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Machine Learning

Generative verses discriminative 
classifier 

Eric Xing
Lecture 2, August 12, 2010

Reading:
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Generative and Discriminative 
classifiers
 Goal: Wish to learn f: X → Y, e.g., P(Y|X)

 Generative:
 Modeling the joint distribution 

of all data

 Discriminative:
 Modeling only points 

at the boundary
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Generative vs. Discriminative 
Classifiers
 Goal: Wish to learn f: X → Y, e.g., P(Y|X)

 Generative classifiers (e.g., Naïve Bayes):
 Assume some functional form for P(X|Y), P(Y)

This is a ‘generative’ model of the data!
 Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X= x)

 Discriminative classifiers (e.g., logistic regression)
 Directly assume some functional form for P(Y|X)

This is a ‘discriminative’ model of the data!
 Estimate parameters of P(Y|X) directly from training data

Yn

Xn

Yn

Xn
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Suppose you know the following 
…
 Class-specific Dist.: P(X|Y)

 Class prior (i.e., "weight"): P(Y)

 This is a generative model of the data!
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Optimal classification
 Theorem: Bayes classifier is optimal!

 That is

 How to learn a Bayes classifier?
 Recall density estimation. We need to estimate P(X|y=k), and P(y=k) for all k



© Eric Xing @ CMU, 2006-2010 6

Gaussian Discriminative Analysis 
 learning f: X → Y, where

 X is a vector of real-valued features, Xn= < Xn,1…Xn,m >
 Y is an indicator vector

 What does that imply about the form of P(Y|X)?
 The joint probability of a datum and its label is:

 Given a datum xn, we predict its label using the conditional probability of the label 
given the datum:
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Conditional Independence
 X is conditionally independent of Y  given Z, if the probability 

distribution governing X is independent of the value of Y, given 
the value of Z

Which we often write

 e.g.,

 Equivalent to:
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Naïve Bayes Classifier 
 When X is multivariate-Gaussian vector:

 The joint probability of a datum and it label is:

 The naïve Bayes simplification

 More generally:

 Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density
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The predictive distribution

 Understanding the predictive distribution

 Under naïve Bayes assumption: 

 For two class (i.e., K=2), and when the two classes haves the same 
variance, ** turns out to be a logistic function
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The decision boundary

 The predictive distribution

 The Bayes decision rule:

 For multiple class (i.e., K>2), * correspond to a softmax function
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Generative vs. Discriminative 
Classifiers
 Goal: Wish to learn f: X → Y, e.g., P(Y|X)

 Generative classifiers (e.g., Naïve Bayes):
 Assume some functional form for P(X|Y), P(Y)

This is a ‘generative’ model of the data!
 Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X= x)

 Discriminative classifiers:
 Directly assume some functional form for P(Y|X)

This is a ‘discriminative’ model of the data!
 Estimate parameters of P(Y|X) directly from training data
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Xi



© Eric Xing @ CMU, 2006-2010 12

Linear Regression 
 The data:

 Both nodes are observed:
 X is an input vector
 Y is a response vector 

(we first consider y as a generic 
continuous response vector, then 
we consider the special case of 
classification where y is a discrete 
indicator)

 A regression scheme can be 
used to model p(y|x) directly,
rather than p(x,y)

Yi
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Linear Regression
 Assume that Y (target) is a linear function of X (features):

 e.g.:

 let's assume a vacuous "feature" X0=1 (this is the intercept term, why?), and 
define the feature vector to be:

 then we have the following general representation of the linear function:

 Our goal is to pick the optimal       . How!
 We seek      that minimize the following cost function:
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The Least-Mean-Square (LMS) 
method
 Consider a gradient descent algorithm:

 Now we have the following descent rule: 

 For a single training point, we have: 

 This is known as the LMS update rule, or the Widrow-Hoff learning rule
 This is actually a "stochastic", "coordinate" descent algorithm
 This can be used as a on-line algorithm
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Probabilistic Interpretation of 
LMS
 Let us assume that the target variable and the inputs are 

related by the equation:

where ε is an error term of unmodeled effects or random noise

 Now assume that ε follows a Gaussian N(0,σ), then we have:

 By independence assumption:
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Probabilistic Interpretation of 
LMS, cont.
 Hence the log-likelihood is:

 Do you recognize the last term?

Yes it is: 

 Thus under independence assumption, LMS is equivalent to 
MLE of θ !
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Classification and logistic 
regression
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The logistic function



© Eric Xing @ CMU, 2006-2010 19

Logistic regression (sigmoid 
classifier)
 The condition distribution: a Bernoulli

where µ is a logistic function

 We can used the brute-force gradient method as in LR

 But we can also apply generic laws by observing the p(y|x) is 
an exponential family function, more specifically, a 
generalized linear model (see future lectures …)
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Training Logistic Regression: 
MCLE
 Estimate parameters θ=<θ0, θ1, ... θm> to maximize the 

conditional likelihood of training data

 Training data 

 Data likelihood = 

 Data conditional likelihood =
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Expressing Conditional Log 
Likelihood

 Recall the logistic function:

and conditional likelihood: 
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Maximizing Conditional Log 
Likelihood
 The objective:

 Good news: l(θ) is concave function of θ

 Bad news: no closed-form solution to maximize l(θ)
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The Newton’s method
 Finding a zero of a function
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The Newton’s method (con’d)
 To maximize the conditional likelihood l(θ):

since l is convex, we need to find θ∗ where l’(θ∗)=0 ! 

 So we can perform the following iteration:
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The Newton-Raphson method
 In LR the θ is vector-valued, thus we need the following 

generalization:

 ∇ is the gradient operator over the function

 H is known as the Hessian of the function
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The Newton-Raphson method
 In LR the θ is vector-valued, thus we need the following 

generalization:

 ∇ is the gradient operator over the function

 H is known as the Hessian of the function
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Iterative reweighed least squares 
(IRLS)
 Recall in the least square est. in linear regression, we have:

which can also derived from Newton-Raphson 

 Now for logistic regression: 
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Generative vs. Discriminative 
Classifiers
 Goal: Wish to learn f: X → Y, e.g., P(Y|X)

 Generative classifiers (e.g., Naïve Bayes):
 Assume some functional form for P(X|Y), P(Y)

This is a ‘generative’ model of the data!
 Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X= x)

 Discriminative classifiers:
 Directly assume some functional form for P(Y|X)

This is a ‘discriminative’ model of the data!
 Estimate parameters of P(Y|X) directly from training data

Yi

Xi

Yi

Xi
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Naïve Bayes vs Logistic 
Regression
 Consider Y boolean, X continuous, X=<X1 ... Xm>
 Number of parameters to estimate:

NB:

LR:

 Estimation method:
 NB parameter estimates are uncoupled
 LR parameter estimates are coupled
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Naïve Bayes vs Logistic 
Regression
 Asymptotic comparison (# training examples → infinity)

 when model assumptions correct
 NB, LR produce identical classifiers

 when model assumptions incorrect
 LR is less biased – does not assume conditional independence
 therefore expected to outperform NB
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Naïve Bayes vs Logistic 
Regression
 Non-asymptotic analysis (see [Ng & Jordan, 2002] )

 convergence rate of parameter estimates – how many training 
examples needed to assure good estimates?

NB order log m (where m = # of attributes in X)
LR order m

 NB converges more quickly to its (perhaps less helpful) 
asymptotic estimates
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Some experiments from UCI data 
sets
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Robustness

• The best fit from a quadratic 
regression

• But this is probably better …
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Bayesian Parameter Estimation
 Treat the distribution parameters θ also as a random variable
 The a posteriori distribution of θ after seem the data is:

This is Bayes Rule

likelihood marginal
priorlikelihoodposterior ×
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35

What if                   is not invertible ? 

log likelihood log prior

Prior belief that β is Gaussian with zero-mean biases solution to “small” β

I) Gaussian Prior

0

Ridge Regression

Closed form: HW

Regularized Least Squares and 
MAP
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Regularized Least Squares and 
MAP

36

What if                   is not invertible ? 

log likelihood log prior

Prior belief that β is Laplace with zero-mean biases solution to “small” β

Lasso

Closed form: HW

II) Laplace Prior
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Ridge Regression vs Lasso

37

Ridge Regression: Lasso: HOT
!

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high-dimensional problems – don’t have to store all coordinates!

βs with 
constant 
l1 norm

βs with constant J(β)
(level sets of J(β))

βs with 
constant 
l2 norm

β2

β1
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Case study: 
predicting gene expression

The genetic picture

CGTTTCACTGTACAATTT
causal SNPs

a univariate phenotype:

i.e., the expression intensity of 
a gene
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Individual 1

Individual 2

Individual N

Phenotype (BMI)

2.5

4.8

4.7

Genotype

. . C . . . . .  T . . C . . . . . . . T . . .

. . C . . . . .  A . . C . . . . . . . T . . .

. . G  . . . . . A . . G . . . . . . . A . . .

. . C . . . . .  T . . C . . . . . . . T . . .

. . G  . . . . . T . . C . . . . . . . T . . .

. . G  . . . . . T . . G . . . . . . . T . . .

Causal SNPBenign SNPs

…

Association Mapping as 
Regression
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Individual 1

Individual 2

Individual N

Phenotype (BMI)

2.5

4.8

4.7

Genotype

. . 0 . . . . .  1 . . 0 . . . . . . . 0 . . .

. . 1  . . . . . 1 . . 1 . . . . . . . 1 . . .

. . 2  . . . . . 2 . . 1 . . . . . . . 0 . . .

…

yi = ∑
=

J

j
jijx

1
β SNPs with large 

|βj| are relevant

Association Mapping as 
Regression
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Experimental setup
 Asthama dataset

 543 individuals, genotyped at 34 SNPs
 Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
 X=543x34 matrix
 Y=Phenotype variable (continuous)

 A single phenotype was used for regression

 Implementation details
 Iterative methods: Batch update and online update implemented.
 For both methods, step size α is chosen to be a small fixed value (10-6). This 

choice is based on the data used for experiments.
 Both methods are only run to a maximum of 2000 epochs or until the change in 

training MSE is less than 10-4
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 For the batch method, the training MSE is initially large due to uninformed initialization
 In the online update, N updates for every epoch reduces MSE to a much smaller value.

Convergence Curves
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The Learned Coefficients
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 The results from B and O 
update are almost identical. 
So the plots coincide.

 The test MSE from the 
normal equation is more 
than that of B and O during 
small training. This is 
probably due to overfitting.

 In B and O, since only 2000 
iterations are allowed at 
most. This roughly acts as a 
mechanism that avoids 
overfitting.

Performance vs. Training Size
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Summary

 Naïve Bayes classifier
 What’s the assumption
 Why we use it
 How do we learn it

 Logistic regression
 Functional form follows from Naïve Bayes assumptions
 For Gaussian Naïve Bayes assuming variance
 For discrete-valued Naïve Bayes too
 But training procedure picks parameters without the conditional independence 

assumption

 Gradient ascent/descent
 – General approach when closed-form solutions unavailable

 Generative vs. Discriminative classifiers
 – Bias vs. variance tradeoff



© Eric Xing @ CMU, 2006-2010 46

Appendix
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Parameter Learning from iid Data
 Goal: estimate distribution parameters θ from a dataset of N

independent, identically distributed (iid), fully observed, 
training cases

D = {x1, . . . , xN}

 Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L(θ) as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:
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Example: Bernoulli model
 Data: 

 We observed N iid coin tossing: D={1, 0, 1, …, 0}

 Representation:
Binary r.v:

 Model: 

 How to write the likelihood of a single observation xi ? 

 The likelihood of datasetD={x1, …,xN}:

ii xx
ixP −−= 11 )()( θθ

( )∏∏
=

−

=

−==
N

i

xx
N

i
iN

iixPxxxP
1

1

1
21 1 )()|()|,...,,( θθθθ

},{ 10=nx

tails#head# )()( θθθθ −=
∑

−
∑

= ==

−

11 11
1

N

i
i

N

i
i xx





=
=−

=
1
01

x
x

xP
for         
for    

)(
θ

θ
xxxP −−= 11 )()( θθ⇒



© Eric Xing @ CMU, 2006-2010 49

Maximum Likelihood Estimation
 Objective function: 

 We need to maximize this w.r.t. θ

 Take derivatives wrt θ

 Sufficient statistics
 The counts,                                          are sufficient statistics of data D
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Overfitting
 Recall that for Bernoulli Distribution, we have

 What if we tossed too few times so that we saw zero head?
We have                   and we will predict that the probability of 
seeing a head next is zero!!! 

 The rescue: "smoothing"
 Where n' is know as the pseudo- (imaginary) count

 But can we make this more formal?

tailhead

head
head
ML nn

n
+
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
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nnn
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head
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ML ++

+
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
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Bayesian Parameter Estimation
 Treat the distribution parameters θ also as a random variable
 The a posteriori distribution of θ after seem the data is:

This is Bayes Rule

likelihood marginal
priorlikelihoodposterior ×

=

∫
==

θθθ
θθθθθ

dpDp
pDp

Dp
pDpDp

)()|(
)()|(

)(
)()|()|(

The prior p(.) encodes our prior knowledge about the domain
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Frequentist Parameter Estimation 
Two people with different priors p(θ) will end up with 
different estimates p(θ|D).

 Frequentists dislike this “subjectivity”.
 Frequentists think of the parameter as a fixed, unknown 

constant, not a random variable.
 Hence they have to come up with different "objective" 

estimators (ways of computing from data), instead of using 
Bayes’ rule.
 These estimators have different properties, such as being “unbiased”, “minimum 

variance”, etc.
 The maximum likelihood estimator, is one such estimator.
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Discussion

θ or p(θ), this is the problem!

Bayesians know it
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Bayesian estimation for Bernoulli 
 Beta distribution:  

 When x is discrete

 Posterior distribution of θ : 

 Notice the isomorphism of the posterior to the prior, 
 such a prior is called a conjugate prior
 α and β are hyperparameters (parameters of the prior) and correspond to the 

number of “virtual” heads/tails (pseudo counts)

1111

1

1
1 111 −+−+−− −=−×−∝= βαβα θθθθθθθθθ thth nnnn

N

N
N xxp

pxxpxxP )()()(
),...,(

)()|,...,(),...,|(

1111 11 −−−− −=−
ΓΓ
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= βαβα θθβαθθ
βα
βαβαθ )(),()(

)()(
)(),;( BP

!)()( xxxx =Γ=+Γ 1

http://upload.wikimedia.org/wikipedia/commons/9/9a/Beta_distribution_pdf.png�
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Bayesian estimation for 
Bernoulli, con'd 
 Posterior distribution of θ :

 Maximum a posteriori (MAP) estimation: 

 Posterior mean estimation:

 Prior strength: A=α+β
 A can be interoperated as the size of an imaginary data set from which we obtain 

the pseudo-counts
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Effect of Prior Strength
 Suppose we have a uniform prior (α=β=1/2), 

and we observe
 Weak prior A = 2. Posterior prediction:

 Strong prior A = 20. Posterior prediction:

 However, if we have enough data, it washes away the prior. 
e.g.,                                         .  Then the estimates under 
weak and strong prior are            and            ,  respectively, 
both of which are close to 0.2
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Example 2: Gaussian density
 Data: 

 We observed N iid real samples: 
D={-0.1, 10, 1, -5.2, …, 3}

 Model: 

 Log likelihood:

 MLE: take derivative and set to zero:
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MLE for a multivariate-Gaussian
 It can be shown that the MLE for µ and Σ is

where the scatter matrix is

 The sufficient statistics are Σnxn and Σnxnxn
T.

 Note that XTX=Σnxnxn
T may not be full rank (eg. if N <D), in which case ΣML is not 

invertible
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Bayesian estimation

 Normal Prior:  

 Joint probability: 

 Posterior:

( ) { }2
0

2
0

212
0 22 σµµπσµ /)(exp)( /

−−=
−P

1

2
0

2
2

02
0

2

2
0

2
0

2

2 1
1

1
1

−









+=

+
+

+
=

σσ
σµ

σσ
σ

σσ
σµ N

N
x

N
N ~  and    , 

//
/

//
/~      where

Sample mean

( ) ( )

( ) { }2
0

2
0

212
0

1

2
2

22

22

2
12

σµµπσ

µ
σ

πσµ

/)(exp

exp),(

/

/

−−×









−−=

−

=

− ∑
N

n
n

N xxP

( ) { }22212 22 σµµσπµ ~/)~(exp~)|( /
−−=

−xP



© Eric Xing @ CMU, 2006-2010 60

Bayesian estimation: unknown µ, known σ

 The posterior mean is a convex combination of the prior and the MLE, with 
weights proportional to the relative noise levels.

 The precision of the posterior 1/σ2
N is the precision of the prior 1/σ2

0 plus one 
contribution of data precision 1/σ2 for each observed data point.

 Sequentially updating the mean
 µ∗ = 0.8 (unknown),  (σ2)∗ = 0.1 (known)

 Effect of single data point

 Uninformative (vague/ flat) prior, σ2
0 →∞
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