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Machine Learning

Computational Learning Theory

Eric Xing

Lecture 5, August 13, 2010

Reading:
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Generalizability of Learning
 In machine learning it's really the generalization error that we 

care about, but most learning algorithms fit their models to the 
training set.

 Why should doing well on the training set tell us anything 
about generalization error? Specifically, can we relate error on 
to training set to generalization error? 

 Are there conditions under which we can actually prove that 
learning algorithms will work well?
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What General Laws
constrain Inductive Learning?

 Sample Complexity
 How many training examples are sufficient 

to learn target concept?

 Computational Complexity
 Resources required to learn target concept?

 Want theory to relate:
 Training examples

 Quantity
 Quality m
 How presented

 Complexity of hypothesis/concept space H
 Accuracy of approx to target concept      ε
 Probability of successful learning            δ
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Sample labels are 
consistent
with some h in H

Learner’s hypothesis 
required to meet 
absolute upper bound
on its error

No prior restriction on 
the sample labels

The required upper 
bound on the 
hypothesis error is 
only relative (to the 
best hypothesis in the 
class)

PAC framework Agnostic framework

Two Basic Competing Models
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 Given: 
 set of examples X
 fixed (unknown) distribution D over X
 set of hypotheses H
 set of possible target concepts C

 Learner observes sample S = { 〈 xi, c(xi)  〉 }
 instances xi drawn from distr. D
 labeled by target concept c ∈ C
(Learner does NOT know c(.), D)

 Learner outputs h ∈ H estimating c
 h is evaluated by performance on subsequent instances drawn from D

 For now: 
 C = H (so c ∈ H)
 Noise-free data
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True error of a hypothesis

 Definition: The true error (denoted εD(h)) of hypothesis h with respect 
to target concept c and distribution D is the probability that h will 
misclassify an instance drawn at random according to  D .



© Eric Xing @ CMU, 2006-2009 7

Two notions of error
 Training error (a.k.a., empirical risk or empirical error) of 

hypothesis h with respect to target concept c
 How often h(x) ≠ c(x) over training instance from S

 True error of (a.k.a., generalization error, test error) 
hypothesis h with respect to c
 How often h(x) ≠ c(x) over future random instances 

drew iid from D

Can we bound

in terms of

??
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The Union Bound
 Lemma. (The union bound). Let A1;A2, … , Ak be k different 

events (that may not be independent). Then

 In probability theory, the union bound is usually stated as an axiom (and thus we 
won't try to prove it), but it also makes intuitive sense: The probability of any one 
of k events happening is at most the sums of the probabilities of the k different 
events.
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Hoeffding inequality
 Lemma. (Hoeding inequality) Let Z1,…,Zm be m independent 

and identically distributed (iid) random variables drawn from a 
Bernoulli(φ) distribution, i.e., P(Zi = 1) =φ , and P(Zi = 0) = 1- φ. 

Let                              be the mean of these random variables, 
and let any  γ> 0 be fixed. Then

 This lemma (which in learning theory is also called the Chernoff bound) says that 
if we take       the average of m Bernoulli(   ) random variables  to be our 
estimate of     , then the probability of our being far from the true value is small, so 
long as m is large.
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Version Space
 A hypothesis h is consistent with a set of training examples S

of target concept c if and only if h(x)=c(x) for each training 
example 〈 xi, c(xi) 〉 in S

 The version space, VSH,S , with respect to hypothesis space H
and training examples S is the subset of hypotheses from H
consistent with all training examples in S.
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Consistent Learner
 A learner is consistent if it outputs hypothesis that perfectly 

fits the training data
 This is a quite reasonable learning strategy

 Every consistent learning outputs a hypothesis belonging to 
the version space

 We want to know how such hypothesis generalizes 
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Probably Approximately Correct

Goal:
PAC-Learner produces hypothesis ĥ that

is approximately correct,
errD(ĥ) ≈ 0

with high probability

P( errD(ĥ) ≈ 0 ) ≈ 1

 Double “hedging"
 approximately
 probably

Need both!
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 Definition: The version space VSH,S is said to be ε-exhausted with 
respect to c and S, if every hypothesis h in VSH,S has true error less 
than ε with respect to c and D.

Exhausting the version space
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How many examples will ε-
exhaust the VS

Theorem: [Haussler, 1988].
 If the hypothesis space H is finite, and S is a sequence of m ≥ 1 

independent random examples of some target concept c, then for 
ANY 0 ≤ ε ≤ 1/2, the probability that the version space with respect 
to H and S is not ε-exhausted (with respect to c) is less than

 This bounds the probability that any consistent learner will output a 
hypothesis h with ε(h) ≥ ε
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Proof
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What it means
 [Haussler, 1988]: probability that the version space is not ε-

exhausted after m training examples is at most |H|e-εm

Suppose we want this probability to be at most δ

1. How many training examples suffice?

2. If errortrain(h) = 0 then with probability at least (1-δ):
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PAC Learnability
A learning algorithm is PAC learnable if it

 Requires no more than polynomial computation per training 
example, and 

 no more than polynomial number of samples

Theorem: conjunctions of Boolean literals is PAC learnable 
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 Learner L can draw labeled instance 〈x, c(x)〉 in unit time, x ∈ X of 
length n drawn from distribution D, labeled by target concept c ∈ C

Def'n: Learner L PAC-learns class C using hypothesis space H

if
1. for any target concept c ∈ C,

any distribution D, any ε such that 0 < ε < 1/2,  δ such that 0 < δ < 1/2,
L returns h ∈ H s.t.

w/ prob. ≥ 1 – δ,      errD(h) < ε
2. L's run-time    (and hence, sample complexity)

is poly(|x|, size(c), 1/ε, 1/δ)

 Sufficient:
1. Only poly(…) training instances   – |H| = 2poly()

2. Only poly time / instance  …
Often C = H

PAC-Learning

))/ln((ln δε 11 +≥ Hm
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So far, assumed c ∈ H

Agnostic learning setting: don't assume c ∈ H

 What do we want then?
 The hypothesis h that makes fewest errors on training data

 What is sample complexity in this case?

derived from Hoeffding bounds:

))/1ln((ln22
1 δ
ε

+≥ Hm

22 εε m
SD eherrorherror −≤+> ])()(Pr[

Agnostic Learning
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Empirical Risk Minimization 
Paradigm
 Choose a Hypothesis Class H of subsets of  X.
 For an input sample S , find some h in H that fits S "well".
 For a new point  x , predict a label according to its membership in  h.

 Example:
 Consider linear classification, and let

Then 

 We think of ERM as the most "basic" learning algorithm, and it will be this algorithm 
that we focus on in the remaining.

 In our study of learning theory, it will be useful to abstract away from the specific 
parameterization of hypotheses and from issues such as whether we're using a linear 
classier or an ANN
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The Case of Finite H
 H = {h1, …, hk} consisting of k hypotheses.

 We would like to give guarantees on the generalization error 
of ĥ.

 First, we will show that         is a reliable estimate of ε(h) for all 
h. 

 Second, we will show that this implies an upper-bound on the 
generalization error of ĥ.
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Misclassification Probability
 The outcome of a binary classifier can be viewed as a 

Bernoulli random variable Z :

 For each sample:

 Hoeffding inequality

 This shows that, for our particular hi, training error will be close to generalization 
error with high probability, assuming m is large.
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 But we don't just want to guarantee that          will be close          
(with high probability) for just only one particular hi. We want to 
prove that this will be true for simultaneously for all hi ∈ H

 For k hypothesis: 

 This means:

Uniform Convergence
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 In the discussion above, what we did was, for particular 
values of m and γ, given a bound on the probability that: 

for some hi ∈ H

 There are three quantities of interest here: m and γ, and 
probability of error; we can bound either one in terms of the 
other two.
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Sample Complexity
 How many training examples we need in order make a guarantee?

 We find that if

then with probability at least 1-δ, we have that
for all hi ∈ H

 The key property of the bound above is that the number of training 
examples needed to make this guarantee is only logarithmic in k, the 
number of hypotheses in H. This will be important later.
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Generalization Error Bound
 Similarly, we can also hold m and δ fixed and solve for γ in the 

previous equation, and show [again, convince yourself that 
this is right!] that with probability 1- δ , we have that for all hi ∈ H

 Define                                   to be the best possible 
hypothesis in H.

 If uniform convergence occurs, then the generalization error of          is at most 2γ
worse than the best possible hypothesis in H!
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Summary
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What if H is not finite?
 Can’t use our result for infinite H

 Need some other measure of complexity for H
– Vapnik-Chervonenkis (VC) dimension!
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What if H is not finite?
 Some Informal Derivation

 Suppose we have an H that is parameterized by d real numbers. Since we are 
using a computer to represent real numbers, and IEEE double-precision floating 
point (double's in C) uses 64 bits to represent a floating point number, this means 
that our learning algorithm, assuming we're using double-precision floating point, 
is parameterized by 64d bits

 Parameterization 
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How do we characterize 
“power”?
 Different machines have different amounts of “power”.
 Tradeoff between:

 More power: Can model more complex classifiers but might overfit.
 Less power: Not going to overfit, but restricted in what it can model 

 How do we characterize the amount of power?
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The Vapnik-Chervonenkis 
Dimension
 Definition: The Vapnik-Chervonenkis dimension, VC(H), of 

hypothesis space H defined over instance space X is the size 
of the largest finite subset of X shattered by H . If arbitrarily 
large finite sets of X can be shattered by H , then VC(H) ≡ ∞.

Definition: 
Given a set S = {x(1), … , x(d)} 
of points x(i)Î X, we say that H
shatters S if H can realize any 
labeling on S.
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VC dimension: examples
Consider X = R2, want to learn c: X{0,1}

 What is VC dimension of lines in a plane?
H= { ( (wx+b)>0  y=1) }
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 For any of the eight possible labeling of these points, we can find a linear classier 
that obtains "zero training error" on them.

 Moreover, it is possible to show that there is no set of 4 points that this 
hypothesis class can shatter.
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 The VC dimension of H here is 3 even though there may be sets of size 3 that it 
cannot shatter.

 under the definition of the VC dimension, in order to prove that VC(H) is at least 
d, we need to show only that there's at least one set of size d that H can shatter.
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 Theorem Consider some set of m points in Rn. Choose any 
one of the points as origin. Then the m points can be 
shattered by oriented hyperplanes if and only if the position 
vectors of the remaining points are linearly independent.

 Corollary: The VC dimension of the set of oriented 
hyperplanes in Rn is n+1. 
Proof: we can always choose n + 1 points, and then choose one of the 
points as origin, such that the position vectors of the remaining n points are 
linearly independent, but can never choose n + 2 such points (since no n + 
1 vectors in Rn can be linearly independent).
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The VC Dimension and the 
Number of Parameters
 The VC dimension thus gives concreteness to the notion of 

the capacity of a given set of h. 
 Is it true that learning machines with many parameters would 

have high VC dimension, while learning machines with few 
parameters would have low VC dimension?

An infinite-VC function with just one parameter!

where θ is an indicator function
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An infinite-VC function with just 
one parameter
 You choose some number l, and present me with the task of finding l 

points that can be shattered. I choose them to be

 You specify any labels you like:

 Then f(α) gives this labeling if I choose α to be

 Thus the VC dimension of this machine is infinite.



© Eric Xing @ CMU, 2006-2009 38

 How many randomly drawn examples suffice to ε-exhaust 
VSH,S with probability at least (1 - δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is 
probably (1-δ) approximately (ε) correct on testing data from the same 
distribution

Compare to our earlier results based on |H|:

))/(log)()/(log( εδε 13824 22
1 HVCm +≥

Sample Complexity from VC 
Dimension

))/ln((ln δ
ε

122
1 +≥ Hm
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What You Should Know
 Sample complexity varies with the learning setting

 Learner actively queries trainer
 Examples provided at random

 Within the PAC learning setting, we can bound the probability that 
learner will output hypothesis with given error
 For ANY consistent learner (case where c in H)
 For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

 VC dimension as measure of complexity of H
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