
Machine LearningMachine Learninggg

Algorithms and Theory of Algorithms and Theory of 
A i t I fA i t I fApproximate InferenceApproximate Inference

Eric XingEric Xing
Lecture 15, August 15, 2010

Eric Xing © Eric Xing @ CMU, 2006-2010 1

Reading:

X1

X4

X2 X3

X4

X2 X3

X1
X1

X2

X1

X3

X1

X4

X2 X3

X4

X2 X3

X1
X1

X2

X1

X3



Inference ProblemsInference Problems
 Compute the likelihood of observed data
 Compute the marginal distribution            over a particular subset           

of nodes
 Compute the conditional distribution                  for disjoint subsets A

and B
 Compute a mode of the density
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Inference in GMInference in GM
 HMM

y2 y3y1 yT... 

A AA Ax2 x3x1 xT... 

 A general BN B A

DC

E F
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Inference ProblemsInference Problems
 Compute the likelihood of observed data
 Compute the marginal distribution            over a particular subset           

of nodes
 Compute the conditional distribution                  for disjoint subsets A

and B
 Compute a mode of the density

 Methods we have

Message Passing
Brute force Elimination

g g
(Forward-backward , Max-product 

/BP, Junction Tree)
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Sharing intermediate termsIndividual computations independent



Recall forward backward on HMMRecall forward-backward on HMM

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 

F d l ith

A AA Ax2 x3x1 xT
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Message passing for treesMessage passing for trees

Let m (x ) denote the factor resulting fromLet mij(xi) denote the factor resulting from 
eliminating variables from bellow up to i, 
which is a function of xi:

f

This is reminiscent of a message sent 
from j to i.i

j

mij(xi) represents a "belief" of xi from xj!

k l
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The General Sum-Product 
AlgorithmAlgorithm
 Tree-structured GMs

M P i T Message Passing on Trees:

 On trees, converge to a unique fixed point after a finite number of 
iterations
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Junction Tree RevisitedJunction Tree Revisited
 General Algorithm on Graphs with Cyclesg p y

 Steps: => Triangularization => Construct JTsp > Triangularization > Construct JTs

=> Message Passing on Clique Trees

B CS
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Local ConsistencyLocal Consistency
 Given a set of functions                                            associated 

with the cliques and separator sets

 They are locally consistent if:y y

 For junction trees, local consistency is equivalent to global 
consistency!
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An Ising model on 2 D imageAn Ising model on 2-D image
 Nodes encode hidden 

information (patch-
identity).

 They receive local 
information from theinformation from the 
image (brightness, 
color).

 Information is Information is 
propagated though the 
graph over its edges.

 Edges encode g
‘compatibility’ between 
nodes.
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Why Approximate Inference?Why Approximate Inference?
 Why can’t we just run junction tree on this graph?y j j g p
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 If NxN grid, tree width at least N
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g ,
 N can be a huge number(~1000s of pixels)

 If N~O(1000), we have a clique with 2100 entries



Solution 1: Belief Propagation on 
loopy graphs

kk

loopy graphs
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 BP Message-update Rules
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 May not converge or converge to a wrong solution



Recall BP on trees
kk

Recall BP on trees
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 BP on trees always converges to exact marginals



Solution 2: The naive mean field 
approximation
 Approximate p(X) by fully factorized q(X)=iqi(Xi)

approximation
pp p( ) y y q( ) iqi( i)

 For Boltzmann distribution p(X)=exp{i < j qijXiXj+qioXi}/Z :

mean field equation:
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 xjqj resembles a “message” sent from node j to i jX
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 {xjqj : j  Ni} forms the “mean field” applied to Xi from its neighborhood}:{ iqj jX
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Recall Gibbs sampling
 Approximate p(X) by fully factorized q(X)=iqi(Xi)

Recall Gibbs sampling
pp p( ) y y q( ) iqi( i)

 For Boltzmann distribution p(X)=exp{i < j qijXiXj+qioXi}/Z :

Gibbs predictive distribution:
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Summary So FarSummary So Far
 Exact inference methods are limited to tree-structured graphsg p

 Junction Tree methods is exponentially expensive to the tree-
idthwidth

 Message Passing methods can be applied for loopy graphs Message Passing methods can be applied for loopy graphs, 
but lack of analysis!

 Mean-field is convergent, but can have local optimal

f ?
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 Where do these two algorithm come from? Do they make 
sense?



Next StepNext Step …
 Develop a general theory of variational inferencep g y

 Introduce some approximate inference methods 

 Provide deep understandings to some popular methods
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Exponential Family GMsExponential Family GMs
 Canonical Parameterization

 Effective canonical parameters

Canonical Parameters Sufficient Statistics Log-normalization Function

 Regular family: 

 Minimal representation:  
 if there does not exist a nonzero vector               such that                is a 

constant

Eric Xing © Eric Xing @ CMU, 2006-2010 18



ExamplesExamples
 Ising Model (binary r.v.: {-1, +1})g ( y { })

 Gaussian MRF
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Mean ParameterizationMean Parameterization
 The mean parameter      associated with a sufficient statistic           

is defined as

R li bl t t Realizable mean parameter set

 A convex subset of 
 Convex hull for discrete case

 Convex polytope when is finite
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Convex polytope when             is finite



Convex PolytopeConvex Polytope
 Convex hull representationp

 Half-plane based representation
 Minkowski-Weyl Theorem: 

 any polytope can be characterized by a finite collection of linear inequality a y po ytope ca be c a acte ed by a te co ect o o ea equa ty
constraints
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ExampleExample
 Two-node Ising Modelg

 Convex hull representation

 Half-plane representation
 Probability Theory:
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Marginal PolytopeMarginal Polytope
 Canonical Parameterization

 Mean parameterization

 Marginal distributions over nodes and edges

 Marginal Polytope
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Conjugate DualityConjugate Duality
 Duality between MLE and Max-Ent:

F ll i i l t ti f i For all                     , a unique canonical parameter             satisfying 

 The log partition function has the variational form The log-partition function has the variational form

 For all the supremum in (*) is attained uniquely at specified by the For all                 , the supremum in ( ) is attained uniquely at                        specified by the 
moment-matching conditions

 Bijection for minimal exponential familyj p y
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Roles of Mean ParametersRoles of Mean Parameters
 Forward Mapping:pp g

 From              to  the mean parameters
 A fundamental class of inference problems in exponential family models

 Backward Mapping:g
 Parameter estimation to learn the unknown 
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ExampleExample
 Bernoulli

 If
If

Unique!

 If
No gradient stationary point in the Opt. problem (**)

 Reverse mapping:
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Unique!



Variational Inference In GeneralVariational Inference In General
 An umbrella term that refers to various mathematical 

t l f ti i ti b d f l ti f bltools for optimization-based formulations of problems, as 
well as associated techniques for their solution

 General idea:
 Express a quantity of interest as the solution of an optimization problem

 The optimization problem can be relaxed in various ways
 Approximate the functions to be optimized Approximate the functions to be optimized
 Approximate the set over which the optimization takes place

 Goes in parallel with MCMC
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A Tree Based Outer Bound to aA Tree-Based Outer-Bound to a 
 Local Consistent (Pseudo-) Marginal Polytope( ) g y p

 normalization
 marginalization

 Relation to Relation to 
 holds for any graph
 holds for tree-structured graphs
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A ExampleA                     Example
 A three node graph (binary r.v.) 1g p ( y )

3 2

1

F h For any                    , we have 
 For                                             , we have  

 an exercise?
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Bethe Entropy ApproximationBethe Entropy Approximation

 Approximate the negative entropy , which Approximate the negative entropy         , which 
doesn’t has a closed-form in general graph.

 Entropy on tree (Marginals)Entropy on tree (Marginals)
 recall:

 entropy

 Bethe entropy approximation (Pseudo-marginals) Bethe entropy approximation (Pseudo marginals)
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Bethe Variational Problem (BVP)Bethe Variational Problem (BVP)
 We already have:

 a convex (polyhedral) outer bound 

 the Bethe approximate entropy

 Combining the two ingredients, we have Combining the two ingredients, we have

 a simple structured problem (differentiable & constraint set is a simple 
polytope)

 Max-product is the solver!
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Nobel Prize in Physics (1967) 



Connection to Sum Product AlgConnection to Sum-Product Alg.
 Lagrangian method for BVP:

 Sum-product and Bethe Variational (Yedidia et al., 2002)p ( , )
 For any graph G, any fixed point of the sum-product updates specifies a 

pair of                such that

 For a tree-structured MRF, the solution                  is unique, where            
correspond to the exact singleton and pairwise marginal distributions of 
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p g p g
the MRF, and the optimal value of BVP is equal to 



ProofProof
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DiscussionsDiscussions
 The connection provides a principled basis for applying the 

d t l ith f l hsum-product algorithm for loopy graphs

 However,
 this connection provides no guarantees on the convergence of the sum-product 

alg. on loopy graphs
 the Bethe variational problem is usually non-convex. Therefore, there are no 

guarantees on the global optimumguarantees on the global optimum
 Generally, there are no guarantees that                    is a lower bound of 

 However however However, however
 the connection and understanding suggest a number of avenues for improving 

upon the ordinary sum-product alg., via progressively better approximations to 
the entropy function and outer bounds on the marginal polytope!
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Inexactness of Bethe and Sum-
ProductProduct

 From Bethe entropy approximation py pp
 Example

1 4

From pseudo marginal outer bound

32

 From pseudo-marginal outer bound
 strict inclusion
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Summary of LBPSummary of LBP
 Variational methods in general turn inference into an optimization 

blproblem

 However, both the objective function and constraint set are hard to 
deal with

 Bethe variational approximation is a tree-based approximation to pp pp
both objective function and marginal polytope

 Belief propagation is a Lagrangian-based solver for BVPp p g g g

 Generalized BP extends BP to solve the generalized hyper-tree 
based variational approximation problem
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Tractable SubgraphTractable Subgraph
 Given a GM with a graph G, a subgraph F is tractable ifg p g p

 We can perform exact inference on it

E l Example:
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Mean ParameterizationMean Parameterization
 For an exponential family GM defined with graph G and p y g p

sufficient statistics       , the realizable mean parameter set

 For a given tractable subgraph F, a subset of mean 
parameters is of interestp

 Inner Approximation
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Optimizing a Lower BoundOptimizing a Lower Bound
 Any mean parameter              yields a lower bound on the log-y p y g

partition function

Moreo er eq alit holds iff and are d all co pled i e Moreover, equality holds iff      and     are dually coupled, i.e., 

 Proof Idea: (Jensen’s Inequality)

 Optimizing the lower bound gives 
 This is an inference!
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Mean Field Methods In GeneralMean Field Methods In General
 However, the lower bound can’t explicitly evaluated in generalp y g

 Because  the dual function          typically lacks an explicit form

Mean Field Methods Mean Field Methods
 Approximate the lower bound 

 Approximate the realizable mean parameter set

Th MF ti i ti bl The MF optimization problem
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KL divergenceKL-divergence
 Kullback-Leibler Divergenceg

 For two exponential family distributions with the same STs:

Primal Form

Mixed FormMixed Form

Dual Form
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Mean Field and KL divergenceMean Field and KL-divergence
 Optimizing a lower boundp g

 Equivalent to minimize a KL-divergence

 Therefore we are doing minimization Therefore, we are doing minimization
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Naïve Mean FieldNaïve Mean Field
 Fully factorized variational distributiony
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Naïve Mean Field for Ising ModelNaïve Mean Field for Ising Model
 Sufficient statistics and Mean Parameters

 Naïve Mean Field
 Realizable mean parameter subset

 Entropy

 Optimization Problem
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Naïve Mean Field for Ising ModelNaïve Mean Field for Ising Model
 Optimization Problem

 Update Rule

 resembles “message” sent from node to resembles message  sent from node      to   

 forms the “mean field” applied to     from its 
neighborhood

Eric Xing © Eric Xing @ CMU, 2006-2010 45

g



Non Convexity of Mean FieldNon-Convexity of Mean Field
 Mean field optimization is always non-convex for any p y y

exponential family in which the state space        is finite

 Finite convex hull

 contains all the extreme points

 If                is a convex set, then 

 Mean field has been used successfully
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Structured Mean FieldStructured Mean Field
 Mean field theory is general to any tractable sub-graphsy g y g p
 Naïve mean field is based on the fully unconnected sub-graph

 Variants based on structured sub-graphs can be derived
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Topic modelsTopic models
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Variational Inference With no Tears

 Fully Factored Distribution
μ Σ

a at o a e e ce t o ea s
[Ahmed and Xing, 2006, Xing et al 2003]

 Fully Factored Distribution

      zqqzq 
β



z
e      nn zqqzq  :1,

)|}{,( EzP 

Fi d P i t E ti Fixed Point Equations

    zSPq ,,* 


μ Σ

 ,   N   
  





 kqz

qz

SzPzq

q
z

:1,*

,,









β z
e

 , N

)Multi( z

Eric Xing © Eric Xing @ CMU, 2006-2010 49

      nn zqqzq  :1,Laplace approximationLaplace approximation



Summary of GMFSummary of GMF
 Message-passing algorithms (e.g., belief propagation, mean field) 

are solving approximate versions of exact variational principle in 
exponential families

Th t di ti t t t i ti There are two distinct components to approximations:
 Can use either inner or outer bounds to 
 Various approximation to the entropy function

 BP: polyhedral outer bound and non-convex Bethe approximation
 MF: non-convex inner bound and exact form of entropy MF: non convex inner bound and exact form of entropy
 Kikuchi: tighter polyhedral outer bound and better entropy 

approximation
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