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Machine Learning

Support Vector Machines

Eric Xing

Lecture 4, August 12, 2010

Reading:
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What is a good Decision 
Boundary?

 Why we may have such boundaries?
 Irregular distribution
 Imbalanced training sizes
 outliners



© Eric Xing @ CMU, 2006-2010 3

Classification and Margin
 Parameterzing decision boundary

 Let w denote a vector orthogonal to the decision boundary, and b denote a scalar 
"offset" term, then we can write the decision boundary as:

Class 1

Class 2
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Classification and Margin
 Parameterzing decision boundary

 Let w denote a vector orthogonal to the decision boundary, and b denote a scalar 
"offset" term, then we can write the decision boundary as:

Class 1

Class 2

0=+
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w
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 Margin

(wTxi+b)/||w|| > +c/||w|| for all xi in class 2
(wTxi+b)/||w|| < −c/||w|| for all xi in class 1

Or more compactly:

(wTxi+b)yi /||w|| >c/||w||

The margin between two points
m = d− + d+ =

d - d+
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Maximum Margin Classification
 The margin is:

 Here is our Maximum Margin Classification problem:
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Maximum Margin Classification, 
con'd.
 The optimization problem:

 But note that the magnitude of c merely scales w and b, and does 
not change the classification boundary at all! (why?)

 So we instead work on this cleaner problem:

 The solution to this leads to the famous Support Vector Machines -
-- believed by many to be the best "off-the-shelf" supervised learning 
algorithm
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Support vector machine
 A convex quadratic programming problem

with linear constrains:

 The attained margin is now given by

 Only a few of the classification constraints are relevant  support vectors

 Constrained optimization
 We can directly solve this using commercial quadratic programming (QP) code
 But we want to take a more careful investigation of Lagrange duality, and the 

solution of the above in its dual form. 
 deeper insight: support vectors, kernels …
 more efficient algorithm
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Digression to Lagrangian Duality
 The Primal Problem

Primal:

The generalized Lagrangian:

the α's (αι≥0) and β's are called the Lagarangian multipliers 

Lemma:

A re-written Primal:
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Lagrangian Duality, cont.
 Recall the Primal Problem:

 The Dual Problem:

 Theorem (weak duality): 

 Theorem (strong duality):
Iff there exist a saddle point of                   , we have
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The KKT conditions
 If there exists some saddle point of L, then the saddle point 

satisfies the following "Karush-Kuhn-Tucker" (KKT) 
conditions:

 Theorem: If w*, α* and β* satisfy the KKT condition, then it is also a 
solution to the primal and the dual problems.
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Solving optimal margin classifier
 Recall our opt problem:

 This is equivalent to

 Write the Lagrangian:

 Recall that (*) can be reformulated as
Now we solve its dual problem:   
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***(      )

The Dual Problem

 We minimize L with respect to w and b first:

Note that (*) implies: 

 Plug (***) back to L , and using (**), we have:
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The Dual problem, cont.
 Now we have the following dual opt problem:

 This is, (again,) a quadratic programming problem.
 A global maximum of αi can always be found. 
 But what's the big deal??
 Note two things:
1. w can be recovered by 

2. The "kernel"
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More later …
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I. Support vectors
 Note the KKT condition --- only a few αi's can be nonzero!!

miwgα ii ,,1    ,0)( ==

α6=1.4

Class 1

Class 2

α1=0.8

α2=0

α3=0

α4=0

α5=0
α7=0

α8=0.6

α9=0

α10=0

Call the training data points 
whose αi's are nonzero the 
support vectors (SV) 
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Support vector machines
 Once we have the Lagrange multipliers {αi}, we can 

reconstruct the parameter vector w as a weighted combination 
of the training examples:

 For testing with a new data z
 Compute                                                      

and classify z as class 1 if the sum is positive, and class 2 otherwise

 Note: w need not be formed explicitly
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Interpretation of support vector 
machines

 The optimal w is a linear combination of a small number of 
data points. This “sparse” representation can be viewed as 
data compression as in the construction of kNN classifier

 To compute the weights {αi}, and to use support vector 
machines we need to specify only the inner products (or 
kernel) between the examples 

 We make decisions by comparing each new example z with 
only the support vectors:
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 Is this data linearly-separable?

 How about a quadratic mapping φ(xi)?

II. The Kernel Trick
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II. The Kernel Trick
 Recall the SVM optimization problem

 The data points only appear as inner product
 As long as we can calculate the inner product in the feature 

space, we do not need the mapping explicitly
 Many common geometric operations (angles, distances) can 

be expressed by inner products
 Define the kernel function K by
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 Computation depends on feature space
 Bad if its dimension is much larger than input space
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Transforming the Data

 Computation in the feature space can be costly because it is high 
dimensional
 The feature space is typically infinite-dimensional!

 The kernel trick comes to rescue

φ(  )

φ(  )

φ(  )
φ(  )φ(  )

φ(  )

φ(  )φ(  )

φ(.) φ(  )

φ(  )

φ(  )
φ(  )

φ(  )

φ(  )

φ(  )

φ(  )
φ(  ) φ(  )

Feature spaceInput space
Note: feature space is of higher dimension 
than the input space in practice
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An Example for feature mapping 
and kernels
 Consider an input x=[x1,x2]
 Suppose φ(.) is given as follows

 An inner product in the feature space is

 So, if we define the kernel function as follows, there is no 
need to carry out φ(.) explicitly
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More examples of kernel 
functions
 Linear kernel (we've seen it)

 Polynomial kernel (we just saw an example)

where p = 2, 3, … To get the feature vectors we concatenate all pth order 
polynomial terms of the components of x (weighted appropriately)

 Radial basis kernel

In this case the feature space consists of functions and results in a non-
parametric classifier.
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The essence of kernel
 Feature mapping, but “without paying a cost”

 E.g., polynomial kernel

 How many dimensions we’ve got in the new space?
 How many operations it takes to compute K()?

 Kernel design, any principle?
 K(x,z) can be thought of as a similarity function between x and z
 This intuition can be well reflected in the following “Gaussian” function

(Similarly one can easily come up with other K() in the same spirit)

 Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many 
dimension φ(x) is?



© Eric Xing @ CMU, 2006-2010 24

Kernel matrix
 Suppose for now that K is indeed a valid kernel corresponding 

to some feature mapping φ, then for x1, …, xm, we can 
compute an m×m matrix               , where

 This is called a kernel matrix!

 Now, if a kernel function is indeed a valid kernel, and its 
elements are dot-product in the transformed feature space, it 
must satisfy:
 Symmetry K=KT

proof

 Positive –semidefinite
proof? 

 Mercer’s theorem
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SVM examples
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Examples for Non Linear SVMs –
Gaussian Kernel
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 xi is a bag of words
 Define φ(xi) as a count of every n-gram up to n=k in xi.

 This is huge space 26k

 What are we measuring by φ(xi)t φ(xj)?

 Can we compute the same quantity on input space?
 Efficient linear dynamic program!

 Kernel is a measure of similarity
 Must be positive semi-definite

Example Kernel
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Non-linearly Separable Problems

 We allow “error” ξi in classification; it is based on the output of 
the discriminant function wTx+b

 ξi approximates the number of misclassified samples

Class 1

Class 2
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Soft Margin Hyperplane
 Now we have a slightly different opt problem:

 ξi are “slack variables” in optimization
 Note that ξi=0 if there is no error for xi

 ξi is an upper bound of the number of errors
 C : tradeoff parameter between error and margin
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Hinge Loss

 Remember Ridge regression
 Min [squared loss + λ wtw]

 How about SVM?

regularization Loss: hinge loss
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The Optimization Problem
 The dual of this new constrained optimization problem is

 This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on αi 
now

 Once again, a QP solver can be used to find αi
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The SMO algorithm
 Consider solving the unconstrained opt problem:

 We’ve already seen several opt algorithms! 
 ?
 ?
 ?

 Coordinate ascend:



© Eric Xing @ CMU, 2006-2010 33

Coordinate ascend
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Sequential minimal optimization
 Constrained optimization:

 Question: can we do coordinate along one direction at a time 
(i.e., hold all α[-i] fixed, and update αi?)
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The SMO algorithm

Repeat till convergence

1. Select some pair αi and αj to update next (using a heuristic that tries 
to pick the two that will allow us to make the biggest progress 
towards the global maximum).

2. Re-optimize J(α) with respect to αi and αj, while holding all the other 
αk 's (k ≠ i; j) fixed.

Will this procedure converge?
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Convergence of SMO

 Let’s hold α3 ,…, αm fixed and reopt J w.r.t. α1 and α2
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Convergence of SMO
 The constraints:

 The objective:

 Constrained opt:
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Cross-validation error of SVM
 The leave-one-out cross-validation error does not depend on 

the dimensionality of the feature space but only on the # of 
support vectors!

examples  trainingof #
ctorssupport ve #error  CVout -one-Leave =
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Summary
 Max-margin decision boundary

 Constrained convex optimization

 Duality

 The KTT conditions and the support vectors

 Non-separable case and slack variables

 The SMO algorithm
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