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Inference Problems -

e Compute the likelihood of observed data

e Compute the marginal distribution p(x ) over a particular subset
ofnodes ACV

e Compute the conditional distribution p(ralrs) for disjoint subsets A
and B

e Compute a mode of the density & = arg max p(x)
reLm
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Inference in GM

e HVM
DOn P(Ys]x) =?
ONONOEENO

e A general BN O

L & P(A|H) =?
& &

(& &
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Inference Problems .

e Compute the likelihood of observed data

e Compute the marginal distribution p(x ) over a particular subset
ofnodes ACV

e Compute the conditional distribution p(ralrs) for disjoint subsets A

and B
e Compute a mode of the density & = arg max p(x)
rexm
e Methods we have
a )

Message Passing

(Forward-backward , Max-product
/BP, Junction Tree)

[ Brute force ] [ Elimination ] I:>

J

Individual computations independent Sharing intermediate terms
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Recall forward-backward on HMM
P09
ONONOEN®

e Forward algorithm af = p(x; |yfk = l)z 0‘7{—10/,/(
-

e Backward algorithm ,Btk = Zak’i P(Xeyq | yt‘+1 - 1)/Bti+1
i

k k pk
iy =11 =S
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Message passing for trees %

Let m;;(x;) denote the factor resulting from
ellmlnatlng variables from bellow up to i,
which is a function of x;:

myi(zi) = ) (‘LJ(@"J)U(%-%) 11 mk.f(%))

xj kEN(H)\i

This is reminiscent of a message sent
from jtoi.

p(xy) o< P(zy) H mes(xy)
eeN(f)

m;;(x;) represents a "belief" of x; from x;!
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The General Sum-Product
Algorithm

e [ree-structured GMs

p(frla'" axm) — % H ws(xs) H wst(xswq;t) t

seV (s,t)eE

e Message Passing on Trees:

Mio(w) 1D {ba(ws, at)vn(a))

x) ueN(t)\s

Mooi(at) }

e On trees, converge to a unique fixed point after a finite number of
iterations
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0000
T
Junction Tree Revisited o

e General Algorithm on G]rap?s thh Cycles & D
O O
4(,/:@1&)& |:> @ 258 @
N/
Py ¢ @189 639

o Steps: => Triangularization

=> Message Passing on Clique Trees

=> Construct JTs

os(xs) < Y ¢p(rp)
TR\ S @ S
—

ds(xs)
Ps(xs)

o (rc) oo ()
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Local Consistency o

e Given a set of functions {r¢, C € C} and {75, S € S} associated
with the cliques and separator sets

e They are locally consistent if:
ZTS(J}%) =1, VS eS

!
Lg

Z To(xe) = 15(xg), VC €€, SCC

rolrg=rs

e Forjunction trees, local consistency is equivalent to global
consistency!
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An Ising model on 2-D image os

e Nodes encode hidden
information (patch-
identity).

e They receive local
information from the
image (brightness,
color).

e Information is
propagated though the
graph over its edges.

e Edges encode
‘compatibility’ between
nodes.

alr or water ? .
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Why Approximate Inference?

e Why can’t we just run junction tree on this graph?

1
p(X) =ZEXP{Z‘9iniXJ +Zeioxi}
i<j i

e If NxN grid, tree width at least N
e N can be a huge number(~1000s of pixels)

e If N~O(1000), we have a clique with 2190 entries
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Solution 1: Belief Propagation on | 8322
loopy graphs oo

K

o —0 0

|

O
| @—— ®« @ ®—0«
O

Mki

K
T
@-
' |
K k
® l O o 9O
e BP Message-update Rules

M, (x;)ec ZWij(Xi’Xj)Wi(Xi)H M i (%) b (%) o '//i(xi)HMk(Xk)
Xi k

k
L Texternal evidence
Compatibilities (interactions)

e May not converge or converge to a wrong solution
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Recall BP on trees

K

K
® O o ® O6 o

- |

| —@—0®« «@e—O@—©0

| |
® ‘- @ ® o< o
e BP Message-update Rules
Mi—)j(xj)ocZWij(Xi’Xj)V/i(Xi)HMk—)i(xi) bi(xi)oc'//i(xi)HMk(Xk)

k
L Texternal evidence
Compatibilities (interactions)

e BP on trees always converges to exact marginals
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Solution 2: The naive mean field 444
approximation oo

e Approximate p(X) by fully factorized q(X)=I10;(X)

e For Boltzmann distribution p(X)=exp{,; - ; 4;;XiX;+0;o X }/Z :

g (X)) = exp{@/.o)(/. + Z 0,X; <)(J>q } QQ@QQ

=y
= pOGIUX), 1 en D) Q Q

mean field equation:

= <X j> resembles a “message” sent from node j to |

'{(Xj)qj . ] € AV } forms the “mean field” applied to X from its neighborhood
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Recall Gibbs sampling o°

e Approximate p(X) by fully factorized q(X)=I10;(X)

e For Boltzmann distribution p(X)=exp{,; - ; 4;;XiX;+0;o X }/Z :

Gibbs predictive distribution:

} Q O
O @ O

=p(X; {x, JeN;}) Q Q

p(X | x ;)= exp{H,OXJr ZH X x +A

JeW
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Summary So Far 4+

e EXxact inference methods are limited to tree-structured graphs

e Junction Tree methods is exponentially expensive to the tree-
width

e Message Passing methods can be applied for loopy graphs,
but lack of analysis!

e Mean-field is convergent, but can have local optimal

e Where do these two algorithm come from? Do they make
sense?
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Next Step ... oo

e Develop a general theory of variational inference

e Introduce some approximate inference methods

e Provide deep understandings to some popular methods

Eric Xing © Eric Xing @ CMU, 2006-2010 17



Exponential Family GMs

e (Canonical Parameterization

e Ze g )
/ ~__

Canonical Parameters Sufficient Statistics Log-normalization Function

e Effective canonical parameters

. d
e Regular family: = {9 € RYA(0) < +OO}

() is an open set.
e Minimal representation:

if there does not exist a nonzero vector a & Rdsuch that aTqﬁ(;z:)iS a
constant

Eric Xing © Eric Xing @ CMU, 2006-2010
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Examples -
—

e Ising Model (binary r.v.: {-1, +1}) 'o—%—>-
4{:‘“-. 5-"'“". 6."“.

po(@) =exp{ Y Ouzs+ Y Ouwewi— A(9) }
seV (s,t)eEE 9 9 ()
7 8 9

e Gaussian MRF

po(x) = exp{ Z 0.z + %Tr(@a:acT) — A(G)}

seV

0= {(9,@) cR™ x R™™|© <0, OF = (—)}
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Mean Parameterization :

e The mean parameter 1« associated with a sufficient statistic
bo: X™ = R Is defined as

e Realizable mean parameter set

M = {u e RY Fp s.t. E[¢a(X)] = pa, Ya € I}

e A convex subset of R

e Convex hull for discrete case
M = {;,L c RY| Z o(x)p(x) = p, for some p(x) > 0, Z p(x) = 1}

:{,E.)('?n QBGXm
= conv{é(a:),:z: € X’m}

e Convex polytope when |X™] is finite

Eric Xing © Eric Xing @ CMU, 2006-2010
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Convex Polytope 4+

e Convex hull representation

M = conv{(b(x),:z;‘ € Xm}, where |X'™| is finite.

e Half-plane based representation

e Minkowski-Weyl Theorem:

any polytope can be characterized by a finite collection of linear inequality
constraints

M = {uERdla}ruz bj, Vj 6.7}:
where | 7| is finite.
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Example

e [wo-node Ising Model
e Convex hull representation

M = conv{(0,0,0), (1,0,0), (0,1,0), (1,1,1)}

e Half-plane representation
Probability Theory:

f1z

(0.0.0)

1

Eric Xing

fi = pri2 > 0

(01,0

L+ p12 — py — p2 >0

(1,1,1)

H2
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Marginal Polytope o

e Canonical Parameterization 2 f
po(x) exp{z 0, (x,) + Z Ost(xg, x0)} /\

vev (s.t)EE 3 5
0s(xs) =Y Oilj(xs)  Ose(wane) == D Ourijillanji(vs, 72)
e Mean pararrfeterization o
Fs;j = Ep[ﬂs;j(Xs)] =p(Xs=1j), Vjed
tstike = Ep|Lsin(Xs, Xo)] = p(Xs = 5, Xt = k), V(j,k) € X5 x A}
e Marginal distributions over nodes and edges
ps(s) = Z fs;i1s,5(xs) st (g, Xy) 1= Z ust;jk]lst;jk(xmxt)

JEXs (j,k)EX, X Xy

e Marginal Polytope
M(G) := {;u = ]Rd|3p with marginals ps(xs), pse(xs, :Ut)}

Eric Xing © Eric Xing @ CMU, 2006-2010
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Conjugate Duality -

e Duality between MLE and Max-Ent:
e Forall € M?° , @ unique canonical parameter 9(#) satisfying

p= VAG() = Bogo[6(X)] = { [Hown) 2 e 8

e The log-partition function has the variational form

=) Af) = sup {0 — A*(n)}  (¥)

"—LEJM

e Forall 0 € Q2 , the supremum in (*) is attained uniquely at [t &€ M° specified by the
moment-matching conditions

=) 1= Eo[o(X)]

e Bijection for minimal exponential family
(VA)

Eric Xing © Eric Xing @ CMU, 2006-2010
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Roles of Mean Parameters

e Forward Mapping:
e From 6@ € Qto the mean parameters e M
e A fundamental class of inference problems in exponential family models

sup {070 — A* ()} (%)
peM

e Backward Mapping:

e Parameter estimation to learn the unknown 0 cO

(VA)

Eric Xing © Eric Xing @ CMU, 2006-2010
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00
0000
gess
Example T
e Bernoulli o(x) =z, A(f) =log(l+exp(f)), Q=R
A*(u) — glelg{QTu — log(l + exp((g)) } (**)
__exp(0) B
= = ) (1= v40)

v

O(n) = log(——— _
o If peM°=(01) ==) 4Eu) gl(l - H{) Uquue!
o If t¢M=10,1 A*(pn) = plogp+ (1 — p) log(1 — p)

No gradient stationary point in the Opt. problem (**)
A*(pn) = 400
e Reverse mapping:
1= arg Hrél[%ﬁ]{uw — plog pn— (1 — p)log(1 — )}

) 4(6) = ] ixé)x(ggg), A(0) = log(1 +exp(f)) Unique!
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Variational Inference In General ol

e An umbrella term that refers to various mathematical
tools for optimization-based formulations of problems, as
well as associated techniques for their solution

e (General idea:
e Express a quantity of interest as the solution of an optimization problem

Al0) = sup {QTM - A*(u)} (*)

e The optimization problem can be relaxed in various ways
Approximate the functions to be optimized
Approximate the set over which the optimization takes place

e (oes in parallel with MCMC
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A Tree-Based Outer-Bound to M(G)| ¢

e Local Consistent (Pseudo-) Marginal Polytope
T :={1s, SEV; Ty, (s,t) € E}

L(G) = {'r > 0|normalization and marginalization constraints hold.}

e normalization Z ro(zs) =1, Vs €V
e marginalization .

V(S, t) &« E : ZTS't(xsax;) — Ts(xs)a V.I'S S Xs ZTSt($;,$-¢) — ’Tt(il’t),, VIt & Xt

e Relation to M(G)
o M(G) CL(G) holds for any graph
* M(G) = L(G) holds for tree-structured graphs
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A M(G) C L(G) Example

e A three node graph (binary r.v.)

Ts(xs) :=[0.5 0.5]

st 0.5 — S
TSt(xS,xt) = [ 058_ Bst Bstﬁ t ]

e Forany Bst €[0,0.5] we have 7€ L(G)
o Forpy, =By =04, and 813 = 0.1, we have 7 ¢ M(G)

e an exercise?

Eric Xing © Eric Xing @ CMU, 2006-2010
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Bethe Entropy Approximation -

e Approximate the negative entropy A*(x), which
doesn’t has a closed-form in general graph.

e Entropy on tree (Marginals)

o recall: _ H (1) r pst (s, x¢) fhs(s)
v e Me(@s) () 2 o)
st {Ts,y Tt
e entropy H o H - I 6
(p,u) - Z S /~LS Z st(ﬂst)
seV (s,t)EE

e Bethe entropy approximation (Pseudo-marginals)

_A*( )NHBethe ZH Ts Z Ist Tst

seV (s,t)EE

Eric Xing © Eric Xing @ CMU, 2006-2010
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Bethe Variational Problem (BVP) | ¢

e \We already have:
e a convex (polyhedral) outer bound L(G)
M(G) C L(G)
e the Bethe approximate entropy

_A*( ) HBethe ZH Ts Z Ist Tst

seV (s,t)EE
e Combining the two ingredients, we have

QT Hs S IS 8}
s {077+ 3 Ha(r) = 3 Lu(ra)

seV (s,t)EE

e a simple structured problem (differentiable & constraint set is a simple
polytope)
e Max-product is the solver!

Nobel Prize in Physics (1967)
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Connection to Sum-Product Alg. | <¢

e Lagrangian method for BVP:
L(T,7;0) := 0" T + Hpethe(T) + Z AssCss(T)

seV
+ E E Ast(15)Cs(gs T +E Ast(@¢)Csr(y; T )
(S t)eE Ts
where Cgs(7 —1—273 #,)y Cgilmayr) m= myla ZTst T

e Sum-product and Bethe Variational (Yedldla et al., 2002)

e Forany graph G, any fixed point of the sum-product updates specifies a
pair of (7%, \*) such that

VLT, A50) =0, and V,\L(T5,\*;0) =0

e For a tree-structured MRF, the solution (7, A\*) is unique, where
correspond to the exact singleton and pairwise marginal distributions of
the MRF, and the optimal value of BVP is equal to A(6)
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Proof

Eric Xing

© Eric Xing @ CMU, 2006-2010
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Discussions -

e The connection provides a principled basis for applying the
sum-product algorithm for loopy graphs

e However,

e this connection provides no guarantees on the convergence of the sum-product
alg. on loopy graphs

e the Bethe variational problem is usually non-convex. Therefore, there are no
guarantees on the global optimum

o Generally, there are no guarantees that Ap.i.(6)is a lower bound of A(0)

e However, however

e the connection and understanding suggest a number of avenues for improving
upon the ordinary sum-product alg., via progressively better approximations to
the entropy function and outer bounds on the marginal polytope!

Eric Xing © Eric Xing @ CMU, 2006-2010
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000

Inexactness of Bethe and Sum- 3

Product oo
e From Bethe entropy approximation
e Example Mol =05 G5
0.5 0 @ @
Mst(ﬂfs;il?t) = [ 0 05 ]

Hpethe(t) = 4log2 — 6log2 = —2log2 < 0 ! @ @

True entropy: log 2
e From pseudo-marginal outer bound

e strict inclusion

Eric Xing
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Summary of LBP -

e Variational methods in general turn inference into an optimization
problem

e However, both the objective function and constraint set are hard to
deal with

e Bethe variational approximation is a tree-based approximation to
both objective function and marginal polytope

e Belief propagation is a Lagrangian-based solver for BVP

e Generalized BP extends BP to solve the generalized hyper-tree
based variational approximation problem
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Tractable Subgraph -

e Given a GM with a graph G, a subgraph F is tractable if

e We can perform exact inference on it

e Example: () = {9 c RYA(9) < —|—oo}

F(): / O T :

.\
oo et
O o ©O

Q(Fp) :=1{0 € Q|0(5,1) = 0,V(s,t) e E} QT):=1{0€ Q|0 =0V(s,t) ¢ E(T)}

o A
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Mean Parameterization

e For an exponential family GM defined with graph G and
sufficient statistics ¢ , the realizable mean parameter set

M(G;¢) = {,u, € R Tp s.t. Epfda(X)] = i, Va € 1}

e For a given tractable subgraph F, a subset of mean
parameters is of interest

Mp(G; ) = {u e RY 1 =Ey[p(X)], for some 6 € Q(F)}

e |nner Approximation

Mp(G;9) € M°(G;9)

Eric Xing © Eric Xing @ CMU, 2006-2010
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Optimizing a Lower Bound .

e Any mean parameter 1 € M° yields a lower bound on the log-
partition function

A0) > 0" p— A (p)

e Moreover, equality holds iff 8 and ¢ are dually coupled, i.e.,

p=1Eylo(X)]

e Proof Idea: (Jensen’s Inequality)

e Optimizing the lower bound gives X
e This is an inference!

Eric Xing © Eric Xing @ CMU, 2006-2010 39



Mean Field Methods In General ot

e However, the lower bound can’t explicitly evaluated in general
e Because the dual function A* typically lacks an explicit form

e Mean Field Methods

e Approximate the lower bound
P = A" Mp(o)
e Approximate the realizable mean parameter set
Mp(G) E M

e The MF optimization problem

| {GTM —~ A}‘r(u)}

e Still a lower bound?

Eric Xing © Eric Xing @ CMU, 2006-2010 40



KL-divergence -

e Kullback-Leibler Divergence

K L(q|lp) := Eq4|log %]

e For two exponential family distributions with the same STs:

; ; L
KL(6:]|62) = Eq, {bg iz 8}

= A(0) — A(61) — pj (85 —01)  Primal Form

= A(0y) + A* (1) — MIQQ Mixed Form

DA || 62)

“ADY) + (VA(BY), 6 — ')

0
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Mean Field and KL-divergence

e Optimizing a lower bound

| {GTM — A’fm(u)}

e Equivalent to minimize a KL-divergence
A(0) = (0" — A% (n)) = K L(1|6)

e Therefore, we are doing minimization

min K L(ul||0
Ll (1|6

Eric Xing © Eric Xing @ CMU, 2006-2010
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Naive Mean Field ot

e Fully factorized variational distribution

a(x) = 1] alx)

seV

@)

O© O
©O O O O O
©O O O O O
O O O O O
O O O O O
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Naive Mean Field for Ising Model | :¢

e Sufficient statistics and Mean Parameters 1 2. 3

G L p—
(rs,s € V), and (xsxy,(s,t) € )
4 5 6
Hs = p(Xs — 1)9 and fisp = p(Xs =1, X = 1) Q O O
e Naive Mean Field O

e Realizable mean parameter subset
ME, = {M|0 Sps S1Vs eV, and pst = pspie V(s,t) € E}

e Entro N

. — AR (1) = = [pslog pus + (1= o) log(1 = ps) = > Ho(pus)]
seEV seV

e Optimization Problem

;,LénOai{ {Ze ,JS_}_ Z Qstﬂs“t+zﬂ (Ms }

(s,t)EE seV
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Naive Mean Field for Ising Model | :¢

e Optimization Problem

max {ZH [bs + Z Ostfispte + ZH (1ts) }

[0,1]"
nel (s,)EE SEV

e Update Rule

Hs < 0(93 = Z Qstut)
teN(s)

o 1 =p(Xy=1) =E,[X,] resembles “message” sent from node ¢ to s

{E,[X:].t € N(s5)} forms the “mean field” applied to s from its
neighborhood
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Non-Convexity of Mean Field -

e Mean field optimization is always non-convex for any
exponential family in which the state space X™ is finite

e Finite convex hull

M(G) = conv{op(e), e € X}

* Mp(G) contains all the extreme points I
- P"l!
o If _is a convex set, then —*’”w /&s 7
JM F (G) j

Eric Xing © Eric Xing @ CMU, 2006-2010
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Structured Mean Field ot

e Mean field theory is general to any tractable sub-graphs
e Nalve mean field is based on the fully unconnected sub-graph

e Variants based on structured sub-graphs can be derived

O 00 0O
O 00 0O
—» O O O 0O
O 00 0O
O 00 0O
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Topic models

*

=< :
™M
*

=

é Approximate
v J the Integral

P

/
G0

o [T

Approximate " W
P(7,210|D) the Posterior a(y, 2.0) = 9, = T alz,)¢,)
I"I*’Z*’(Ptn*
alg min KL(qu) Solve X Optimization
il Bl Problem
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Variational Inference With no Tears

[Ahmed and Xing, 2006, Xing et al 2003]

e Fully Factored Distribution ;y
B<>\\\22
7’ 1n Hq >

P(7y{z}HE)

e Fixed Point Equations

R Pt
qy*(V):P(7‘<Sz>qz,ﬂ,2) zN(,uy,Zy ) %

q, *(z)= P(Z‘<Sy>qy’ﬂlik) ~ Multi(6,) BQ\\gZ

Laplace approximation (7,2, )= Hq
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Summary of GMF -

e Message-passing algorithms (e.g., belief propagation, mean field)
are solving approximate versions of exact variational principle in
exponential families

e There are two distinct components to approximations:
e Can use either inner or outer bounds to M
e Various approximation to the entropy function — A~

e BP: polyhedral outer bound and non-convex Bethe approximation
e MF: non-convex inner bound and exact form of entropy

e Kikuchi: tighter polyhedral outer bound and better entropy
approximation
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