Machine Learning

Data visualization and dimensionality reduction

Eric Xing

Lecture 7, August 13, 2010

Text document retrieval/labelling

• Represent each document by a high-dimensional vector in the space of words

Image retrieval/labelling

Dimensionality Bottlenecks

• Data dimension

- Sensor response variables X:
 - 1,000,000 samples of an EM/Acoustic field on each of N sensors
 - 1024² pixels of a projected image on a IR camera sensor
 - N² expansion factor to account for all pairwise correlations

Information dimension

- Number of free parameters describing probability densities f(X) or f(S|X)
 - For known statistical model: info dim = model dim
 - For unknown model: info dim = dim of density approximation
- Parametric-model driven dimension reduction
 - DR by sufficiency, DR by maximum likelihood
- Data-driven dimension reduction
 - Manifold learning, structure discovery

Intuition: how does your brain store these pictures?

Brain Representation

Brain Representation

- Every pixel?
- Or perceptually meaningful structure?
 - Up-down pose
 - Left-right pose
 - Lighting direction
 - So, your brain successfully reduced the high-dimensional inputs to an intrinsically 3-dimensional manifold!

Two Geometries to Consider

Data-driven DR

- Data-driven projection to lower dimensional subsapce
- Extract low-dim structure from high-dim data
- Data may lie on curved (but locally linear) subspace

- [1] Josh .B. Tenenbaum, Vin de Silva, and John C. Langford "A Global Geometric Framework for Nonlinear Dimensionality Reduction" *Science*, 22 Dec 2000.
- [2] Jose Costa, Neal Patwari and Alfred O. Hero, "Distributed Weighted Multidimensional Scaling for Node Localization in Sensor Networks", *IEEE/ACM Trans. Sensor Networks*, to appear 2005.
- [3] Misha Belkin and Partha Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," *Neural Computation*, 2003.

What is a Manifold?

- A manifold is a topological space which is locally Euclidean.
- Represents a very useful and challenging unsupervised learning problem.
- In general, any object which is nearly "flat" on small scales is a manifold.

Manifold Learning

- Discover low dimensional structures (smooth manifold) for data in high dimension.
- Linear Approaches
 - Principal component analysis.
 - Multi dimensional scaling.
- Non Linear Approaches
 - Local Linear Embedding
 - ISOMAP
 - Laplacian Eigenmap.

Principal component analysis

- Areas of variance in data are where items can be best discriminated and key underlying phenomena observed
- If two items or dimensions are highly correlated or dependent
 - They are likely to represent highly related phenomena
 - We want to combine related variables, and focus on uncorrelated or independent ones, especially those along which the observations have high variance
- We look for the phenomena underlying the observed covariance/codependence in a set of variables
- These phenomena are called "factors" or "principal components" or "independent components," depending on the methods used
 - Factor analysis: based on variance/covariance/correlation
 - Independent Component Analysis: based on independence

An example:

Principal Component Analysis

• The new variables/dimensions

- Are linear combinations of the original ones
- Are uncorrelated with one another
 - Orthogonal in original dimension space
- Capture as much of the original variance in the data as possible
- Are called Principal Components
- Orthogonal directions of greatest variance in data
- Projections along PC1 discriminate the data most along any one axis

- First principal component is the direction of greatest variability (covariance) in the data
- Second is the next orthogonal (uncorrelated) direction of greatest variability
 - So first remove all the variability along the first component, and then find the next direction of greatest variability
- And so on ...

Computing the Components

- Projection of vector x onto an axis (dimension) u is u^Tx
- Direction of greatest variability is that in which the average square of the projection is greatest:

Maximize	u [⊤] XX [⊤] u					
s.t	u [⊤] u = 1					

Construct Langrangian $\mathbf{u}^{\mathsf{T}}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{u} - \lambda \mathbf{u}^{\mathsf{T}}\mathbf{u}$

Vector of partial derivatives set to zero

$\mathbf{x}\mathbf{x}^{\mathsf{T}}\mathbf{u} - \lambda\mathbf{u} = (\mathbf{x}\mathbf{x}^{\mathsf{T}} - \lambda\mathbf{I}) \mathbf{u} = 0$

As $\mathbf{u} \neq \mathbf{0}$ then \mathbf{u} must be an eigenvector of $\mathbf{X}\mathbf{X}^{\mathsf{T}}$ with eigenvalue λ

- λ is the principal eigenvalue of the correlation matrix C= XX^T
- The eigenvalue denotes the amount of variability captured along that dimension

Eric Xing

Computing the Components

- Similarly for the next axis, etc.
- So, the new axes are the eigenvectors of the matrix of correlations of the original variables, which captures the similarities of the original variables based on how data samples project to them

- Geometrically: centering followed by rotation
 - Linear transformation

Eric Xing

Eigenvalues & Eigenvectors

• For symmetric matrices, eigenvectors for distinct eigenvalues are **orthogonal**

$$Sv_{\{1,2\}} = \lambda_{\{1,2\}}v_{\{1,2\}}, \text{ and } \lambda_1 \neq \lambda_2 \Longrightarrow v_1 \bullet v_2 = \mathbf{0}$$

• All eigenvalues of a real symmetric matrix are real.

if
$$|S - \lambda I| = 0$$
 and $S = S^T \Longrightarrow \lambda \in \Re$

 All eigenvalues of a positive semidefinite matrix are nonnegative

 $\forall w \in \Re^n, w^T S w \ge 0$, then if $S v = \lambda v \Longrightarrow \lambda \ge 0$

Eigen/diagonal Decomposition

• Let $\mathbf{S} \in \mathbb{R}^{m \times m}$ be a square matrix with *m* linearly independent eigenvectors (a "non-defective" matrix)

(cf. matrix diagonalization theorem)

- Columns of **U** are **eigenvectors** of **S**
- Diagonal elements of Λ are **eigenvalues** of ${f S}$

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \ldots, \lambda_m), \ \lambda_i \ge \lambda_{i+1}$$

PCs, Variance and Least-Squares

- The first PC retains the greatest amount of variation in the sample
- The kth PC retains the kth greatest fraction of the variation in the sample
- The kth largest eigenvalue of the correlation matrix C is the variance in the sample along the kth PC
- The least-squares view: PCs are a series of linear least squares fits to a sample, each orthogonal to all previous ones

How Many PCs?

- For n original dimensions, sample covariance matrix is nxn, and has up to n eigenvectors. So n PCs.
- Where does dimensionality reduction come from? Can *ignore* the components of lesser significance.

You do lose some information, but if the eigenvalues are small, you don't lose much

- n dimensions in original data
- calculate n eigenvectors and eigenvalues
- choose only the first p eigenvectors, based on their eigenvalues
- final data set has only p dimensions

Eric Xing

© Eric Xing @ CMU, 2006-2010

Application: querying text doc.

0.2

Label	Medical Topic														
M 1	study of depressed patients after discharge with regard to age of onset and <u>culture</u>														
M2	culture of pleuropneumonia like organisms found in vaginal discharge of patients														
M3	study showed cestrogen production is depressed by ovarian irradiation												0		
M4	corti	= Bone r	apidly	7 depr	eaæd -	the æ	conda	ry rie	e in ce	stroge	n outp	ut of p	atienta		
M5	boye	tend	to rea	ct to	death	anxie	ty by .	actine	out b	ehavi	or whil	e cirla i	tended		
	to become depresed														
Mß	chan	cesin	child	ren'a t	ehavi	or foll	lowine	hoan	italiza	tion et	udied	a week	after		
	diach	large						,							
M 7	តារកញ	ical te	chnio	ne to c	lose v	entric	ular e	erotal	defecta	3					
M8	chro	повоп	n al ab	norm	litica	in blo	od cu	lturea	and b	one m	arrow	from le	ukaemi	c	
	natiente														
M9	etudy of christmas disease with respect to generation and culture														
M10	inaulin not reaponable for metabolic abnormalities accompanying a prolonged														
	fast														
M11	close relationship between high blood pressure and vascular disease														
M12	mou	e kid	neva a	how a	decli	1e wit	h reac	ect to	a.ce i	n the	a.bili ty	to cone	entrate		
	the urine during a water fast														
M13	fast	cell ge	nerat	ion in	the ev	- re lena	epith	ıelium	of rat	а					
M14	faet	riee of	or energy	nal or	voen i	meani	re in 1	ata		_					
					101										
															0
Term	8							De	ocuma	nts					0
		MI	M2	M3	M4	Mb	M6	M7	M8	M9	M10	MH	M12	M13	M14
bnorma	lities	0	0	0	0	0	0	0	1	0	1	0	0	0	0
ge		1	0	0	0	0	0	0	0	0	0	0	1	0	0
ehavior		0	0	0	0	I	1	0	0	0	0	0	0	0	0
ood		0	0	0	0	0	0	0	1	0	0	L	0	0	0
ose		0	0	0	0	0	0	ī	0	0	0	Ī	ō	0	0
ultura				0	0	0	0	0	1		0	0	0	0	0

disease

fast

rats

rise

study

respect

K is the number of singular values used © Eric Xing @ CMU, 2006-2010

Summary:

• Principle

- Linear projection method to reduce the number of parameters
- Transfer a set of correlated variables into a new set of uncorrelated variables
- Map the data into a space of lower dimensionality
- Form of unsupervised learning

• Properties

- It can be viewed as a rotation of the existing axes to new positions in the space defined by original variables
- New axes are orthogonal and represent the directions with maximum variability
- Application: In many settings in pattern recognition and retrieval, we have a feature-object matrix.
 - For text, the terms are features and the docs are objects.
 - Could be opinions and users ...
 - This matrix may be redundant in dimensionality.
 - Can work with low-rank approximation.
 - If entries are missing (e.g., users' opinions), can recover if dimensionality is low.

Going beyond

• What is the essence of the C matrix?

$$C = E[XX^T] = \frac{1}{n} \mathbf{X} \mathbf{X}^T$$

- The elements in C captures some kind of affinity between a pair of data points in the semantic space
- We can replace it with any reasonable affinity measure

• E.g.,
$$D = \left(\left\| x_i - x_j \right\|^2 \right)_{ij}$$
: distance matrix MDS

• E.g., the geodistance ISOMAP

Nonlinear DR – Isomap

[Josh. Tenenbaum, Vin de Silva, John langford 2000]

- Constructing neighbourhood graph G
- For each pair of points in G, Computing shortest path distances ---- geodesic distances.
 - Use Dijkstra's or Floyd's algorithm
- Apply kernel PCA for C given by the centred matrix of squared geodesic distances.
- Project test points onto principal components as in kernel PCA.

"Swiss Roll" dataset

PCA, MD vs ISOMAP

• The residual variance of PCA (open triangles), MDS (open circles), and Isomap

ISOMAP algorithm Pros/Cons

Advantages:

- Nonlinear
- Globally optimal
- Guarantee asymptotically to recover the true dimensionality

Drawback:

- May not be stable, dependent on topology of data
- As N increases, pair wise distances provide better approximations to geodesics, but cost more computation

Local Linear Embedding (a.k.a LLE)

- LLE is based on simple geometric intuitions.
- Suppose the data consist of *N* real-valued vectors *X*_i, each of dimensionality *D*.
- Each data point and its neighbors expected to lie on or close to a locally linear patch of the manifold.

Steps in LLE algorithm

- Assign neighbors to each data point \overline{X}_i
- Compute the weights W_{ij} that best linearly reconstruct the data point from its neighbors, solving the constrained least-squares problem.
- Compute the low-dimensional embedding vectors \vec{Y}_i best reconstructed by W_{ij} .

Fit locally, Think Globally

Super-Resolution Through Neighbor Embedding [Yeung et al CVPR 2004]

Training Xsⁱ

img1_jpg

© Eric Xing @ CMU, 2006-2010

Training Ysⁱ

© Eric Xing @ CMU, 2006-2010

33

Intuition

Patches of the image lie on a manifold

Training Xsⁱ

img1.jpg

High dimensional Manifold

Algorithm

- 1. Get feature vectors for each low resolution training patch.
- 2. For each test patch feature vector find K nearest neighboring feature vectors of training patches.
- 3. Find optimum weights to express each test patch vector as a weighted sum of its K nearest neighbor vectors.
- 4. Use these weights for reconstruction of that test patch in high resolution.

Results

Summary:

• Principle

- Linear and nonlinear projection method to reduce the number of parameters
- Transfer a set of correlated variables into a new set of uncorrelated variables
- Map the data into a space of lower dimensionality
- Form of unsupervised learning

Applications

- PCA and Latent semantic indexing for text mining
- Isomap and Nonparametric Models of Image Deformation
- LLE and Isomap Analysis of Spectra and Colour Images
- Image Spaces and Video Trajectories: Using Isomap to Explore Video Sequences
- Mining the structural knowledge of high-dimensional medical data using isomap

Isomap Webpage: http://isomap.stanford.edu/

Applying PCA and LDA: Eigen-faces and Fisher-faces

L. Fei-Fei Computer Science Dept. Stanford University

Machine learning in computer vision

- Aug 13, Lecture 7: Dimensionality reduction, Manifold learning
 - Eigen- and Fisher- faces
 - Applications to object representation

References:

- Turk and Penland, Eigenfaces for Recognition, 1991
- Belhumeur, Hespanha and Kriegman, Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

The Space of Faces

- An image is a point in a high dimensional space
 - An N x M image is a point in R^{NM}
 - We can define vectors in this space as we did in the 2D case

[Thanks to Chuck Dyer, Steve Seitz, Nishino]

Key Idea

- Images in the possible set $\chi = \{\hat{x}_{RL}^{P}\}$ are highly correlated.
- So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs.

• EIGENFACES: [Turk and Pentland] USE PCA!

Principal Component Analysis (PCA)

- PCA is used to determine the most representing features among data points.
 - It computes the p-dimensional subspace such that the projection of the data points onto the subspace has the largest variance among all p-dimensional subspaces.

Illustration of PCA

Illustration of PCA

Mathematical Formulation

Find a transformation, W,

Eigenfaces

- PCA extracts the eigenvectors of **A**
 - Gives a set of vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , ...
 - Each one of these vectors is a direction in face space
 - what do these look like?

Projecting onto the Eigenfaces

- The eigenfaces $v_1, ..., v_K$ span the space of faces
 - A face is converted to eigenface coordinates by

 $a_2 v_2 a_3 v_3 a_4 v_4 a_5 v_5 a_6 v_6 a_7 v_7 a_8 v_8$ $a_1 \mathbf{v_1}$

Algorithm

Training

1. Align training images x₁, x₂, ..., x_N

Note that each image is formulated into a long vector!

- 2. Compute average face $u = 1/N \Sigma x_i$
- 3. Compute the difference image $\varphi_i = x_i u$

Algorithm

4. Compute the covariance matrix (total scatter matrix) S_T = 1/NΣ φ_i φ_i^T = BB^T, B=[φ₁, φ₂ ... φ_N]
5. Compute the eigenvectors of the covariance matrix , W

Testing

- 1. Projection in Eigenface Projection $\omega_i = W(X - u), W = \{eigenfaces\}$
- 2. Compare projections

Illustration of Eigenfaces

These are the first 4 eigenvectors from a training set of 400 images (ORL Face Database). They look like faces, hence called Eigenface.

Eigenfaces look somewhat like generic faces.

Eigenvalues

Reconstruction and Errors

Summary for PCA and Eigenface

- Non-iterative, globally optimal solution
- PCA projection is **optimal for reconstruction** from a low dimensional basis, but **may NOT be optimal for discrimination...**

Linear Discriminant Analysis (LDA)

- Using Linear Discriminant Analysis (LDA) or Fisher's Linear Discriminant (FLD)
- Eigenfaces attempt to maximise the scatter of the training images in face space, while Fisherfaces attempt to maximise the **between class scatter**, while minimising the **within class scatter**.

Illustration of the Projection

• Using two classes as example:

Variables

- N Sample images:
- c classes:
- Average of each class:
- Total average:

$$\{x_1, \cdots, x_N\}$$
$$\{\chi_1, \cdots, \chi_c\}$$

$$\mu_i = \frac{1}{N_i} \sum_{x_k \in \chi_i} x_k$$

$$\mu = \frac{1}{N} \sum_{k=1}^{N} x_k$$

Scatters

• Scatter of class i:

$$S_i = \sum_{x_k \in \chi_i} (x_k - \mu_i) (x_k - \mu_i)^T$$

• Within class scatter:

$$S_W = \sum_{i=1}^c S_i$$

• Between class scatter:

$$S_B = \sum_{i=1}^{c} |\chi_i| (\mu_i - \mu) (\mu_i - \mu)^T$$

• Total scatter:

$$S_T = S_W + S_B$$

Illustration

Mathematical Formulation (1)

• After projection:
$$y_k = W^T x_k$$

Between class scatter (of y's):
Within class scatter (of y's):

Mathematical Formulation (2)

• The desired projection:

$$W_{opt} = \arg \max_{W} \frac{\left| \widetilde{S}_{B} \right|}{\left| \widetilde{S}_{W} \right|} = \arg \max_{W} \frac{\left| W^{T} S_{B} W \right|}{\left| W^{T} S_{W} W \right|}$$

• How is it found ? \rightarrow Generalized Eigenvectors $S_B w_i = \lambda_i S_W w_i$ i = 1, ..., m

Data dimension is much larger than the number of samples n >> N

♦ The matrix S_W is singular: $Rank(S_W) \le N - c$

Fisherface (PCA+FLD)

• Project with PCA to N-c space $z_k = W_{pca}^T x_k$

$$W_{pca} = \arg \max_{W} \left| W^T S_T W \right|$$

• Project with FLD to c-1 space $y_k = W_{fld}^T z_k$

$$W_{fld} = \arg \max_{W} \frac{\left| W^{T} W_{pca}^{T} S_{B} W_{pca} W \right|}{\left| W^{T} W_{pca}^{T} S_{W} W_{pca} W \right|}$$

Illustration of FisherFace

• Fisherface

Results: Eigenface vs. Fisherface (1)

• Input: 160 images of 16 people

3 Lighting

- Train: 159 images
- Test: 1 image

Without

With

• Variation in Facial Expression, Eyewear, and Lighting

5 expressions

Eigenface vs. Fisherface (2)

discussion

- Removing the first three principal components results in better performance under variable lighting conditions
- The Firsherface methods had error rates lower than the Eigenface method for the small datasets tested.

Manifold Learning for Object Representation

L. Fei-Fei Computer Science Dept. Stanford University

Machine learning in computer vision

- Aug 13, Lecture 7: Dimensionality reduction, Manifold learning
 - Eigen- and Fisher- faces
 - Applications to object representation

(slides courtesy to David Thompson)

manifolds in vision

plenoptic function

manifolds in vision

appearance variation

manifolds in vision

deformation

images from www.golfswingphotos.com

manifold learning

Find a low-D basis for describing high-D data.

X ~= X' S.T. dim(X') << dim(X)

uncovers the intrinsic dimensionality

If we knew all pairwise distances...

	Chicago	Raleigh	Boston	Seattle	S.F.	Austin	Orlando
Chicago	0						
Raleigh	641	0					
Boston	851	608	0				
Seattle	1733	2363	2488	0			
S.F.	1855	2406	2696	684	0		
Austin	972	1167	1691	1764	1495	0	
Orlando	994	520	1105	2565	2458	1015	0

Multidimensional Scaling (MDS)

For *n* data points, and a distance matrix D,

...we can construct a *m*-dimensional space to preserve inter-point distances by using the top eigenvectors of D scaled by their eigenvalues

MDS result in 2D

Actual plot of cities

Don't know distances

Don't know distnaces

why do manifold learning?

- 1. data compression
- 2. "curse of dimensionality"
- 3. de-noising
- 4. visualization
- 5. reasonable distance metrics

reasonable distance metrics

reasonable distance metrics

linear interpolation

reasonable distance metrics

manifold interpolation

Isomap for images

- Build a data graph G.
- Vertices: images
- (u,v) is an edge iff SSD(u,v) is small
- For any two images, we approximate the distance between them with the "shortest path" on G

1. Build a sparse graph with K-nearest neighbors

Isomap

2. Infer other interpoint distances by finding shortest paths on the graph (Dijkstra's algorithm).

Isomap

shortest-distance on a graph is easy to compute

Dijkstra's algorithm

www.combinatorica.com

Isomap results: hands

Isomap: pro and con

- preserves global structure
- few free parameters
- sensitive to noise, noise edges

- computationally expensive (dense matrix eigen-reduction)

Leakage problem

Locally Linear Embedding

Find a mapping to preserve local linear relationships between neighbors

Locally Linear Embedding

LLE: Two key steps

1. Find weight matrix W of linear coefficients.

$$\mathcal{E}(W) = \sum_{i} \left| \vec{X_i} - \sum_{j} W_{ij} \vec{X_j} \right|^2$$

Enforce sum-to-one constraint.

LLE: Two key steps

2. Find projected vectors Y to minimize reconstruction error

$$\Phi(Y) = \sum_{i} \left| \vec{Y}_{i} - \sum_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

must solve for whole dataset simultaneously

preserves local topology

Figure 3. Two dimensional embedding of N = 400 images of a rotating teapot, obtained by SDE using k = 4 nearest neighbors. For this experiment, the teapot was rotated 360 degrees; the low dimensional embedding is a full circle. A representative sample of images are superimposed on top of the embedding.

Figure 6. Results of SDE using k = 4 nearest neighbors on N = 638 images of handwritten TWOS. Representative images are shown next to circled points.

LLE: pro and con

- no local minima, one free parameter
- incremental & fast
- simple linear algebra operations
- can distort global structure