provide hints about how to design 
improved inference algorithms 

 What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
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summands that appear in the sequence of summation operation. 


