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Inference and LearningInference and Learning
 A BN M describes a unique probability distribution P

 Typical tasks:

 Task 1: How do we answer queries about P? Task 1: How do we answer queries about P?

 We use inference as a name for the process of computing answers to such 
queries

 So far we have learned several algorithms for exact and approx. inferenceg pp

 Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii When not all variables are observable even computing point estimate of M 
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iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.



Learning Graphical Models

The goal:

Learning Graphical Models

g

Given set of independent samples (assignments of 
random variables) find the best (the most likely?)random variables), find the best (the most likely?) 
graphical model (both the graph and the CPDs)
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Learning Graphical ModelsLearning Graphical Models
 Scenarios:


 completely observed GMs

 directed
 undirected 


 partially observed GMs

 directed
 undirected (an open research topic) 


 Estimation principles:

 Maximal likelihood estimation (MLE)
 Bayesian estimationy
 Maximal conditional likelihood
 Maximal "Margin" 

W l i f th f ti ti th
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 We use learning as a name for the process of estimating the 
parameters, and in some cases, the topology of the network, from 
data.



Z

ML P t E t f

Z

X

ML Parameter Est. for 
completely observed GMs of p y

given structure

 The data:
{( (1) (1)) ( (2) (2)) ( (3) (3)) ( (N) (N))}

Eric Xing © Eric Xing @ CMU, 2006-2010 5

{(z(1),x(1)), (z(2),x(2)), (z(3),x(3)), ... (z(N),x(N))} 



The basic idea underlying MLE
 Likelihood X1 X2

The basic idea underlying MLE

(for now let's assume that the structure is given):

L Lik lih d

X1 X2

X3);,|()|()|()|()|( 33332211  XXXpXpXpXpXL  θθ

 Log-Likelihood:

 Data log-likelihood

),,|(log)|(log)|(log)|(log)|( 33332211  XXXpXpXpXpXl  θθ

 Data log-likelihood
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Example 1: conditional Gaussian

 The completely observed model: Z

Example 1: conditional Gaussian 

p y
 Z is a class indicator vector
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Example 1: conditional Gaussian

Z

Example 1: conditional Gaussian
 Data log-likelihood
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Example 2: HMM: two scenariosExample 2: HMM: two scenarios
 Supervised learning: estimation when the “right answer” is g g

known
 Examples: 

GIVEN: a genomic region x = x1…x1,000,000 where we have good, ,
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, 
as he changes dice and produces 10,000 rolls

 Unsupervised learning: estimation when the “right answer” is 
unknown
 Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice
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 QUESTION: Update the parameters  of the model to maximize 
P(x|) --- Maximal likelihood (ML) estimation 



Recall definition of HMMRecall definition of HMM
 Transition probabilities between y2 y3y1 yT...

any two states

A AA Ax2 x3x1 xT

y2 y3y1 yT... 
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 Start probabilities 
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 Emission probabilities associated with each state

  .,,,,lMultinomia~)|( ,,, I ibbbyxp Kiii
i
tt 211

Eric Xing © Eric Xing @ CMU, 2006-2010 10

or in general:   .,|f~)|( I iyxp i
i
tt 1



Supervised ML estimationSupervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is 

known,

 Define:
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Aij = # times state transition ij occurs in y
Bik = # times state i in y emits k in x

 We can show that the maximum likelihood parameters  are:
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 If y is continuous, we can treat                                               as NT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …

  NnTtyx tntn :,::, ,, 11 



Supervised ML estimation ctdSupervised ML estimation, ctd.
 Intuition:

 When we know the underlying states, the best estimate of  is the 
average frequency of transitions & emissions that occur in the training 
data

 Drawback:
 Given little data, there may be overfitting:

 P(x|) is maximized but  is unreasonable P(x|) is maximized, but  is unreasonable
0 probabilities – VERY BAD

 Example:
 Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

Th 1 0
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 Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 



PseudocountsPseudocounts
 Solution for small training sets:

 Add pseudocounts

Aij = # times state transition ij occurs in y + Rij
Bik = # times state i in y emits k in x + Sik

 Rij, Sij are pseudocounts representing our prior belief
 Total pseudocounts: Ri = jRij , Si = kSik , 

 --- "strength" of prior belief, 
 --- total number of imaginary instances in the prior

 Larger total pseudocounts  strong prior belief

 Small total pseudocounts: just to avoid 0 probabilities --- smoothing

 This is equivalent to Bayesian est. under a uniform prior with 
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"parameter strength" equals to the pseudocounts



MLE for general BN parametersMLE for general BN parameters
 If we assume the parameters for each CPD are globally p g y

independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one 
per node:p

   


















i n
inin

n i
inin ii

xpxpDpD ),|(log),|(log)|(log);( ,,,,   xxl

X2=1 X5=0X2 1

X2=0

X5 0

X5=1

Eric Xing © Eric Xing @ CMU, 2006-2010 14



Example: decomposable 
likelihood of a directed model
 Consider the distribution defined by the directed acyclic GM:

likelihood of a directed model
y y

),,|(),|(),|()|()|( 132431311211  xxxpxxpxxpxpxp 

 This is exactly like learning four separate small BNs, each of 
which consists of a node and its parentswhich consists of a node and its parents.

X1
X1

X1 X1

X2 X3
X2 X3

X2 X3
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X4 X4



E.g.: MLE for BNs with tabular 
CPDsCPDs
 Assume each CPD is represented as a table (multinomial) 

where

 Note that in case of multiple parents,      will have a composite 

)|(
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Xp p p
state, and the CPD will be a high-dimensional table
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X

Learning partially observed  
GMsGMs

 The data:
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 The data:
{(x(1)), (x(2)), (x(3)), ... (x(N))} 



What if some nodes are not 
observed?
 Consider the distribution defined by the directed acyclic GM:

observed?
y y

),,|(),|(),|()|()|( 132431311211  xxxpxxpxxpxpxp 

X1

X2 X3

X4
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 Need to compute p(xH|xV)  inference



Recall: EM AlgorithmRecall: EM Algorithm
 A way of maximizing likelihood function for latent variable models. 

Finds MLE of parameters when the original (hard) problem can be 
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
tparameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

 Alternate between filling in the latent variables using the best guess Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

 E-step: )(maxarg tt qFq 1p
 M-step: 

 In the M-step we optimize a lower bound on the likelihood. In the E-

),(maxarg
q

qFq 
),(maxarg ttt qF 



11  
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step we close the gap, making bound=likelihood.



EM for general BNsEM for general BNs
while not convergedg

% E-step
for each node i

ESSi = 0 % reset expected sufficient statistics
for each data sample n

d i f ith Xdo inference with Xn,H

for each node i
)( iii xxSSESS 

% M-step
for each node i

)|(,,
,,

),( 
HnHni xxpninii xxSSESS



 
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i := MLE(ESSi )



Example: HMMExample: HMM
 Supervised learning: estimation when the “right answer” is known

 Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, p y g,

as he changes dice and produces 10,000 rolls

 Unsupervised learning: estimation when the “right answer” is 
unknown
 Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

 QUESTION: Update the parameters  of the model to maximize P(x|) -
-- Maximal likelihood (ML) estimation 
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The Baum Welch algorithmThe Baum Welch algorithm
 The complete log likelihoodp g

 The expected complete log likelihood

  












n

T

t
tntn

T

t
tntnnc xxpyypypp

12
11 )|()|()(log),(log),;( ,,,,,yxyxθl

 The expected complete log likelihood
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Unsupervised ML estimationUnsupervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is 

kunknown,

 EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters :

1 Estimate A B in the training data1. Estimate Aij , Bik in the training data 
 How?                             , ,

2. Update  according to Aij , Bik
 Now a "supervised learning" problem

k
tntn

i
tnik xyB ,, ,  tn

j
tn

i
tnij yyA

, ,, 1

 Now a supervised learning  problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm
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g

We can get to a provably more (or equally) likely parameter set  each iteration
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ML Structural Learning for 
completely observed p y

GMs 
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Information Theoretic 
Interpretation of MLInterpretation of ML
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From sum over data points to sum over count of variable states  



Information Theoretic 
Interpretation of ML (con'd)Interpretation of ML (con d)
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Decomposable score and a function of the graph structure



Structural SearchStructural Search
 How many graphs over n nodes? )(

2
2nOy g p

 How many trees over n nodes?

)(

)!(nO

 But it turns out that we can find exact solution of an optimal 
tree (under MLE)!tree (under MLE)!
 Trick: in a tree each node has only one parent!
 Chow-liu algorithm
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Chow Liu tree learning algorithmChow-Liu tree learning algorithm
 Objection function:j

 



iGi

GG

xHMxIM

GDpDG

i
)(ˆ),(ˆ

),|(ˆlog);,(

)(



x

l 
i

Gi i
xIMGC ),(ˆ)( )(x

 Chow-Liu:
For each pair of variable and

ii

 For each pair of variable xi and xj

 Compute empirical distribution:

 Compute mutual information:

M
xxcount

XXp ji
ji

),(
),(ˆ 

 ji xxp
xxpXXI

),(ˆ
log)(ˆ)(ˆ Compute mutual information:

 Define a graph with node x1,…, xn

Edge (I j) gets weight


ji xx ji

jiji xpxp
xxpXXI

, )(ˆ)(ˆ
log),(),(

)(ˆ XXI
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 Edge (I,j) gets weight ),( ji XXI



Chow Liu algorithm (con'd)Chow-Liu algorithm (con d)
 Objection function:j

 
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 Chow-Liu:
Optimal tree BN

ii

Optimal tree BN
 Compute maximum weight spanning tree
 Direction in BN: pick any node as root, do breadth-first-search to define directions
 I-equivalence: I-equivalence:

A

B C

C

A E
D

E

C
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Structure Learning for general 
graphsgraphs
 Theorem:

 The problem of learning a BN structure with at most d parents is 
NP-hard for any (fixed) d≥2

 Most structure learning approaches use heuristics
 Exploit score decomposition 
 Two heuristics that exploit decomposition in different ways Two heuristics that exploit decomposition in different ways

 Greedy search through space of node-orders

 Local search of graph structures
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Inferring gene regulatory 
networksnetworks

 Network of cis-regulatory pathwaysg y p y

 Success stories in sea urchin fruit fly etc from decades of experimental
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 Success stories in sea urchin, fruit fly, etc, from decades of experimental 
research  

 Statistical modeling and automated learning just started



Gene Expression Profiling by 
MicroarraysMicroarrays

Receptor A Receptor BX1 X2
Receptor A Receptor BX1 X2
Receptor A Receptor BX1 X2

Kinase C

Trans. Factor 
F

Kinase EKinase DX3 X4 X5

X6 F E

Kinase C

Trans. Factor 
F

Kinase EKinase DX3 X4 X5

X6

Kinase C

Trans. Factor 
F

Kinase EKinase DX3 X4 X5

X6 F EF E
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Gene G Gene HX7 X8

F E

Gene G Gene HX7 X8
Gene G Gene HX7 X8

F EF E



Structure Learning Algorithms

St t l EM (F i d 1998)

Structure Learning Algorithms

Expression data

 Structural EM (Friedman 1998)
 The original algorithm

Expression data
 Sparse Candidate Algorithm 

(Friedman et al.)
 Discretizing array signalsg y g
 Hill-climbing search using local operators: add/delete/swap of a 

single edge
 Feature extraction: Markov relations, order relations
 Re-assemble high-confidence sub-networks from features

E B

Learning Algorithm
 Module network learning (Segal et al.)

 Heuristic search of structure in a "module graph"
 Module assignment
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R A

C

g
 Parameter sharing
 Prior knowledge: possible regulators (TF genes) 



Learning GM structureLearning GM structure
 Learning of best CPDs given DAG is easyg g y

 collect statistics of values of each node given specific assignment to its parents

 Learning of the graph topology (structure) is NP-hard
 heuristic search must be applied generally leads to a locally optimal network heuristic search must be applied, generally leads to a locally optimal network

 Overfitting
 It turns out, that richer structures give higher likelihood P(D|G) to the data (adding 

an edge is always preferable)

A
C

BA
C

B

an edge is always preferable)

C

),|(≤)|( BACPACP
 more parameters to fit => more freedom => always exist more "optimal" CPD(C)

We prefer simpler (more explanatory) networks
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 We prefer simpler (more explanatory) networks
 Practical scores regularize the likelihood improvement complex networks.



 Learning Graphical Model Structure via Learning Graphical Model Structure via 
Neighborhood Selection 
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Undirected Graphical Models

 Why? 

Undirected Graphical Models

y

Sometimes an UNDIRECTED
association graph makes more assoc at o g ap a es o e
sense and/or is more 
informative
 gene expressions may be influencedgene expressions may be influenced 

by unobserved factor that are post-
transcriptionally regulated

B B B

 The unavailability of the state of B 
lt i t i A d C

B
A C

B
A C

B
A C
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results in a constrain over A and C



Gaussian Graphical ModelsGaussian Graphical Models
 Multivariate Gaussian density:y
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 WOLG:  let
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 We can view this as a continuous Markov Random Field with 
potentials defined on every node and edge:
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The covariance and the precision 
matricesmatrices  
 Covariance matrix

 Graphical model interpretation?

 Precision matrix Precision matrix

 Graphical model interpretation?
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Sparse precision vs. sparse 
covariance in GGMcovariance in GGM
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Another exampleAnother example

 How to estimate this MRF?
 What if p >> n What if p >> n

 MLE does not exist in general!
 What about only learning a “sparse” graphical model?

 This is possible when s=o(n)
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 This is possible when s o(n)
 Very often it is the structure of the GM that is more interesting …



Single node ConditionalSingle-node Conditional 
 The conditional dist. of a single node i given the rest of the g g

nodes can be written as:

 WOLG: let

 We can write the following conditional auto-regression 
function for each node:
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function for each node: 



Conditional independenceConditional independence
 From

 Let: 

 Given an estimate of the neighborhood si, we have:

 Thus the neighborhood si defines the Markov blanket of node i
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g i



Recall lassoRecall lasso 
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Graph RegressionGraph Regression

Lasso:Neighborhood selection
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Graph RegressionGraph Regression
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Graph RegressionGraph Regression

It can be shown that:
i iid l d d l t h i l diti ( "i t bl ")
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given iid samples, and under several technical conditions (e.g., "irrepresentable"), 
the recovered structured is "sparsistent" even when p >> n 



ConsistencyConsistency

 Theorem: for the graphical regression algorithm, under g p g g ,
certain verifiable conditions (omitted here for simplicity):

Note the from this theorem one should see that the regularizer is not actually 
used to introduce an “artificial” sparsity bias, but a devise to ensure consistency 

d fi it d t d hi h di i ditiunder finite data and high dimension condition.
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Learning (sparse) GGMLearning (sparse) GGM
 Multivariate Gaussian over all continuous expressions 
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 The precision matrix Q reveals the topology of the 
(undirected) network

 Learning Algorithm: Covariance selection
 Want a sparse matrix Q
 As shown in the previous slides, we can use L_1 regularized linear 

regression to obtain a sparse estimate of the neighborhood of each 
variable 
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Recent trends in GGM:Recent trends in GGM:
 Covariance selection (classical  L1-regularization based 

method) 
 Dempster [1972]: 

 Sequentially pruning smallest elements 
in precision matrix

method (hot !)
 Meinshausen and Bühlmann [Ann. Stat. 

06]: 
 Used LASSO regression forin precision matrix

 Drton and Perlman [2008]: 
 Improved statistical tests for pruning

 Used LASSO regression for 
neighborhood selection

 Banerjee [JMLR 08]: 
 Block sub-gradient algorithm for finding 

precision matrixp
 Friedman et al. [Biostatistics 08]: 

 Efficient fixed-point equations based 
on a sub-gradient algorithm

 …
Serious limitations in 

ti b k d h  …practice: breaks down when 
covariance matrix is not 
invertible

Structure learning is possible
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Structure learning is possible 
even when # variables ＞ # 
samples



Learning Ising Model 
(i e pairwise MRF)(i.e. pairwise MRF)
 Assuming the nodes are discrete, and edges are weighted, g g g

then for a sample xd, we have 

 It can be shown following the same logic that we can use L_1 
regularized logistic regression to obtain a sparse estimate of 
the neighborhood of each variable in the discrete case.
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