Machine Learning

Learning Graphical Models

Reading:
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Inference and Learning

e A BN M describes a unique probability distribution P

e Typical tasks:

Eric Xing

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such
queries

So far we have learned several algorithms for exact and approx. inference

Task 2: How do we estimate a plausible model M from data D?

i.  We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(M|D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.
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Learning Graphical Models %
The goal:
Given set of independent samples (assignments of
random variables), find the best (the most likely?)
graphical model (both the graph and the CPDs)
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Learning Graphical Models

e Scenarios:

e completely observed GMs

directed v
undirected N

e partially observed GMs
directed v

undirected (an open research topic)

e Estimation principles:

e Maximal likelihood estimation (MLE)

e Bayesian estimation
e Maximal conditional likeli
e Maximal "Margin"

e We use learning as a name for the process of estimating the

hood

parameters, and in some cases, the topology of the network, from

data.
Eric Xing
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ML Parameter Est. for
completely observed GMs of
given structure

e [he data:
{(20,xD), (22, x@), (22, x(3)), ... (2N, xN)}
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The basic idea underlying MLE

e Likelihood
(for now let's assume that the structure is given): E(, ,;

L0 X)=p(X[0)=p(X;]|6)p(X;|6,)p(X;3] X3, X3;6;)

e Log-Likelihood:

1(0| X) =log p(X |0) =log p(X,|8;)+log p(X,[8,)+log p(X; | X3, X3,65)
e Data log-likelihood

1(6| DATA) =log] | p(X,16)
= log p(X,;16,)+>_ log p(X,,[6,)+> log p(X, 51 X,;X,,.65)

e MLE {91 | 92 | ‘93}MLE = arg max | (9 | DATA)

6; =argmax X2log p(X,;|6,), 6 =argmax 2log p(X,,|6,), 6 =argmax 2log p(X,s| X, X, 65)
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Example 1: conditional Gaussian | ¢

e The completely observed model:
e is a class indicator vector

-1
ZZ
Z=| . | whereZ™ =[0,1], and 2Z2" =1
Z.M and a datum is in class /W.p. 7;
o All except one
: ? '\m/ of these terms

p(z' =1|7n)=r, =n] xn) x..xx},

JOE I 4

e Xis a conditional Gaussian variable with a class-specific mean

1
(27c?)

p(x| 2, p1,0) =] N(xlety, )"
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p(x|z" =1, u,0) = T exp{i(x-ym)z}



Example 1: conditional Gaussian |

e Data log-likelihood
1010) €10 oz 7) =109 ] bz, 10901 12,60 %

= Zlog p(z, | 7)+ Zlog p(X, | Z,, 4, 0)
_ Zlog]] T+ Zlog]] N(X, |z, , o)
- Zszlogz - ZZzn L (X, - 1y)? +C

e MLE
7. =argmax|(0| D), = 18] D)=0,Vm, st 2, =1
m
27 -
e nr/ the fraction of
m N N samples of class m
m m
Zn Zn X _ Zn Zn % the average of

“=argmax|(@|D), = u, = =
Hr =argmax (8| D) Hn =737 n samples of class /7
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Example 2: HMM: two scenarios

e Supervised learning: estimation when the “right answer” is
known

e Examples:

GIVEN:  agenomic region x = X4...X4 00,000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize
A X 0) --- Maximal likelihood (ML) estimation
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Recall definition of HMM

e Transition probabilities between
any two states @ @ @ @
OROROENO

p(y! =11y, =1 =a,
o p(yt|yt‘_1:1)~Multinomial(aill,ai,z,...,ai,M), el

e Start probabilities

p(y,) ~ Multinomial(z,, z,,..., 7, )

e Emission probabilities associated with each state

p(x, |y =1) ~ Multinomial(b, b, ,,....b, ) Viel.

or in general: p(X. |y, =1)~f(-|¢9i),VieJ[.
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Supervised ML estimation -

o Given x= x,...xyfor which the true state path y= y,...yy/is

known,
£(0;x,y) =log p(x,y) = IogH(p(yM)H P(Yoi | Yas 1)1_[ p(X, | Xnt)J
e Define:
A = # times state transition /- occurs iny
B, = # times state /in y emits kin x

e We can show that the maximum likelihood parameters @are:

gt — #(/ — ) szzyﬂflyﬂf_ A;

’ #(/ > ) Z Z,«-_g Yn,r—1 ZJ'-A/J

pML _ #(7 > K) ZZHYM nt _ B,

"R TN e

e |Ifyis continuous, we can treat {(X,,j,y,,,,):f':1:7',/7:1:N}as NxT

observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Eric Xing © Eric Xing @ CMU, 2006-2010
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Supervised ML estimation, ctd. .

e Intuition:

e \When we know the underlying states, the best estimate of dis the
average frequency of transitions & emissions that occur in the training
data

e Drawback:

e Given little data, there may be overfitting:
P(x|0) is maximized, but 0 is unreasonable
0 probabilities — VERY BAD

e Example:
e Given 10 casino rolls, we observe

e Then: arr=1; ag =0
bey = bpy = .2;
be, = .3; bey = 0; beg = beg = .1
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Pseudocounts :

e Solution for small training sets:

e Add pseudocounts

A = # times state transition /- joccurs iny + A?,-J-
B, = # times state /in y emits Ainx+ 5,

¢ R

e Total pseudocounts: ;=X R;, 5;= 2,5,
--- "strength" of prior belief,

5,J~are pseudocounts representing our prior belief

--- total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief
e Small total pseudocounts: just to avoid 0 probabilities --- smoothing

e This is equivalent to Bayesian est. under a uniform prior with
"parameter strength" equals to the pseudocounts
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MLE for general BN parameters -

e If we assume the parameters for each CPD are globally
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one
per node:

[(9, D) = Iog p(D | 9) = IOgH H p(xn,i | Xn,;zi ’gi)j = Z(Z Iog p(xn,i | Xn,;ri ’gi)j

g 1
0 1

0 1 o \
. 0 'tS I e
A2

PR
D x2=0p P(5=1
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Example: decomposable T
likelihood of a directed model 4

e Consider the distribution defined by the directed acyclic GM:

P(X|6) = p(X | 6) P(X; | X1, 6) P(X3 | X1, B5) P(Xq | X5, X3, 6)

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.
X

:
® @ = @

®
(X %
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E.g.. MLE for BNs with tabular i+
CPDs oo

e Assume each CPD is represented as a table (multinomial)

where def _ S
Os = P(X; = ][ X, =k) Lo
1
Note that in case of multiple parents, X will have a composite “351 —
state, and the CPD will be a high-dimensional table ,\-6?

The sufficient statistics are counts of family configurations

z I,n n,i n7z,

e The log-likelihood is £(6;:0)=log [ | 9% = Z M 1096,

..k
e Using a Lagrange multiplier w
to enforce ZJ. 9/]/( 21, we get: ijk Z n.

Lk
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Learning partially observed
GMs

e The data:
{(xD), (x), (xC)), ... (xN)}

ric Xing © Eric Xing @ CMU, 2006-2010 17



What If some nodes are not i
observed? oo

e Consider the distribution defined by the directed acyclic GM:

P(X|0) = p(X | 6) P(X; | X1, 6) P(X3 | X1, B5) P(X4 | X5, X3, 6))

e Need to compute p(xy|xy) = inference

Eric Xing © Eric Xing @ CMU, 2006-2010 18



Recall: EM Algorithm o°

e A way of maximizing likelihood function for latent variable models.
Finds MLE of parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

o E-step: qf+1 =argmax F (g, 97‘)
: 4
° M-step: 6" =argmax F (g™, 6")

e In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.

Eric Xing © Eric Xing @ CMU, 2006-2010 19



EM for general BNs

while not converged

% E-step
for each node /

£55,=0 % reset expected sufficient statistics
for each data sample #

do inference with X,

for each node /

ESS, += (55X, %))

% M-step
for each node /

0,:= MLE(£5S;)

p(Xn,/—/lxn,—H)

Eric Xing © Eric Xing @ CMU, 2006-2010
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Example: HMM

e Supervised learning: estimation when the “right answer” is known

e Examples:

GIVEN: a genomic region X = X...X4 g0 000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is

unknown
e Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he

changes dice

e QUESTION: Update the parameters 6 of the model to maximize A x| 6) -
-- Maximal likelihood (ML) estimation

Eric Xing © Eric Xing @ CMU, 2006-2010 21




The Baum Welch algorithm o°

e The complete log likelihood

T T
¢.(0;x,y) =log p(x,y) = IOQHEP(yn,l)H PV, |)/n,f—1)H p(X,; |Xn,r)j
n t=2 =1
e The expected complete log likelihood
<4 (6;x, Y)> = ZH:(<y';"1>P(yn,1lxn) log 7[/) + ang(<y;.f—1yl{7‘>

o EM
e TheE step
7//77‘ <ym‘> p(y/;f :1|X/1)
é:n:f = <yn,7‘—1yf;j,.7‘> = p(y/;‘,f—l = 1' y/;/f = 1 | Xn)
e The M step ("symbolically" identical to MLE)

ML Z,,V;J Z Zf 2 b//(m_z Z, 17nf ﬂf
- g T-1 T-1 ;
N J Z Zf 17//77‘ Z Zf 1}//77‘
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Unsupervised ML estimation .

e Given x= x,...x)for which the true state path y= y,...yyis
unknown,

e EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters 6.

1. Estimate A4;;, B, in the training data
How? A; = z,,,, <y;,f—1y/{,r,> By = Zn,f <y/;,f>Xn/Tf,
2. Update @according to A, B

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set @ each iteration

Eric Xing © Eric Xing @ CMU, 2006-2010
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ML Structural Learning for
completely observed
GMs

© Eric Xing @ CMU, 2006-2010 24



Information Theoretic
Interpretation of ML

£(65,G; D) =log p(D|6,,G)

= |09H[H P(X,; |Xn,7ri @) Oz (G))j
= Z[Zlog P(X,; |Xn,7r|(G)’9i|ﬂ',(G))j
=M Z Z

Xi Xz (G)

count(x;, X))

log p(X; |Xﬁ,(e)"9m(e))J

=M Z Z I’j(xiixﬁi(e)) Iog p(Xi |Xﬁ,(G)’€i7f(G))J

Xi X7 (G)

From sum over data points to sum over count of variable states

Eric Xing © Eric Xing @ CMU, 2006-2010
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Information Theoretic
Interpretation of ML (con'd)

¢(65,G;D)=log p(D |65, G)

Eric Xing

Xi Xz (G)

Z ﬁ(xi’xﬂi(G)) log

Xi Xz (G)

Z f)(xi’xﬂ'i(G)) log

Xi Xz (6)

Z ﬁ(xi,x”i(G))log p(x; |X7z,(G)’9|7r,(G))J

ﬁ(xi’xﬂi(G)’eilﬂi(G)) P(X;)

f’(xﬂi(e)) p(x)

J

ﬁ(xi ' Xzi(6) Hilﬂi (G))j_ M Z(Z f)(Xi) log f’(xu)j

fj(xﬂi (G)) p(x)

=M YT (6,X,6) - M Y H(x)

© Eric Xing @ CMU, 2006-2010
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Structural Search :

e How many graphs over n nodes? 0O(2"™)
e How many trees over n nodes? Oo(n!)

e But it turns out that we can find exact solution of an optimal
tree (under MLE)!

e Trick: in a tree each node has only one parent!
e Chow-liu algorithm

Eric Xing © Eric Xing @ CMU, 2006-2010
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Chow-Liu tree learning algorithm | s¢

e Objection function:

¢(0,,G;D) =log p(D|6,,G)
=MD 1% X, ) =M D H (%)

e Chow-Liu:
e For each pair of variable x; and x;

Compute empirical distribution: ~ p(X;, j

Compute mutual information: (X, X;) = Z p(x;, x;)log—
Xi, X

e Define a graph with node x,,..., X
Edge (l,j) gets weight f(Xi, X;)

Eric Xing © Eric Xing @ CMU, 2006-2010

C(G) =MD (% X, q)

_count(x;, X;)

1777

M

(X, X;)
(%) P(X;)
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Chow-Liu algorithm (con'd) o°

e Objection function:

¢(0,,G;D) =log p(D|6,,G)
=MD T X, ) =M D H (%)

e Chow-Liu:
Optimal tree BN
e Compute maximum weight spanning tree

C(G) =MD (% X, q)

e Direction in BN: pick any node as root, do breadth-first-search to define directions

e |-equivalence:

(A)

(C) (E)

D)

B © n) (E C)

0 © B)

© ®—06

C(G)=1(A,B)+I(AC)+1(C,D)+I(C,E)

Eric Xing © Eric Xing @ CMU, 2006-2010
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Structure Learning for general
graphs

e [heorem:

e The problem of learning a BN structure with at most d parents is
NP-hard for any (fixed) d=2

e Most structure learning approaches use heuristics
e Exploit score decomposition
e Two heuristics that exploit decomposition in different ways

Greedy search through space of node-orders

Local search of graph structures

Eric Xing © Eric Xing @ CMU, 2006-2010
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Inferring gene regulatory i
networks :

e Network of cis-regulatory pathways

Endomesoderm Specification to 30 Hours

Maternal and Early Interactions Licl aul : _l[’—
L oe s
Matep] Tﬁcsmkﬁf.-—e’

I ECNS ?nﬁ-TCF ‘ l [

r—{Micx/Nuc Mat Otx] _fzled s
Lo
unka pe rep 7
Ubi miq—l | np-TCF
—l_[' LLH 5°xli:1 A Wnt§
= _ml_['_ : [
ﬁ_rmfm 2 Eve
: Ui B
el i
Huf6 Delia |0 Hox11/13b
sml .
e v
MLt [Tig R
e o ol it
REE = | =
P T Ty e Y u
ﬂ Mv_[' FoxA
| D|| FexB i Cre
ol Liv | [z liprel e (L7 ILv
lEpHanpLMvpl]ll [SmS0 | || SuTx CAPE Dpt  Phe | OrCT Kakapo OrCT  Kakapo
Sm27 Smil  CyP Ficolin  FMol23 Decorin Apobec Gelsolin  Apobec  Gelsolin Endol6
right @ 2001-21 i

e Success stories in sea urchin, fruit fly, etc, from decades of experimental
research

e Statistical modeling and automated learning just started
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Gene Expressmn Promlng by
Mlcroarrays




Structure Learning Algorithms os

e Structural EM (Friedman 1998)

e The original algorithm

Exrsion data

@ e Sparse Candidate Algorithm
(Frledman et al.)

Discretizing array signals

e Hill-climbing search using local operators: add/delete/swap of a
single edge

e Feature extraction: Markov relations, order relations

e Re-assemble high-confidence sub-networks from features

Learning Algorithm _
@ e Module network learning (Segal et al.)

Heuristic search of structure in a "module graph”
Module assignment

Parameter sharing

Prior knowledge: possible regulators (TF genes)

Eric Xing © Eric Xing @ CMU, 2006-2010 33



Learning GM structure ;

e Learning of best CPDs given DAG is easy

e collect statistics of values of each node given specific assignment to its parents

e Learning of the graph topology (structure) is NP-hard

e heuristic search must be applied, generally leads to a locally optimal network

e Overfitting

e It turns out, that richer structures give higher likelihood P(D|G) to the data (adding
an edge is always preferable)

— >
P(C|A) <P(C| A B)

e more parameters to fit => more freedom => always exist more "optimal" CPD(C)

e We prefer simpler (more explanatory) networks
e Practical scores regularize the likelihood improvement complex networks.

Eric Xing © Eric Xing @ CMU, 2006-2010 34



e Learning Graphical Model Structure via
Neighborhood Selection

Eric Xing © Eric Xing @ CMU, 2006-2010 35



Undirected Graphical Models

e Why?

Sometimes an UNDIRECTED
association graph makes more
sense and/or is more

BOLIN

informative
e gene expressions may be influenced cr e | 1; L
by unobserved factor that are post- BT awrl. o
. 7- g7k 9‘5:&51.1 |

transcriptionally regulated

. A
il o
=TRY, ,t.?,‘. M:l iii E1 \\ Fi -
. PRkG: wars2 .
_I/

.-.__,/ I'I ! [
¢ . I'-. :: .".
B ® \
I | ESPLI
- e

| @
e The unavailability of the state of B "
results in a constrain over A and C ,,- \
‘ ‘-\1_ RSP
m‘cmt
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0000
11
Gaussian Graphical Models o°
e Multivariate Gaussian density:
! L(x-u) =7 (x-
p(xm,z)—(zﬂ)ﬂ,z‘z‘l,z expl 4 (x- 1) =7 (x - )|

e WOLG: letp=0 Q=1

_ _ ‘Q‘llz _1 2_
PO X+ X, | 1=0.Q) = 57z exp 20 (% ) =2 4%,

i<]

e \We can view this as a continuous Markov Random Field with
potentials defined on every node and edge:

Eric Xing © Eric Xing @ CMU, 2006-2010
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The covariance and the precision | se2:
matrices oo

e Covariance matrix Y
Ei’j = 0 — XZJ_X] or p(XZ',Xj) = p(X@)p(XJ)

e Graphical model interpretation?

e Precision matrix ¢ = ¥~

Qi =0 = X LX;|X_;; or p(X;,X;|X_ ;) =p(Xi|X_ij)p(X;|X_i)

e Graphical model interpretation?

Eric Xing © Eric Xing @ CMU, 2006-2010 38



Sparse precision vs. sparse
covariance in GGM

(D)5

1 6 00O 010 015 -013 -0.08 0.15
6 2 7 00 015 -003 002 001 -0.03
>'=|0 7 3 80 x=-013 002 010 007 -012
O 08 409 -0.08 001 007 -0.04 0.07
O 00 95 015 -003 -012 007 0.08

Z1_51 :O < Xl 1 ><S‘anrs(l)or nbrs(5)
=
X, L X, < 2,=0
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Another example 4+

L2 T3

L1 L4

* O O O OO0

O % % ¥ % %
O % % ¥ % %
OO0 *x % %
OO % O % %
O x O O % *

) r6 O

L5

e How to estimate this MRF?
e Whatifp>>n

e MLE does not exist in general!

e \What about only learning a “sparse” graphical model?
This is possible when s=0(n)
Very often it is the structure of the GM that is more interesting ...

Eric Xing © Eric Xing @ CMU, 2006-2010 40



Single-node Conditional

e The conditional dist. of a single node i given the rest of the
nodes can be written as:

N(ui + EXéX—-aE)_il_iX_i(X—i — Nx_i):

—1
EX'i—Xz' - EXiX—iEX_Z'X_iEX—z’Xi)

p(Xi|X ;)

o WOLG:let 1 =0

p(Xi]|X ;)

e \We can write the following conditional auto-regression
function for each node:

Eric Xing

© Eric Xing @ CMU, 2006-2010
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Conditional independence os
e From

PXIXo) = N(Z-Xoia)
o Let Si=1{j : J#u,0;#0}

e Given an estimate of the neighborhood s;, we have:

p(Xi| X)) = p(XilXy)

e Thus the neighborhood s; defines the Markov blanket of node |

Eric Xing © Eric Xing @ CMU, 2006-2010 42



Recall lasso -

é?; = argrréini(ﬁi) + A1 6; ||

where [(6;) = log P(yz-|x,,;, 92').

Eric Xing © Eric Xing @ CMU, 2006-2010 43



Graph Regression

Neighborhood selection

Eric Xing © Eric Xing @ CMU, 2006-2010
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Graph Regression oo

Eric Xing © Eric Xing @ CMU, 2006-2010 45



Graph Regression

O
)

It can be shown that:

given iid samples, and under several technical conditions (e.g., "irrepresentable"),

the recovered structured is "sparsistent” even when p >> n

Eric Xing © Eric Xing @ CMU, 2006-2010
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Consistency -

e Theorem: for the graphical regression algorithm, under
certain verifiable conditions (omitted here for simplicity):

PG\ # G| = O (exp (—Cn)) = 0

Note the from this theorem one should see that the regularizer is not actually
used to introduce an “artificial” sparsity bias, but a devise to ensure consistency
under finite data and high dimension condition.

Eric Xing © Eric Xing @ CMU, 2006-2010
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Learning (sparse) GGM

e Multivariate Gaussian over all continuous expressions

RO expl- 3 (X- 1) (X - 1)

p([xl""’ Xn]) —

e The precision matrix Q=X-! reveals the topology of the
(undirected) network

e Learning Algorithm: Covariance selection
e Want a sparse matrix Q

e As shown in the previous slides, we can use L_1 regularized linear
regression to obtain a sparse estimate of the neighborhood of each
variable

Eric Xing © Eric Xing @ CMU, 2006-2010
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Recent trends in GGM: ot

e Covariance selection (classical e
method)

e Dempster [1972]:

Sequentially pruning smallest elements
in precision matrix

e Drton and Perlman [2008]:
Improved statistical tests for pruning

Serious limitations in
practice: breaks down when
covariance matrix is not
invertible

L,-regularization based
method (hot !)

e Meinshausen and Buhimann [Ann. Stat.
06]:

Used LASSO regression for
neighborhood selection

Banerjee [JMLR 08]:

Block sub-gradient algorithm for finding
precision matrix

Friedman et al. [Biostatistics 08]:

Efficient fixed-point equations based
on a sub-gradient algorithm

Structure learning is possible

even when # variables > # ‘
samples

Eric Xing © Eric Xing @ CMU, 2006-2010 49



Learning Ising Model i
(1.e. pairwise MRF) oo

e Assuming the nodes are discrete, and edges are weighted,
then for a sample x4, we have

P(Xd|@) — exp(z sz-.flfd’i + Z Qij-xd?ia:d,j — A(@))

eV (i,7)€E

e |t can be shown following the same logic that we can use L_1
regularized logistic regression to obtain a sparse estimate of
the neighborhood of each variable in the discrete case.

Eric Xing © Eric Xing @ CMU, 2006-2010
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