Machine Learning

Generative verses discriminative

classifier
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Generative and Discriminative
classifiers

e Goal: Wishtolearnf: X - Y, e.qg., P(Y|X)

e (Generative:

e Modeling the joint distribution
of all data

e Discriminative:
e Modeling only points

at the boundary
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Generative vs. Discriminative T
Classifiers o2

e Goal: Wishtolearnf: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes):
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!
e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers (e.g., logistic regression)
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!
e Estimate parameters of P(Y|X) directly from training data
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Suppose you know the following | ss22

e Class-specific Dist.: P(X]|Y)

“xg p(x |Y :1)
= P (X 11, Z)

1 Abnormal

/ p(X|Y =2)
= P, (X 15,,25)

?x1

e Class prior (i.e., "weight"): P(Y)

Bayes classifier:

P(Y|X) =

P(X|IY)P(Y)

P(X)

e This is a generative model of the data!
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Optimal classification -

e Theorem: Bayes classifier is optimal!

e Thatis

GTTOTtrue(hBayes)) < erroryye(h), Yh(x)

e How to learn a Bayes classifier?
e Recall density estimation. We need to estimate P(X|y=k), and P(y=k) for all k
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Gaussian Discriminative Analysis

e learning f: X —> Y, where
o Xis avector of real-valued features, X,= <X ,...X, >
e Y is an indicator vector

e What does that imply about the form of P(Y|X)?

e The joint probability of a datum and its label is:
Py Yo =1 ,0) = (Yo =1)x p(X, | Y5 =1, 41,0)

1 2}
= T WEXP{ﬁ(Xn - )

e Given a datum x,, we predict its label using the conditional probability of the label
given the datum:

1 2}
7T (ng)meXpé%iz(Xn — 1)

1
Zﬂk' (276?)"? eXp{f ziz (X, _,Uk')z}

p(ys =1|X,, p,0) =

k 1
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Conditional Independence :

e X isconditionally independent of Y given Z, if the probability
distribution governing X is independent of the value of Y, given
the value of Z

Vi, i, )P(X =i|lY =§,Z =k) = P(X =i|Z = k)

Which we often write

P(X|Y,Z2)=P(X|2)

o €.,
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
e Equivalent to:

P(X,Y|2)=P(X|2)P(Y |2)
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Nailve Bayes Classifier

e When X is multivariate-Gaussian vector:
e The joint probability of a datum and it label is:

P(X,, Y =1] 2, Z) = p(ys =D x p(X, | Yy =1 i,%)

:”kWeXp{-%(xn i) (X, - )|

e The naive Bayes simplification
P(X,, Yo =1l 11,0) = p(yy =D x] [ (X, 1 Vs =L 115,04 ;) % Q
j

@ @ e @
=] ] L exp{ L (X . -u -)2}
k (271' 2 )1/2 zgk%j n,j K, ]

i k,j

e More generally:  p(X,, Y, |7,7)=p(y, | 7)x] [ p(x, ;| Vs:17)

j=1
Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density
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The predictive distribution

e Understanding the predictive distribution

p(ygzl’xnlﬁ’z"ﬂ-): ﬂ-kN(Xn’|/uk1zk) *
pP(X, | &, %) Zk-ﬂ-k'N(Xn"/uk"zk')

P(Yy =11 %, /1,2, 7) =

e Under naive Bayes assumption:

1 . .
Ty exp{_zj{zaz (X#_ﬂlg)z_log Gki_CJ}
K.
1 ) .
Zk,ﬂ'k- eXp{Z,{ZO_z (Xr: _;ukj')2 —log Ok.j CJ}
k]

**

p(ys =11%,,,Z,7) =

e [ortwo class (i.e., K=2), and when the two classes haves the same
variance, ** turns out to be a logistic function

p(ys =11%,) = — - 1
nzexplfz,[ﬁ(xn’-ﬂz’) *'Ogﬂjfcjj _ _ _ . :
1 el ]| 1R o+ QT Ll )
:1+e_6TXn
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The decision boundary

e The predictive distribution

1 1
p(y, =11x,) = v "1 e
1+exp{—2¢9jxr{—¢90}
j=1
e The Bayes decision rule: o
1 . \“.\.I ““. “'\
1 — VY
In p(yg—1|xn) —In| 1+e"" s |=0'X,
1+ E_HT % \*\
R

8% w0

e For multiple class (i.e., K>2), * correspond to a softmax function

1 A
e—Han s @D /

p(ys =11%,) = 5 1 —<@©
J_ |

o
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Generative vs. Discriminative T
Classifiers o2

e Goal: Wishtolearnf: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes): VO
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data! C X D

e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers:

e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data! C X D
e Estimate parameters of P(Y|X) directly from training data
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Linear Regression oo

e The data:

-
(0 1)) (% Yo ) (g )=y (X V) é@

e Both nodes are observed:

e Xis an input vector

° Y is a response vector

(we first consider y as a generic y
continuous response vector, then

we consider the special case of

classification where y is a discrete

indicator)

e A regression scheme can be
used to model p(y|x) directly,

rather than p(x,y)
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Linear Regression

e Assume that Y (target) is a linear function of X (features):
e e.0.

iy = 0y + 0121 4 Or25

e let's assume a vacuous "feature" X,=1 (this is the intercept term, why?), and
define the feature vector to be:

X = [17 L1, $2]
e then we have the following general representation of the linear function:

Q:XTQ

e Our goalis to pick the optimal & . How!
e We seek @ that minimize the following cost function:

J(H) :%i(yi(xi)_ Yi)2
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The Least-Mean-Square (LMS) cece

method 5

e Consider a gradient descent algorithm:

t+1 t 8
91- :Qj —0(53(6’)

] t
e Now we have the following descent rule:

0, =0"+a (y,—-%; 6")x’
=1
e [or a single training point, we have:

0, =0, +a(y, -%'6")%

J p—

e This is known as the LMS update rule, or the Widrow-Hoff learning rule
e Thisis actually a "stochastic", "coordinate" descent algorithm
e This can be used as a on-line algorithm
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Probabilistic Interpretation of cece

LMS o

e Let us assume that the target variable and the mputs are
related by the equation:

Y, =0' X +¢

where ¢ is an error term of unmodeled effects or random noise

e Now assume that ¢ follows a Gaussian N(0,0), then we have:

exp[_ (yi _QTXi)2 J

20°

pCy; [X;0) = \/%G

e By independence assumption:

n 9_'_
L(«9)=Hp(yi|xi;9) (Faj { Z.l(yzlaz X)]
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Probabilistic Interpretation of cece

LMS, cont. oo

e Hence the log-likelihood is:

1 1 1
I(@):nlog \/ZG_UZ Ezizl(yi_gTXi)z

e Do you recognize the last term?
Yesitis: J(0) = %Z(XiTQ_ yi)z
i=1

e Thus under independence assumption, LMS is equivalent to
MLE of 6!
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Classification and logistic i
regression oo

1.2F
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The logistic function 4+

g(z) =

© Eric Xing @ CMU, 2006-2010 18



Logistic regression (sigmoid T
classifier) o

e The condition distribution: a Bernoulli
p(y %) = u(x)’ (1— p(x))"

v
where u is a logistic function

p(Xx) = T

1+e?”

0‘.11 nIG
o7

e \We can used the brute-force gradient method as in LR

e But we can also apply generic laws by observing the p(y|x) is
an exponential family function, more specifically, a
generalized linear model (see future lectures ...)

© Eric Xing @ CMU, 2006-2010 19



Training Logistic Regression: cece

MCLE o

e Estimate parameters 6=<¢,, 4,, ... §,> to maximize the
conditional likelihood of training data

e Trainingdata D= {(z1,v1),...,(zN,yn)}

N
e Data likelihood = [ [ Pz, y:;0)
=1
N

e Data conditional likelihood = | | P(z:lyi; 0)
1=1

= l P(yi|z:;
0 arg max anI (yi|xi; 0)

© Eric Xing @ CMU, 2006-2010 20



Expressing Conditional Log i
Likelihood oc

[(0) = 1nHP(y?;|x?;; 0) = ZlnP(yda’:i; 0)

B 1
14 et

e Recall the logistic function:

and conditional likelihood: P(y|z) = u(z)¥(1 — u(z))' Y

l(ﬁ)zzlnP(yi\:va;f’) = Zy'aln%»t(wf:)Jr(1—%)111(1—&(%:))

— Z v;0Tz; — 07 x; +1In(1 + e_gT‘“)
i

= Y (i~ 10Tz +In(1+e7" )

i
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Maximizing Conditional Log cece

Likelihood ot

e The objective:
1(0) = lnHP(yﬂati;Q)

= Z(yz — ]_)Qtﬂf@ -+ lIl(l + e_ngé)

1

e Good news: I(6) is concave function of &

e Bad news: no closed-form solution to maximize I(6)

© Eric Xing @ CMU, 2006-2010 22



The Newton’s method 3T

e Finding a zero of a function

t+1 . ot f(0°)
T e

© Eric Xing @ CMU, 2006-2010 23



The Newton’s method (con’d) o2

e To maximize the conditional likelihood I(6):

10) = > (i —1)8Ta; +In(1 +e70 )

7

since | iIs convex, we need to find & where I’'(69)=0 !

e S0 we can perform the following iteration:

I (6Y)

o' = 0"
[”(975)

© Eric Xing @ CMU, 2006-2010 24



The Newton-Raphson method -

e In LR the @is vector-valued, thus we need the following
generalization:

Oitl = 0" + H 'V l(6Y)

e V is the gradient operator over the function

e H is known as the Hessian of the function

© Eric Xing @ CMU, 2006-2010 25



The Newton-Raphson method

e In LR the @is vector-valued, thus we need the following
generalization:

Oitl = 0" + H 'V l(6Y)

e V is the gradient operator over the function

Vol(0) =) (yi —ui)x; = X" (y —u)
e H is known as the Hessian of the function
H=VyVol(0) =) u;i(l —u)a;z] = XTRX

where QRZ'Z‘ = ui(l — ”LLZ)

© Eric Xing @ CMU, 2006-2010
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lterative reweighed least squares | 332
(IRLS) o3

e Recall in the least square est. in linear regression, we have:
p=(X'X)" X'y

which can also derived from Newton-Raphson

e Now for logistic regression:
it = 9"+ H 1Vl (0Y)
= ¢ - (XITRX)"' X' (u-1y)
= (X'RX)"YX'RXH' - X' (u—-y)}
= (X'RX)"'X'Rz

© Eric Xing @ CMU, 2006-2010 27



Generative vs. Discriminative T
Classifiers o2

e Goal: Wishtolearnf: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes): VO
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data! C X D

e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers:

e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data! C X D
e Estimate parameters of P(Y|X) directly from training data
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Naive Bayes vs Logistic
Regression oo

e Consider Y boolean, X continuous, X=<X1 ... XM>
e Number of parameters to estimate:

1
Ty exp{zj(%‘z(xj _/uk,j)2 —log Oy.j CJ}
k'j *%*

NB: p(y|x) =
2T exp{_ZJ[ZG:LZ_(Xj ~ th;)" —log oy _CJ}
LR: () 1
H\X) = T
1+e 7

e Estimation method:
e NB parameter estimates are uncoupled
e LR parameter estimates are coupled

© Eric Xing @ CMU, 2006-2010 29



Naive Bayes vs Logistic
Regression oo

e Asymptotic comparison (# training examples — infinity)

e when model assumptions correct
e NB, LR produce identical classifiers

e when model assumptions incorrect

e LR s less biased — does not assume conditional independence
e therefore expected to outperform NB

© Eric Xing @ CMU, 2006-2010 30



Nailve Bayes vs Logistic T
Regression oo

e Non-asymptotic analysis (see [Ng & Jordan, 2002] )

e convergence rate of parameter estimates — how many training
examples needed to assure good estimates?

NB order log m (where m = # of attributes in X)
LR order m

e NB converges more quickly to its (perhaps less helpful)
asymptotic estimates

© Eric Xing @ CMU, 2006-2010 31
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Figure 1: Resulis of 15 experiments on datasets from the UCL Machine Learnin
repository. Plots are of generalization error vs. m (averaged over 1000 randon

Y LIV ATY W wIiViV, £LVUVUVU VLY

train/test splits). Dashed line is logistic regression; solid line is naive Bayes.
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Robustness oo

 The best fit from a quadratic e But thisis probably better ...
regression
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Bayesian Parameter Estimation

e Treat the distribution parameters # also as a random variable

e The a posteriori distribution of # after seem the data is:

p(D]O)p(@) _  p(D|0)p(0)
p(D) jp(Dw)p(e)de

p(@|D)=

This is Bayes Rule

likelihood x prior
marginal likelihood

posterior =

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

© Eric Xing @ CMU, 2006-2010
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Regularized Least Squares and T
MAP os

What if (AT A) is not invertible ?

Bumap = arg max log p({(X;, i) Y118, 0°)+log p(B)
\ ) J
Y
log likelihood log prior

I) Gaussian Prior

B ~ N (0, 72D) p(B) o e=P1P/277
n
Buvap = arg mﬁin .Zl(}/; — X;8)° + )\||£3||% Ridge Regression
Closed form: HW - constant(c?, 72)
Prior belief that B is Gaussian with zero-mean biases solution to “small” 35
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Regularized Least Squares and T
MAP os

What if (AT A) is not invertible ?

Bmap = arg max log p({(X;, Yi) =118, 0%)+10g p(B)
\ ) J
Y
log likelihood log prior

Il) Laplace Prior

B; o Laplace(0,t) p(B;) e~ 1Bil/t
n
Bmap = arg mﬁin 'Zl(}/% — X;8)? + M8l Lasso
Closed form: HW . constant(o?,t)
Prior belief that B is Laplace with zero-mean biases solution to “small” 36
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Ridge Regression vs Lasso

min(AS - Y)T(AB-Y) + xpen(B) = min J(8) 4 Apen(s)

Ridge Regression:

pen(3) = ||813

f3s with
constant

B2

|2 norm \[

N

Lasso:

pen(8) = [18ll1

s with
constant
|1 norm

Bs with constant J(8)
(level sets of J(B))

N

Lasso (11 penalty) results in sparse solutions — vector with more zero coordinates

Good for high-dimensional problems — don’t have to store all coordinates!
© Eric Xing @ CMU, 2006-2010
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Case study: cece

predicting gene expression -

The genetic picture

causal SNPs

CG ACTGTACAATT

a univariate phenotype:

i.e., the expression intensity of
a gene

© Eric Xing @ CMU, 2006-2010 38



. . . XYY
Assoclation Mapping as cecs
. ::o
Regression o
Phenotype (BMI) Genotype
C..... T..CL...... T
Individual 1 2.5
C..... A..C....... T
G..... A..G....... A
Individual 2 4.8
C..... T..CL...... T
Individual N 4.7 G..... T..C....... T
G..... T..GL...... T...
Benignh SNPs Causal SNP

© Eric Xing @ CMU, 2006-2010 39



Association Mapping as T
Regression 4+
Phenotype (BMI) Genotype
Individual 1 2.5 ..0..... 1..0....... 0...
Individual 2 4.8 R 1..1....... 1...
Individual N 4.7 2 2..1....... 0...

SNPs with large
Yi Z Xij ﬂj |8, are relevant

© B kErie Xing @ EMY) 208612018 A0



Experimental setup

e Asthama dataset

543 individuals, genotyped at 34 SNPs

Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
X=543x34 matrix

Y=Phenotype variable (continuous)

e A single phenotype was used for regression

e Implementation details

Iterative methods: Batch update and online update implemented.

For both methods, step size a is chosen to be a small fixed value (10-9). This
choice is based on the data used for experiments.

Both methods are only run to a maximum of 2000 epochs or until the change in
training MSE is less than 10-4

© B kErie Xing @ EMY) 208612018 A



Convergence Curves

e For the batch method, the training MSE is initially large due to uninformed initialization
e Inthe online update, N updates for every epoch reduces MSE to a much smaller value.

Mean Square Error on training data

Log log plot of tralnlng MSE versus epochs

10

-
Q
n

-
Q
[

L7i]

—Batch update
— Online update ]
____Minimum MSE by ||

normal equation

-
o

Y
o

10° 10°
Epochs

© erEre Xing @ CTMl), 2006201008
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The Learned Coefficients s

Stem plot of regression coefficents p's

i — From normlal equation
— Using online update
— Using batch update
1.5
£ :
§ 0.5- i
6
A ‘H . ‘H H 1 M1 il m W |
E,’ m ‘“ B 1l Jll Al
o
3 05" -
>
-1 |
1 5 10 15 20 25 30 35

Regression coefficients index j
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Performance vs. Training Size o

Variation of Test mean square error with percentage of data used for training

2000

—Batch update
— Normal equation
—Online update

1500

1000

500+

Mean square error on test set

0 10 20 30 40 50 60 70 80 90 100
Percentage of data used for training

0 | |

© B kErie Xing @ EMY) 208612018

e The results from B and O

update are almost identical.
So the plots coincide.

The test MISE from the
normal equation is more
than that of B and O during
small training. This is
probably due to overfitting.

In B and O, since only 2000
iterations are allowed at
most. This roughly acts as a
mechanism that avoids
overfitting.

A4



Summary

e Nailve Bayes classifier

e What's the assumption
e Why we use it
e How do we learn it

e Logistic regression
e Functional form follows from Naive Bayes assumptions
e For Gaussian Naive Bayes assuming variance
e For discrete-valued Naive Bayes too

e But training procedure picks parameters without the conditional independence
assumption

e Gradient ascent/descent
e — General approach when closed-form solutions unavailable

e Generative vs. Discriminative classifiers
e — Bias vs. variance tradeoff

© Eric Xing @ CMU, 2006-2010 45



Appendix

© Eric Xing @ CMU, 2006-2010
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Parameter Learning from iid Data

e Goal: estimate distribution parameters # from a dataset of N
Independent, identically distributed (iid), fully observed,
training cases

D={X, ..., X}

e Maximum likelihood estimation (MLE)

1. One of the most common estimators
2. With iid and full-observability assumption, write L(6) as the likelihood of the data:

L(0) = P(X; X5,...,Xy;0)
= P(X;@)P(Xz;‘g)’---’ P(XN ;‘9)

=[1,P(x:0)

3. pick the setting of parameters most likely to have generated the data we saw:

0" =arg max L(¢) =argmax log L(0)

© Eric Xing @ CMU, 2006-2010 47



Example: Bernoulli model

e Data:
e We observed Niid coin tossing: O={1, 0, 1, ..., 0}

e Representation:

Binary r.v: X ={0,1}

— 0X(1 _ 0\1-x
6  forx=1 - PO)=0"(1-0)

e Model: 1-0 for x=0
P(X)={
e How to write the likelihood of a single observation x; ?

P(x)=6"(1-0)""

e The likelihood of datasetD={x,, ..., xp\}:

N
—X:

N N Xi 1-x; in Zl ' #head #tails
P(X(, X5 1e.s xN|0)=HP(xi|9)=H(6?'(1—0) ) =07 (1-9)7 =" (1-09)
i=1 i=1

© Eric Xing @ CMU, 2006-2010
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Maximum Likelihood Estimation °°

e Objective function:

/(0;D)=Ilog P(D|8)=1log 8™ (1-6)" =n, log 6+ (N —n.)log(1-6)
e \We need to maximize this w.r.t. 8

e Take derivatives wrt @

j— —_— :O —_—
00 0 1-0 = Qe =

- 1
or QMLE =W2Xi

s

Frequency as
sample mean

Ny
N

e Sufficient statistics
e Thecounts, N, where n, = Zi X;, are sufficient statistics of data O

© Eric Xing @ CMU, 2006-2010 49



Overfitting

e Recall that for Bernoulli Distribution, we have

head
H heaa’ n

ﬂheaa’ 4 nfa/'/

e \What if we tossed too few times so that we saw zero head?

We have 4/¢? =0, and we will predict that the probability of
seeing a head next is zero!!!

e The rescue: "smoothing"

e Where n'is know as the pseudo- (imaginary) count

head 1
9 heaa’ n +N

ﬂ/‘leaa’ 4 nfa// ”

e But can we make this more formal?
© Eric Xing @ CMU, 2006-2010 50



Bayesian Parameter Estimation

e Treat the distribution parameters # also as a random variable

e The a posteriori distribution of # after seem the data is:

p(D]O)p(@) _  p(D|0)p(0)
p(D) jp(Dw)p(e)de

p(@|D)=

This is Bayes Rule

likelihood x prior
marginal likelihood

posterior =

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

© Eric Xing @ CMU, 2006-2010
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Frequentist Parameter Estimation

Two people with different priors p(& will end up with
different estimates p(4D).

e Freqguentists dislike this “subjectivity”.

e Frequentists think of the parameter as a fixed, unknown
constant, not a random variable.

e Hence they have to come up with different "objective"
estimators (ways of computing from data), instead of using
Bayes' rule.

e These estimators have different properties, such as being “unbiased”, “minimum
variance”, etc.

e The maximum likelihood estimator, is one such estimator.

© Eric Xing @ CMU, 2006-2010 52



Discussion

gor p(6), this is the problem!

© Eric Xing @ CMU, 2006-2010
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Bayesian estimation for Bernoulli

2.6
24

e Beta distribution:

2

Lnnne
W

PN
oW ||
1

1.8
1.6

. _T(a+p) e A1 a-101 _ p\f-1 ¥
P(@,a,ﬂ)—r(a)r(ﬁ)é’ (1-6)"" =B(a, p)0“ " (1-0) .

e  When xis discrete I"(x +1) = xI'(x) = x! |

0.2

0 0.1 02 03 04 05 06 07 08 09 1

e Posterior distribution of 4:

P(9|Xl,...,XN) — p(XI’""XN |9) p(e) oc th (I—H)nt Xga—l(l_e)ﬂ—l _ th+a—1(1_0)nt+ﬁ_1
P(X{,eey Xy )

e Notice the isomorphism of the posterior to the prior,
e such a prior is called a conjugate prior

e «and pgare hyperparameters (parameters of the prior) and correspond to the
number of “virtual” heads/tails (pseudo counts)
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Bayesian estimation for T
Bernoulli, con'd o3

e Posterior distribution of 4:

P(@| Xy Xy ) = P(x,-.., Xy |0) P(O) oc O™ (1- Q)" ><(9a_1(1—(9)ﬁ_1 _ gmral (1—6’)nt+ﬁ_1
p(X11---,XN)

e Maximum a posteriori (MAP) estimation:

O\np = arg max log P(€] X5, Xy )

Bata parameters
can be understood
as pseudo-counts

e Posterior mean estimation:

n, +a
N+a+pf

Opeyes = [ (0| D)dO =C[0x 0™ (1-0)" " dO =

e Prior strength: A=at+p

e A can be interoperated as the size of an imaginary data set from which we obtain
the pseudo-counts
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Effect of Prior Strength o

e Suppose we have a uniform prior (a=£=1/2),
and we observe 7 =(n, =2,n, = 8)
e Weak prior A = 2. Posterior prediction:

. 1+2
p(x=h|n =2,n. =8,a=a'x2) = > 110 =0.25
e Strong prior A = 20. Posterior prediction:
o 10+2
p(x=h|n, =2,n,=8,a =a%x20) = >0+10 =0.40

e However, if we have enough data, it washes away the prior.
e.g., 1 =(n, =200,n, =800). Then the estimates under
weak and strong prior are 572% and 229, respectively,

both of which are close to 0.2
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Example 2: Gaussian density -

e Data:
e We observed Niid real samples:
0={-0.1, 10,1, -5.2, ..., 3}

e Model:  py- 27? )" expl- (x— w)? 1267}

e Log likelihood:

N . 2
/(0;D) =log P(D|9)=—E|09(27f02)—12(xn zﬂ)
2 2 n=1 O
e MLE: take derivative and set to zero:

0 _ ;.2 _ _1
ou =(1/o )Zn (Xn :u) :> Hue = N Zn (Xn)
ol N 1 1
Py - _262 + 254 Zn (Xn _/fl)2 GI\Z/ILE :ﬁzn (Xn _IUML)Z
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MLE for a multivariate-Gaussian

e It can be shown that the MLE for g and 2 is

1 X =
HuLe :WZ” (Xn) -
1 1 T
Zuie :Wzn(xn _IUML)(Xn _:uML)T :WS ———XlT———
X=| 7T

where the scatter matrix is

S= Zn (%0 =t NXo = tya) = (Zn anln)_ Nt b

e The sufficient statistics are X x, and X XX,

e Note that X"™X=X x.x.," may not be full rank (eg. if N <D), in which case Z,,, is not
invertible
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Bayesian estimation °

e Normal Prior:

P(u) =278 )

1/2

X - (1~ 10)? 1 20% |

e Joint probabillity:

N/2 1 J
P(x, 1) = (27[02) ex{ 20‘22 }

n=1

X (272'65 )_1/2 exp {— (u—11,)° 120 }

e Posterior:

P(u|x) =252 expl- (u - f1)? 1252}
N/o” X + /o, and 52 =[N 41 )
N/o®+1/cf v\ji:y +1/c72'uo ot &
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Bayesian estimation: unknown y, known o

N /o*

Hy =

X +
N/o®+1/cf

1/0f
N/o?+1/o

2/“0’

» (N 1}1
O = —2+—2
(o2 O

The posterior mean is a convex combination of the prior and the MLE, with
weights proportional to the relative noise levels.

The precision of the posterior 1/02 is the precision of the prior 1/0%, plus one
contribution of data precision 1/0% for each observed data point.

Sequentially updating the mean
u* = 0.8 (unknown), (0?)*= 0.1 (known)

Effect of single data point

= po + (X ,Uo)

2

(70

+

2

O,
_X (X :uO) 20 2
G—i—GO

Uninformative (vague/ flat) prior, 02, —

My — Hy
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