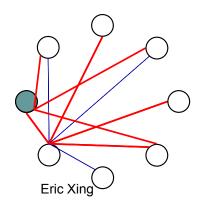
Machine Learning

Learning Graphical Models

Eric Xing

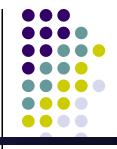
Lecture 12, August 14, 2010



Reading:

Inference and Learning

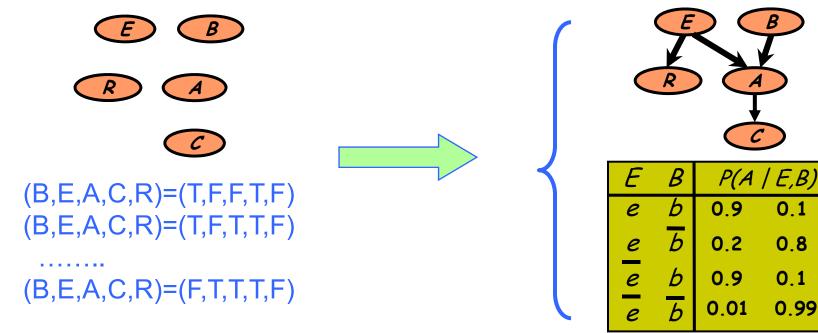
- A BN M describes a unique probability distribution P
- Typical tasks:
 - Task 1: How do we answer queries about P?
 - We use inference as a name for the process of computing answers to such queries
 - So far we have learned several algorithms for exact and approx. inference
 - Task 2: How do we estimate a plausible model M from data D?
 - i. We use **learning** as a name for the process of obtaining point estimate of M.
 - ii. But for *Bayesian*, they seek $p(M \mid D)$, which is actually an **inference** problem.
 - iii. When not all variables are observable, even computing point estimate of *M* need to do **inference** to impute the *missing data*.



Learning Graphical Models

The goal:

Given set of independent samples (assignments of random variables), find the **best** (the most likely?) graphical model (both the graph and the CPDs)



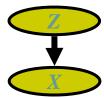
0.1

0.8

0.99

Learning Graphical Models

- Scenarios:
 - completely observed GMs
 - directed
 - undirected
 - partially observed GMs
 - directed
 - undirected (an open research topic)
- Estimation principles:
 - Maximal likelihood estimation (MLE)
 - Bayesian estimation
 - Maximal conditional likelihood
 - Maximal "Margin"
- We use **learning** as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.



ML Parameter Est. for completely observed GMs of given structure

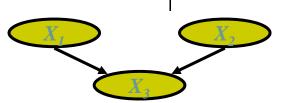
• The data:

 $\{(z^{(1)},x^{(1)}),(z^{(2)},x^{(2)}),(z^{(3)},x^{(3)}),...(z^{(N)},x^{(N)})\}$

Likelihood

(for now let's assume that the structure is given):

$$L(\mathbf{\theta} \mid X) = p(X \mid \mathbf{\theta}) = p(X_1 \mid \theta_1) p(X_2 \mid \theta_2) p(X_3 \mid X_3, X_3; \theta_3)$$



• Log-Likelihood:

$$l(\theta \mid X) = \log p(X \mid \theta) = \log p(X_1 \mid \theta_1) + \log p(X_2 \mid \theta_2) + \log p(X_3 \mid X_3, X_3, \theta_3)$$

Data log-likelihood

$$l(\mathbf{\theta} \mid DATA) = \log \prod_{n} p(X_{n} \mid \mathbf{\theta})$$

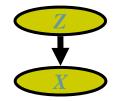
$$= \sum_{n} \log p(X_{n,1} \mid \theta_{1}) + \sum_{n} \log p(X_{n,2} \mid \theta_{2}) + \sum_{n} \log p(X_{n,3} \mid X_{n,1} X_{n,2}, \theta_{3})$$

MLE

$$\{\theta_1, \theta_2, \theta_3\}_{MLE} = \arg\max l(\mathbf{\theta} \mid DATA)$$

$$\theta_1^* = \arg\max_{n} \sum_{n} \log p(X_{n,1} | \theta_1), \quad \theta_2^* = \arg\max_{n} \sum_{n} \log p(X_{n,2} | \theta_2), \quad \theta_3^* = \arg\max_{n} \sum_{n} \log p(X_{n,3} | X_{n,1} X_{n,2}, \theta_3)$$

- The completely observed model:
 - Zis a class indicator vector



$$Z = \begin{bmatrix} Z^1 \\ Z^2 \\ \vdots \\ Z^M \end{bmatrix}, \quad \text{where } Z^m = [0,1], \text{ and } \sum Z^m = 1$$
 and a datum is in class *i* w.p. π_i

$$p(z^{i} = \mathbf{1} \mid \pi) = \pi_{i} = \pi_{1}^{z^{1}} \times \pi_{2}^{z^{2}} \times \dots \times \pi_{M}^{z^{M}}$$

$$p(z) = \prod \pi_{m}^{z^{m}}$$

All except one of these terms will be one

$$p(z) = \prod_{m} n_{m}$$

X is a conditional Gaussian variable with a class-specific mean

$$p(x | z^{m} = 1, \mu, \sigma) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}(x - \mu_{m})^{2}\right\}$$
$$p(x | z, \mu, \sigma) = \prod_{m} N(x | \mu_{m}, \sigma)^{z^{m}}$$

Example 1: conditional Gaussian

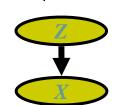
Data log-likelihood

$$l(\boldsymbol{\theta} \mid D) \neq \log \prod_{n} p(z_{n}, x_{n}) = \log \prod_{n} p(z_{n} \mid \pi) p(x_{n} \mid z_{n}, \mu, \sigma)$$

$$= \sum_{n} \log p(z_{n} \mid \pi) + \sum_{n} \log p(x_{n} \mid z_{n}, \mu, \sigma)$$

$$= \sum_{n} \log \prod_{m} \pi_{m}^{z_{n}^{m}} + \sum_{n} \log \prod_{m} N(x_{n} \mid \mu_{m}, \sigma)^{z_{n}^{m}}$$

$$= \sum_{n} \sum_{m} z_{n}^{m} \log \pi_{m} - \sum_{n} \sum_{m} z_{n}^{m} \frac{1}{2\sigma^{2}} (x_{n} - \mu_{m})^{2} + C$$



MLE

$$\pi_m^* = \arg\max l(\mathbf{\theta} \mid D), \qquad \Rightarrow \frac{\partial}{\partial \pi_m} l(\mathbf{\theta} \mid D) = \mathbf{0}, \ \forall m, \quad \text{s.t. } \sum_{\mathbf{m}} \pi_m = \mathbf{1}$$

$$\Rightarrow \pi_m^* = \frac{\sum_{n} z_n^m}{N} = \frac{n_m}{N} \qquad \text{the fractions of the samples of the sample of the samples of the sample of the sample of the samples of the sample of th$$

$$\mu_m^* = \arg\max l(\mathbf{\theta} \mid D), \qquad \Rightarrow \mu_m^* = \frac{\sum_n z_n^m x_n}{\sum_n z_n^m} = \frac{\sum_n z_n^m x_n}{n_m}$$
© Eric Xing @ CMU. 2006-2010

the fraction of samples of class *m*

the average of samples of class *m*

Example 2: HMM: two scenarios

- **Supervised learning**: estimation when the "right answer" is known
 - Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good

(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
 - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he

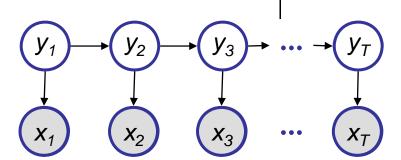
changes dice

• **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

Eric Xing @ CMU, 2006-2010 9

 Transition probabilities between any two states

$$p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$$



or $p(y_t \mid y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2}, \dots, a_{i,M}), \forall i \in \mathbb{I}.$

Start probabilities

$$p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M)$$
.

Emission probabilities associated with each state

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in \mathbb{I}.$$

or in general:
$$p(x_t | y_t^i = 1) \sim f(\cdot | \theta_i), \forall i \in \mathbb{I}.$$

Supervised ML estimation

• Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is known,

$$\ell(\mathbf{0}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_{n} \left(p(y_{n,1}) \prod_{t=2}^{T} p(y_{n,t} \mid y_{n,t-1}) \prod_{t=1}^{T} p(x_{n,t} \mid x_{n,t}) \right)$$

- Define:
 - A_{ij} = # times state transition $i \rightarrow j$ occurs in y
 - B_{ik} = # times state / in y emits k in x
- We can show that the maximum likelihood parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{ij}}$$

$$b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i} x_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k'} B_{ik'}}$$

• If y is continuous, we can treat $\{(x_{n,t}, y_{n,t}): t = 1: T, n = 1: N\}$ as $N \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Supervised ML estimation, ctd.

Intuition:

• When we know the underlying states, the best estimate of θ is the average frequency of transitions & emissions that occur in the training data

• Drawback:

- Given little data, there may be overfitting:
 - $P(x|\theta)$ is maximized, but θ is unreasonable

• Example:

Given 10 casino rolls, we observe

$$x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3$$

 $y = F, F, F, F, F, F, F, F, F$

Then:

$$a_{FF} = 1;$$
 $a_{FL} = 0$
 $b_{F1} = b_{F3} = .2;$
 $b_{F2} = .3;$ $b_{F4} = 0;$ $b_{F5} = b_{F6} = .1$

Pseudocounts

- Solution for small training sets:
 - Add pseudocounts

```
A_{ij} = # times state transition i \rightarrow j occurs in y + R_{ij}

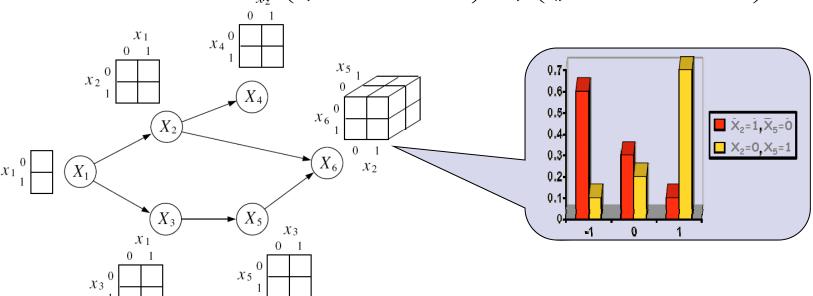
B_{ik} = # times state i in y emits k in x + S_{ik}
```

- R_{ij} , S_{ij} are pseudocounts representing our prior belief
- Total pseudocounts: $R_i = \Sigma_j R_{ij}$, $S_i = \Sigma_k S_{ik}$,
 - --- "strength" of prior belief,
 - --- total number of imaginary instances in the prior
- Larger total pseudocounts ⇒ strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --- smoothing
- This is equivalent to Bayesian est. under a uniform prior with "parameter strength" equals to the pseudocounts

MLE for general BN parameters

 If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:

$$\ell(\theta; D) = \log p(D \mid \theta) = \log \prod_{x_{i}} \left(\prod_{i} p(x_{n,i} \mid \mathbf{x}_{n,\pi_{i}}, \theta_{i}) \right) = \sum_{i} \left(\sum_{n} \log p(x_{n,i} \mid \mathbf{x}_{n,\pi_{i}}, \theta_{i}) \right)$$

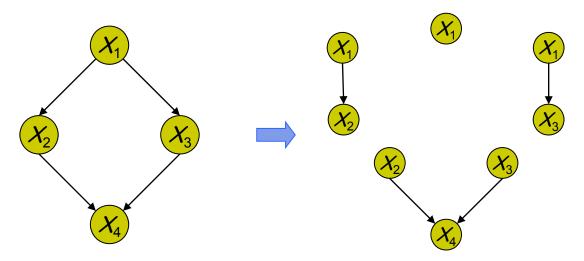


Example: decomposable likelihood of a directed model

Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$

 This is exactly like learning four separate small BNs, each of which consists of a node and its parents.



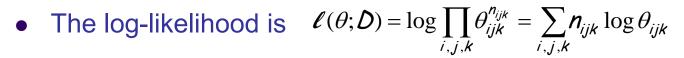
E.g.: MLE for BNs with tabular **CPDs**

Assume each CPD is represented as a table (multinomial) where

$$\theta_{ijk} \stackrel{\text{def}}{=} p(X_i = j \mid X_{\pi_i} = k)$$

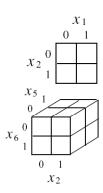
- Note that in case of multiple parents, X_{π_i} will have a composite state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

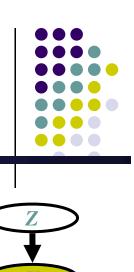
$$n_{ijk} = \sum_{n} x_{n,i}^{j} x_{n,\pi_{i}}^{k}$$



Using a Lagrange multiplier to enforce $\sum_{j} \theta_{ijk} = 1$, we get: $\theta_{ijk}^{ML} = \frac{n_{ijk}}{\sum_{j} n_{ij'k}}$

$$\theta_{ijk}^{ML} = \frac{n_{ijk}}{\sum_{i,j',k} n_{ij'k}}$$





Learning partially observed GMs

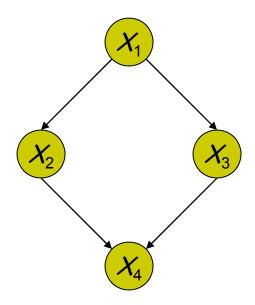
• The data:

$$\{(x^{(1)}), (x^{(2)}), (x^{(3)}), \dots (x^{(N)})\}$$

What if some nodes are not observed?

• Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$



• Need to compute $p(x_H|x_V) \rightarrow inference$

Recall: EM Algorithm

- A way of maximizing likelihood function for latent variable models.
 Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - E-step: $q^{t+1} = \arg \max_{q} F(q, \theta^{t})$ • M-step: $\theta^{t+1} = \arg \max_{q} F(q^{t+1}, \theta^{t})$
- In the M-step we optimize a lower bound on the likelihood. In the Estep we close the gap, making bound=likelihood.

EM for general BNs

```
while not converged
   % E-step
   for each node i
         ESS_i = 0 % reset expected sufficient statistics
   for each data sample n
         do inference with X_{nH}
         for each node i
                ESS_{i} += \left\langle SS_{i}(X_{n,i}, X_{n,\pi_{i}}) \right\rangle_{p(X_{n,H}|X_{n-H})}
   % M-step
   for each node i
         \theta_i := MLE(ESS_i)
```

Example: HMM

- Supervised learning: estimation when the "right answer" is known
 - Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
 - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

- QUESTION: Update the parameters θ of the model to maximize $P(x|\theta)$ -
 - -- Maximal likelihood (ML) estimation

The complete log likelihood

$$\ell_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_n \left(p(\mathbf{y}_{n,1}) \prod_{t=2}^T p(\mathbf{y}_{n,t} \mid \mathbf{y}_{n,t-1}) \prod_{t=1}^T p(\mathbf{x}_{n,t} \mid \mathbf{x}_{n,t}) \right)$$

The expected complete log likelihood

$$\left\langle \ell_{c}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) \right\rangle = \sum_{n} \left(\left\langle \mathbf{y}_{n,1}^{i} \right\rangle_{p(y_{n,1}|\mathbf{x}_{n})} \log \pi_{i} \right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \right\rangle_{p(y_{n,t-1}, y_{n,t}|\mathbf{x}_{n})} \log \mathbf{a}_{i,j} \right) + \sum_{n} \sum_{t=1}^{T} \left(\mathbf{x}_{n,t}^{k} \left\langle \mathbf{y}_{n,t}^{i} \right\rangle_{p(y_{n,t}|\mathbf{x}_{n})} \log \mathbf{b}_{i,k} \right)$$

- EM
 - The E step

$$\gamma_{n,t}^{i} = \langle \mathbf{y}_{n,t}^{i} \rangle = \mathbf{p}(\mathbf{y}_{n,t}^{i} = 1 \mid \mathbf{x}_{n})$$

$$\xi_{n,t}^{i,j} = \langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \rangle = \mathbf{p}(\mathbf{y}_{n,t-1}^{i} = 1, \mathbf{y}_{n,t}^{j} = 1 \mid \mathbf{x}_{n})$$

The M step ("symbolically" identical to MLE)

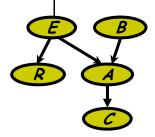
$$\pi_{i}^{ML} = \frac{\sum_{n} \gamma_{n,1}^{i}}{N} \qquad a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad b_{ik}^{ML} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} X_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

Unsupervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is unknown,
 - EXPECTATION MAXIMIZATION
 - o. Starting with our best guess of a model M, parameters θ .
 - 1. Estimate A_{ij} , B_{ik} in the training data
 - How? $A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$ $B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle x_{n,t}^k$,
 - 2. Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
 - 3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration



ML Structural Learning for completely observed GMs

$$(x_1^{(1)}, \dots, x_n^{(1)})$$

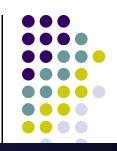
 $(x_1^{(2)}, \dots, x_n^{(2)})$
 \dots
 $(x_1^{(M)}, \dots, x_n^{(M)})$

Information Theoretic Interpretation of ML

$$\begin{split} \ell(\theta_{G}, G; D) &= \log p(D \mid \theta_{G}, G) \\ &= \log \prod_{n} \left(\prod_{i} p(x_{n,i} \mid \mathbf{x}_{n,\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \\ &= \sum_{i} \left(\sum_{n} \log p(x_{n,i} \mid \mathbf{x}_{n,\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i}, \mathbf{x}_{\pi_{i}(G)}} \frac{count(x_{i}, \mathbf{x}_{\pi_{i}(G)})}{M} \log p(x_{i} \mid \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i}, \mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i}, \mathbf{x}_{\pi_{i}(G)}) \log p(x_{i} \mid \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \end{split}$$

From sum over data points to sum over count of variable states

Information Theoretic Interpretation of ML (con'd)



$$\begin{split} \ell(\theta_{G}, G; D) &= \log \hat{p}(D \mid \theta_{G}, G) \\ &= M \sum_{i} \left(\sum_{x_{i}, \mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i}, \mathbf{x}_{\pi_{i}(G)}) \log \hat{p}(x_{i} \mid \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}) \right) \\ &= M \sum_{i} \left(\sum_{x_{i}, \mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i}, \mathbf{x}_{\pi_{i}(G)}) \log \frac{\hat{p}(x_{i}, \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)})}{\hat{p}(\mathbf{x}_{\pi_{i}(G)})} \frac{\hat{p}(x_{i})}{\hat{p}(x_{i})} \right) \\ &= M \sum_{i} \left(\sum_{x_{i}, \mathbf{x}_{\pi_{i}(G)}} \hat{p}(x_{i}, \mathbf{x}_{\pi_{i}(G)}) \log \frac{\hat{p}(x_{i}, \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)})}{\hat{p}(\mathbf{x}_{\pi_{i}(G)})} \right) - M \sum_{i} \left(\sum_{x_{i}} \hat{p}(x_{i}) \log \hat{p}(x_{i}) \right) \\ &= M \sum_{i} \hat{I}(x_{i}, \mathbf{x}_{\pi_{i}(G)}) - M \sum_{i} \hat{H}(x_{i}) \end{split}$$

Decomposable score and a function of the graph structure

- How many graphs over n nodes? $O(2^{n^2})$
- How many trees over n nodes? O(n!)
- But it turns out that we can find exact solution of an optimal tree (under MLE)!
 - Trick: in a tree each node has only one parent!
 - Chow-liu algorithm

Objection function:

$$\ell(\theta_G, G; D) = \log \hat{p}(D \mid \theta_G, G)$$

$$= M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_{i} \hat{H}(x_i)$$

$$\Rightarrow C(G) = M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)})$$

- Chow-Liu:
 - For each pair of variable x_i and x_i
 - Compute empirical distribution: $\hat{p}(X_i, X_j) = \frac{count(x_i, x_j)}{M}$
 - Compute mutual information: $\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{p}(x_i, x_j) \log \frac{\hat{p}(x_i, x_j)}{\hat{p}(x_i)\hat{p}(x_j)}$
 - Define a graph with node x₁,..., x_n
 - Edge (I,j) gets weight $\hat{I}(X_i, X_j)$

Objection function:

$$\ell(\theta_G, G; D) = \log \hat{p}(D \mid \theta_G, G)$$

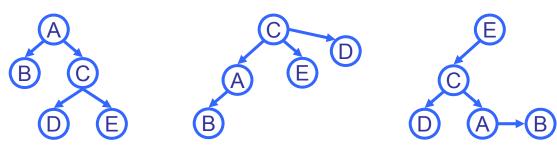
$$= M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)}) - M \sum_{i} \hat{H}(x_i)$$

$$\Rightarrow C(G) = M \sum_{i} \hat{I}(x_i, \mathbf{x}_{\pi_i(G)})$$

Chow-Liu:

Optimal tree BN

- Compute maximum weight spanning tree
- Direction in BN: pick any node as root, do breadth-first-search to define directions
- I-equivalence:



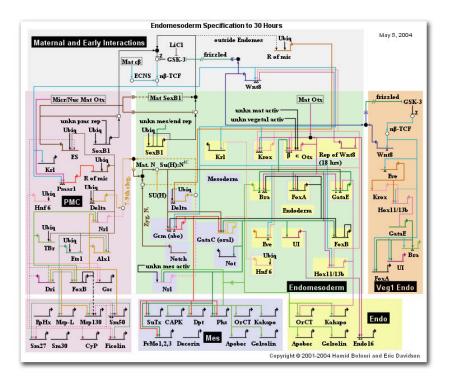
$$C(G) = I(A,B) + I(A,C) + I(C,D) + I(C,E)$$
© Eric Xing @ CMU, 2006-2010

Structure Learning for general graphs

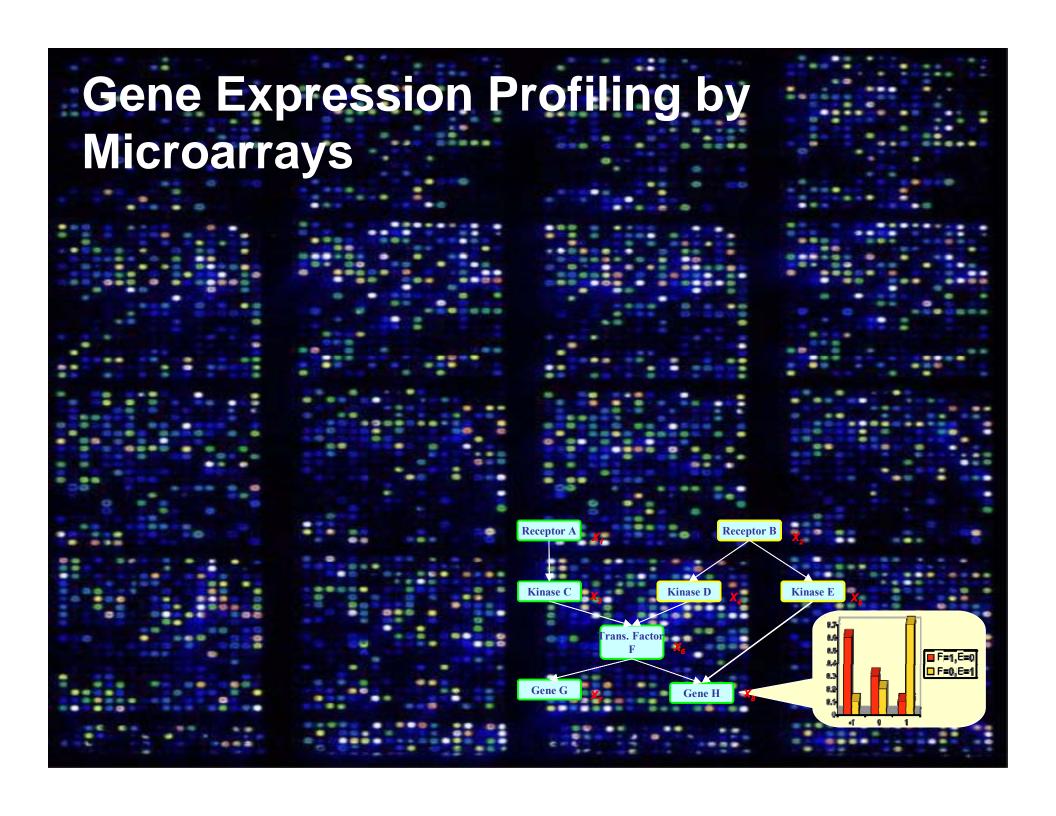
- Theorem:
 - The problem of learning a BN structure with at most d parents is
 NP-hard for any (fixed) d≥2
- Most structure learning approaches use heuristics
 - Exploit score decomposition
 - Two heuristics that exploit decomposition in different ways
 - Greedy search through space of node-orders
 - Local search of graph structures

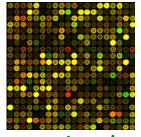
Inferring gene regulatory networks

Network of cis-regulatory pathways



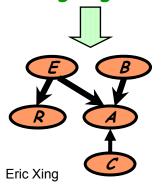
- Success stories in sea urchin, fruit fly, etc, from decades of experimental research
- Statistical modeling and automated learning just started





Expression data

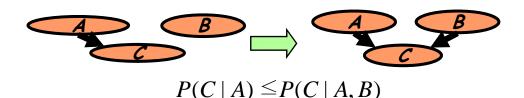
Learning Algorithm



- Structural EM (Friedman 1998)
 - The original algorithm
- Sparse Candidate Algorithm (Friedman et al.)
 - Discretizing array signals
 - Hill-climbing search using local operators: add/delete/swap of a single edge
 - Feature extraction: Markov relations, order relations
 - Re-assemble high-confidence sub-networks from features
- Module network learning (Segal et al.)
 - Heuristic search of structure in a "module graph"
 - Module assignment
 - Parameter sharing
 - Prior knowledge: possible regulators (TF genes)

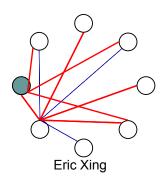
Learning GM structure

- Learning of best CPDs given DAG is easy
 - collect statistics of values of each node given specific assignment to its parents
- Learning of the graph topology (structure) is NP-hard
 - heuristic search must be applied, generally leads to a locally optimal network
- Overfitting
 - It turns out, that richer structures give higher likelihood P(D|G) to the data (adding an edge is always preferable)



- more parameters to fit => more freedom => always exist more "optimal" CPD(C)
- We prefer simpler (more explanatory) networks
 - Practical scores regularize the likelihood improvement complex networks.

 Learning Graphical Model Structure via Neighborhood Selection



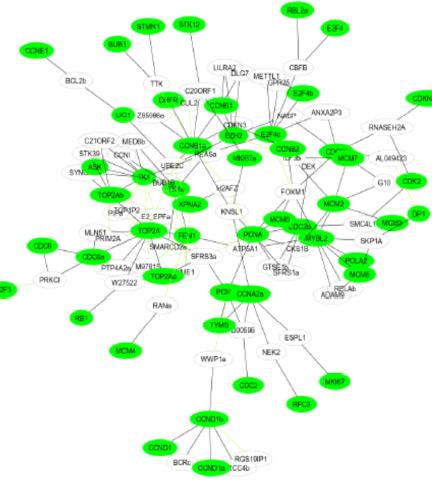
Undirected Graphical Models

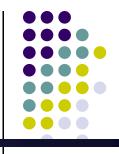
Why?

Sometimes an UNDIRECTED association graph makes more sense and/or is more informative

 gene expressions may be influenced by unobserved factor that are posttranscriptionally regulated

 The unavailability of the state of B results in a constrain over A and C





Gaussian Graphical Models

Multivariate Gaussian density:

$$\boldsymbol{p}(\mathbf{x} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$

• WOLG: let $\mu=0$ $Q=\Sigma^{-1}$

$$p(x_1, x_2, \dots, x_p \mid \mu = 0, Q) = \frac{|Q|^{1/2}}{(2\pi)^{n/2}} \exp\left\{-\frac{1}{2} \sum_{i} q_{ii} (x_i)^2 - \sum_{i < j} q_{ij} x_i x_j\right\}$$

 We can view this as a continuous Markov Random Field with potentials defined on every node and edge:

The covariance and the precision matrices

Covariance matrix ∑

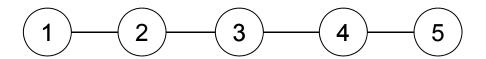
$$\Sigma_{i,j} = 0 \implies X_i \perp X_j \quad \text{or} \quad p(X_i, X_j) = p(X_i) p(X_j)$$

- Graphical model interpretation?
- Precision matrix $Q = \Sigma^{-1}$

$$Q_{i,j} = 0 \quad \Rightarrow \quad X_i \perp X_j | \mathbf{X}_{-ij} \quad \text{or} \quad p(X_i, X_j | \mathbf{X}_{-ij}) = p(X_i | \mathbf{X}_{-ij}) p(X_j | \mathbf{X}_{-ij})$$

Graphical model interpretation?

Sparse precision vs. sparse covariance in GGM



$$\Sigma^{-1} = \begin{pmatrix} 1 & 6 & 0 & 0 & 0 \\ 6 & 2 & 7 & 0 & 0 \\ 0 & 7 & 3 & 8 & 0 \\ 0 & 0 & 8 & 4 & 9 \\ 0 & 0 & 0 & 9 & 5 \end{pmatrix}$$

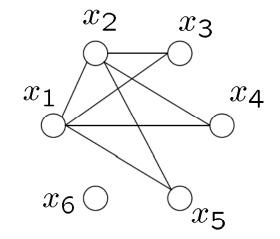
$$\Sigma^{-1} = \begin{pmatrix} 1 & 6 & 0 & 0 & 0 \\ 6 & 2 & 7 & 0 & 0 \\ 0 & 7 & 3 & 8 & 0 \\ 0 & 0 & 8 & 4 & 9 \\ 0 & 0 & 0 & 9 & 5 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 0.10 & 0.15 & -0.13 & -0.08 & 0.15 \\ 0.15 & -0.03 & 0.02 & 0.01 & -0.03 \\ -0.13 & 0.02 & 0.10 & 0.07 & -0.12 \\ -0.08 & 0.01 & 0.07 & -0.04 & 0.07 \\ 0.15 & -0.03 & -0.12 & 0.07 & 0.08 \end{pmatrix}$$

$$\Sigma_{15}^{-1} = 0 \Leftrightarrow X_1 \perp X_5 | X_{nbrs(1) \text{ or } nbrs(5)}$$

$$\Rightarrow$$

$$X_1 \perp X_5 \Leftrightarrow \Sigma_{15} = 0$$

$$Q = \begin{pmatrix} * & * & * & * & * & 0 \\ * & * & * & * & * & 0 \\ * & * & * & 0 & 0 & 0 \\ * & * & 0 & * & 0 & 0 \\ * & * & 0 & 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix}$$



- How to estimate this MRF?
- What if *p* >> *n*
 - MLE does not exist in general!
 - What about only learning a "sparse" graphical model?
 - This is possible when s-o(n)
 - Very often it is the structure of the GM that is more interesting ...

Single-node Conditional

• The conditional dist. of a single node *i* given the rest of the nodes can be written as:

$$p(X_i|\mathbf{X}_{-i}) = \mathcal{N}\left(\mu_i + \Sigma_{X_i\mathbf{X}_{-i}}\Sigma_{\mathbf{X}_{-i}\mathbf{X}_{-i}}^{-1}(\mathbf{X}_{-i} - \mu_{\mathbf{x}_{-i}}), \Sigma_{X_iX_i} - \Sigma_{X_i\mathbf{X}_{-i}}\Sigma_{\mathbf{X}_{-i}\mathbf{X}_{-i}}^{-1}\Sigma_{\mathbf{X}_{-i}X_i}\right)$$

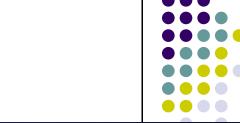
• WOLG: let $\mu = 0$

$$p(X_{i}|\mathbf{X}_{-i}) = \mathcal{N}\left(\Sigma_{X_{i}\mathbf{X}_{-i}}\Sigma_{\mathbf{X}_{-i}\mathbf{X}_{-i}}^{-1}\mathbf{X}_{-i}, \Sigma_{X_{i}X_{i}} - \Sigma_{X_{i}\mathbf{X}_{-i}}\Sigma_{\mathbf{X}_{-i}\mathbf{X}_{-i}}^{-1}\Sigma_{\mathbf{X}_{-i}X_{i}}\right)$$

$$= \mathcal{N}\left(\vec{\sigma}_{i}^{T}\Sigma_{-i}^{-1}\mathbf{X}_{-i}, q_{ii}\right)$$

$$= \mathcal{N}\left(\frac{\vec{q}_{i}^{T}}{-q_{ii}}\mathbf{X}_{-i}, q_{ii}\right)$$

 We can write the following conditional auto-regression function for each node:



Conditional independence

From

$$p(X_i|\mathbf{X}_{-i}) = \mathcal{N}\left(\frac{\bar{q}_i^T}{-q_{ii}}\mathbf{X}_{-i}, q_{ii}\right)$$

• Let:
$$S_i \equiv \{j : j \neq i, \theta_{ij} \neq 0\}$$

• Given an estimate of the neighborhood s_i , we have:

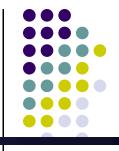
$$p(X_i|\mathbf{X}_{-i}) = p(X_i|\mathbf{X}_s)$$

• Thus the neighborhood s_i defines the Markov blanket of node i

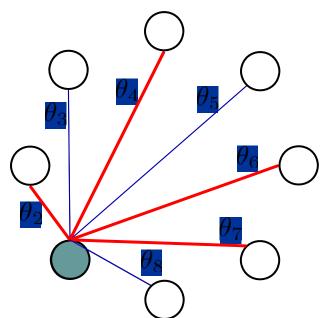
Recall lasso

$$\hat{\theta}_i = \arg\min_{\theta_i} l(\theta_i) + \lambda_1 || \theta_i ||_1$$

where
$$l(\theta_i) = \log P(y_i|\mathbf{x}_i, \theta_i)$$
.



Graph Regression

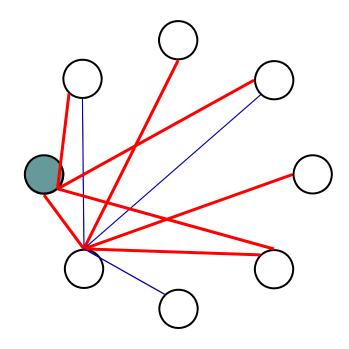


Neighborhood selection

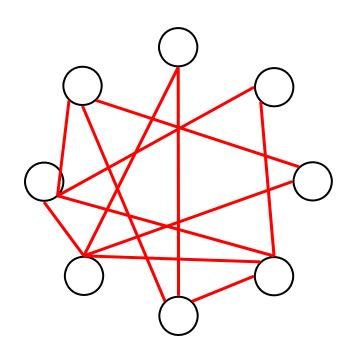
Lasso:

$$\hat{\theta} = \arg\min_{\theta} \sum_{t=1}^{T} l(\theta) + \lambda_1 \| \theta \|_1$$

Graph Regression



Graph Regression



It can be shown that:

given *iid* samples, and under several technical conditions (e.g., "irrepresentable"), the recovered structured is "sparsistent" even when p >> n

Consistency

• **Theorem**: for the graphical regression algorithm, under certain verifiable conditions (omitted here for simplicity):

$$\mathbb{P}\left[\hat{G}(\lambda_n) \neq G\right] = \mathcal{O}\left(\exp\left(-Cn^{\epsilon}\right)\right) \to 0$$

Note the from this theorem one should see that the regularizer is not actually used to introduce an "artificial" sparsity bias, but a devise to ensure consistency under finite data and high dimension condition.

Learning (sparse) GGM

Multivariate Gaussian over all continuous expressions

$$p([x_1,...,x_n]) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(\vec{x} - \mu)^T \Sigma^{-1}(\vec{x} - \mu)\}$$

- The precision matrix $Q=\Sigma^{-1}$ reveals the topology of the (undirected) network
- Learning Algorithm: Covariance selection
 - Want a sparse matrix Q
 - As shown in the previous slides, we can use L_1 regularized linear regression to obtain a sparse estimate of the neighborhood of each variable

Recent trends in GGM:

- Covariance selection (classical method)
 - Dempster [1972]:
 - Sequentially pruning smallest elements in precision matrix
 - Drton and Perlman [2008]:
 - Improved statistical tests for pruning

Serious limitations in practice: breaks down when covariance matrix is not invertible

- L₁-regularization based method (hot!)
 - Meinshausen and Bühlmann [Ann. Stat. 06]:
 - Used LASSO regression for neighborhood selection
 - Banerjee [JMLR 08]:
 - Block sub-gradient algorithm for finding precision matrix
 - Friedman et al. [Biostatistics 08]:
 - Efficient fixed-point equations based on a sub-gradient algorithm
 - ...

Structure learning is possible even when # variables > # samples

Learning Ising Model (i.e. pairwise MRF)

 Assuming the nodes are discrete, and edges are weighted, then for a sample x_d, we have

$$P(\mathbf{x}_d|\Theta) = \exp\left(\sum_{i \in V} \theta_{ii}^t x_{d,i} + \sum_{(i,j) \in E} \theta_{ij} x_{d,i} x_{d,j} - A(\Theta)\right)$$

 It can be shown following the same logic that we can use L_1 regularized logistic regression to obtain a sparse estimate of the neighborhood of each variable in the discrete case.