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Machine Learning

Spectral Clustering

Eric Xing

Lecture 8, August 13, 2010

Reading:
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Data Clustering
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Data Clustering

Compactness Connectivity

 Two different criteria 
 Compactness, e.g., k-means, mixture models
 Connectivity, e.g., spectral clustering
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Spectral Clustering

Data Similarities
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 Some graph terminology
 Objects (e.g., pixels, data points)  

i∈ I = vertices of graph G

 Edges (ij)  = pixel pairs with Wij > 0

 Similarity matrix W = [ Wij ]

 Degree 
di = Σj∈G Wij

dA = Σi∈A di degree of A    G

 Assoc(A,B) = Σi∈A Σj∈B Wij
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Weighted Graph Partitioning
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 (edge) cut = set of edges whose removal makes a graph 
disconnected

 weight of a cut:      
cut( A, B ) = Σi∈A Σj∈B Wij=Assoc(A,B) 

 Normalized Cut criteria: minimum cut(A,Ā)

More generally:

Cuts in a Graph
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Graph-based Clustering
 Data Grouping

 Image sigmentation
 Affinity matrix:
 Degree matrix:
 Laplacian matrix:
 (bipartite) partition vector:

ijW
G = {V,E}
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Affinity Function

 Affinities grow as  σ grows 

 How the choice of σ value affects the results?

 What would be the optimal choice for σ?
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Clustering via Optimizing 
Normalized Cut
 The normalized cut:

 Computing an optimal normalized cut over all possible y (i.e., 
partition) is NP hard

 Transform Ncut equation to a matrix form (Shi & Malik 2000):

 Still an NP hard problem
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 Instead, relax into the continuous domain by solving generalized eigenvalue 
system:

 Which gives:

 Note that                             so, the first eigenvector is y0=1 with eigenvalue 0.

 The second smallest eigenvector is the real valued solution to this problem!!

Relaxation 
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Rayleigh quotient theorem
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Algorithm
1. Define a similarity function between 2 nodes. i.e.:

2. Compute affinity matrix (W) and degree matrix (D).

3. Solve

 Do singular value decomposition (SVD) of the graph Laplacian

4. Use the eigenvector with the second smallest eigenvalue,   , to 
bipartition the graph.
 For each threshold k, Ak={i | yi among k largest element of y*}

Bk={i | yi among n-k smallest element of y*}
 Compute Ncut(Ak,Bk)
 Output 
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Ideally …
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Example (Xing et al, 2001) 
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Poor features can lead to poor 
outcome (Xing et al 2001)
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Cluster vs. Block matrix
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 Criterion for partition:

Compare to Minimum cut

∑
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First proposed by Wu and Leahy
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Ideal Cut

Cuts with 
lesser weight
than the 
ideal cut

Problem! 
Weight of cut is directly proportional 
to the number of edges in the cut.
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Superior Performance?

 K-means and Gaussian mixture methods are biased toward 
convex clusters 
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Ncut is superior in certain cases
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Why?
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General Spectral Clustering

Data Similarities
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Representation

[ ]KXXX ,...,1=

∑= j jiwiiD ,),(
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 Partition matrix X:

 Pair-wise similarity matrix W:

 Degree matrix D:

 Laplacian matrix L:
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 Given a set of points S={s1,…sn}

 Form the affinity matrix

 Define diagonal matrix Dii= Σκ aik

 Form the matrix 

 Stack the k largest eigenvectors of L to for the columns of the new 
matrix X: 

 Renormalize each of X’s rows to have unit length and get new 
matrix Y. Cluster rows of Y as points in R k

A Spectral Clustering Algorithm 
Ng, Jordan, and Weiss 2003
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SC vs Kmeans
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Why it works?

 K-means in the spectrum space !
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Eigenvectors and blocks
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 Block matrices have block eigenvectors:

 Near-block matrices have near-block eigenvectors:
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Spectral Space
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 Can put items into blocks by eigenvectors:

 Clusters clear regardless of row ordering:
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More formally … 
 Recall generalized Ncut

 Minimizing this is equivalent to spectral clustering
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Spectral Clustering
 Algorithms that cluster points using eigenvectors of matrices 

derived from the data

 Obtain data representation in the low-dimensional space that 
can be easily clustered

 Variety of methods that use the eigenvectors differently (we 
have seen an example)

 Empirically very successful

 Authors disagree:
 Which eigenvectors to use
 How to derive clusters from these eigenvectors

 Two general methods
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Method #1
 Partition using only one eigenvector at a time
 Use procedure recursively
 Example:  Image Segmentation

 Uses 2nd (smallest) eigenvector to define optimal cut 
 Recursively generates two clusters with each cut
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Method #2
 Use k eigenvectors (k chosen by user)

 Directly compute k-way partitioning

 Experimentally has been seen to be “better”



Eric Xing © Eric Xing @ CMU, 2006-2010 32

Toy examples

Images from Matthew Brand (TR-2002-42)
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User’s Prerogative
 Choice of k, the number of clusters

 Choice of scaling factor
 Realistically, search over         and pick value that gives the tightest clusters

 Choice of clustering method: k-way or recursive bipartite

 Kernel affinity matrix

2σ

),(, jiji SSKw =
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Conclusions

 Good news:
 Simple and powerful methods to segment images.
 Flexible and easy to apply to other clustering problems.

 Bad news:
 High memory requirements (use sparse matrices).
 Very dependant on the scale factor for a specific problem.
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