Machine Learning

Mixture Model, HMM, and
Expectation Maximization

Reading:
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Gaussian Discriminative Analysis

e Data log-likelihood

£(0;D) = |09Hp(2n, :

e MLE

e What if we do not know z,?
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Unobserved Variables

e A variable can be unobserved (latent) because:

e itis an imaginary quantity meant to provide some simplified and abstractive view
of the data generation process

e.g., speech recognition models, mixture models ...

e itis a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete latent variables can be used to partition/cluster data
Into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models °°

e A density model p(x) may be multi-modal.

e \We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).

e Each mode may correspond to a different sub-population
(e.g., male and female).

Z,
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:
e Zis a latent class indicator vector:

p(z,)=multi (z,:7)= H(ﬂk )znk
k

e Xis a conditional Gaussian variable with a class-specific mean/covariance

1 .
p(x, |z =1, u,%)= (27[)”'/2‘2,(‘1/2 eXp{'%(Xn -14,) T4 (X, ',Uk)}

e The likelihood of a sample:
mixture component
mixture proportion

w2 =Y pz¥=1z)px,|z"=1,17) —
= Zz,, Hk((”k)z"kN(Xn :ﬂk’zk)z"k): Zk”kN(XJ My Z)

p(x,
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Gaussian Mixture Models (GMMs) | :¢

e Consider a mixture of K Gaussian components:

p(Xn‘,u,Z) :Zkﬂ-kN(X’l/uk’zk)
(S

mixture proportion  mixture component

X

e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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Learning mixture models -

e Given data

D — {Xn}§:1

e Likelihood:
L(7z, 1, Z;D) = H p(Xn‘ﬂ,,U,z) =H(Zk7ka(X’| ﬂka))

{7*, w*, 2 *} = argmax L(z, 1,2, D)
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Why iIs Learning Harder? o

e In fully observed iid settings, the log likelihood decomposes
Into a sum of local terms.

¢,(0,D)=1log p(x,z|0)=1log p(z|0,)+log p(x|z,0,)

e With latent variables, all the parameters become coupled
together via marginalization

£,(0;D)=log > p(x,z|0)=log > p(z|6,)p(x|z,6,)
Z z YA Z
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Toward the EM algorithm

e Recall MLE for completely observed data

e Data log-likelihood
/(B;D)—Iogl_[p(z X,)=log [ [ p(z, | 7)p(X, | Z,, 1, 0)

_Zlog Hﬁk +Z|Og u I\I(Xn;/ukig)zﬁ
:Zer'j log 7, - ZZZ L(x -4,)°+C

e MLE T e =argmax . £(0; D),
/&k,MLE =argmax , £(0;D) [ /”\lk,MLE -

O wie =argmax  £(0; D)

e What if we do not know z,?
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Recall K-means :
e Start:
e "Guess" the centroid g and coveriance 2, of each of the K clusters
e Loop
e For each point n=1to N,
compute its cluster label:
) _ : (ONT s-1(1) (t)
Zy” =argmin (X, —267) 2 (X, — 247)
e For each cluster k=1:K
(t)
Iu(t+1) o Zn 5(Zn ’k)X” Z(t+1) o
k o (1) k o
2.8z k)
"‘.3 ® *‘;-': * “3 ) ‘*t‘;: ‘;-;; . "‘;";-;
:':-t * ' 'I::.‘ L] :: "::v * :: f:::‘ - ' :‘:3 L] ’ P * '
o ol H & ¥ >3
* M . b + M " . t b « M

(@) (b} (c) (d) (e} ()
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Expectation-Maximization

e Start:

e "Guess" the centroid g4 and coveriance 2, of each of the K clusters

e Loop

o . . .
(a) (c) (d) (e)

L=6 . ® L=8 . ® L=10 . ® L=12 .
(f) (9) (h) (i)
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E-step oo

— Expectation step: computing the expected value of the
sufficient statistics of the hidden variables (i.e., 2) given
current est. of the parameters (i.e., 7and u).

7PN (x| 1,20
N 2N X, 4,20

k(t) _ [ 5k _ k _ (*) () —
T, —<z,,>qm—p(zﬂ =1|x, " 2") =
Here we are essentially doing inference
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M-step :
— Maximization step: compute the parameters under N

current results of the expected value of the hidden variables
7T, = arg max (/. (8)), 0 %</€ (9)> =0,0k, st Zﬂ'k =1

D;;;_ / Zﬂz_k(f) . >

(t+l) Z Tk(t)X

p, =arg max(1(0)), My Z )
7,

Z k(1) (X lu(f+1))(X Iu(f+1))

Zﬂ T,/If(f)

This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their

corresponding "sufficient statistics")
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How is EM derived?

e A mixture of K Gaussians:

e Zis a latent class indicator vector

p(z,)=multi (z,:7)= H(”k )z,f
k

e Xis a conditional Gaussian variable with a class-specific mean/covariance

1 .
p(x, |znk =1, 4,%) = (27[)”'/2|Z |1/2 eXp{'%(Xn '/uk)rzkl(xn 'luk)}
k

e The likelihood of a sample:
(X[ Z) =", p(z," =1|7)p(x,| 2, =1, 1,%)
=TT NG 2,507 = 3 NGl 4. 2,)
e The “complete” likelihood
p(X, 28 =1, ) = p(z," =1| 1) p(x.| 2, =1, 11, Z) = 7 N (X, | g4, Z,)
p(%, 2,2, D) = [T [m N (x| 4, BT

k
But this is itself a random variable! Not good as objective function
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How is EM derived?

e The complete log likelihood:

£(0;D) = IongO(Zn X,)=log |

_Zlog H”k +Zlog )
_Zszlog 7T, - ZZZ

 p(z, | 7)p(X, | Z,, 14, 0)
[N (X84, 0)"

= (X, /Uk) +C

e The expected complete Iog likelihood

(4.8;x,2))= Z<l09 p(z,| 7)) (Z|X)+Z (log p(x, |2, 11.%))

=

p(z|x)

_ZZ< >|Og7rk——zz< >((X - 1) 2 (%, ﬂk)JFIOg‘zk‘”LC)

e We maximize <C(9)> |terat|vely using the above

iterative procedure:
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Compare: K-means

e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.

e Inthe K-means “E-step” we do hard assignment:

e Inthe K-means “M-step” we update the means as the

T w-1
z/gf) =arg m?X (Xn B /u/((r)) ZA’ v (Xn o ’u/((f))

o),

weighted sum of the data, but now the weights are 0 or 1:

»
*
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& 2

-
-

vy 20027 K)x,

S 5(z7.k)

i-.&‘

[E)
Eric Xing

St

L ]
T S

(t+1) _
[,Uk -

(c)

(d)

© Eric Xing @ CMU, 2006-2010

Zn KOy
n

“.
L "!::".

l-.;';'—; .

()

17



Theory underlying EM oc

e What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4(0;D)=log > p(x,z|@)=log > p(z|6,)p(x]z,6,)

IS difficult!

e \What shall we do?

Eric Xing © Eric Xing @ CMU, 2006-2010 18



Complete & Incomplete Log i
Likelihoods oo

e Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s).
If Zcould be observed, then ot
£(0:x,2) =g p(x,z|0)

e Usually, optimizing 4,() given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e But given that Z is not observed, () is arandom quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:

(. (0;x)=log p(x|6)=log > p(x,z]|6)

e This objective won't decouple
Eric Xing © Eric Xing @ CMU, 2006-2010 19



Expected Complete Log
Likelihood

e For any distribution ¢(z), define expected complete log likelihood:
def

</C(6;x,z)>q =Y g(z|x,0)log p(x,z|0)
A deterministic function cff %
Linear in £() --- inherit its factorizabiility

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality

£(0;x)=log p(x|0)
=log 3’ p(x,216)

p(x,210) /
9(z1x)

p(x,z|0)
9(z1x)
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Lower Bounds and Free Energy o2

e For fixed data x, define a functional called the free energy:

F ,(9 dif | P(X,Z|9)
(¢.6) ;q(ZIX)og (2 1)

</(0;x)

e The EM algorithm is coordinate-ascent on F:
o E-step: q”l = arg max F(q, (9’)
4

e M-step: 9¢+1

=argmax £ (g™, 0"

F N
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E-step: maximization of expected

L&W.rt. g

e Claim:

g =argmax F(q,0") = p(z| x,0")
g

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform

classification).

e Proof (easy): this setting attains the bound 48,X)>F¢,0)

F(p(zx,0'),0') =" p(z
=> p(z

p(x,z|0")
p(z‘x,@t)

x,0")log p(x|8")

x,6') log

=log p(x|6")=¢(6";x)
e Can also show this result using variational calculus or the fact

that

£(0;x)-F(g,0)=KL(¢ || p(z | x,0))
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E-step = plug In posterior i
expectation of latent variables °°

e Without loss of generality: assume that p(x,z6) is a
generalized exponential family distribution:

1
p(x, z|0) = %h(x, Z) exp{Z 0.f(x, z)}

e Special cases: if p(X]2) are GLIMs, then f(x,z2)=n (2)&(x)

e The expected complete log likelihood under g1 = (7| x,0")
IS

(4(0:x.2)) . =2 .q(z|x.0")log p(x.2]0")~A©)

- Z o <ﬁ(X’ Z)>q(z|x,9") —A(0)

p~GLIM

= YO 1(2)), g & ()~ AB)
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M-step: maximization of expected
L WwW.rt. 6

e Note that the free energy breaks into two terms:
p(x,z|0)

g(z|x)
=Y g(z|x)log p(x,2]6)-) g(z|x)log ¢(z | x)

F(g.0)=> g(z]x)log

= </c(6’;x,z)>q +H,

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to & for fixed ¢
we only need to consider the first term:

r+1 . .
0™ =arg mgx(é(@,x,z))w = arg max > g(z|x)log p(x,z|06)

e Under optimal ¢/, this is equivalent to solvingza standard MLE of fully observed
model p(x,z| §), with the sufficient statistics involving zreplaced by their
expectations w.r.t. p(z] x,0).
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Summary: EM Algorithm o

e A way of maximizing likelihood function for latent variable
models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
o E-step: g™ =argmax F(g,6")
q
e M-step: o' = arg mng F(qﬂl’(gf)

e Inthe M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.
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From static to dynamic mixture cece
models -

Static mixture Dynamic mixture

s ".‘Ii

The underlying

dice,

The sequence:
Phonemes,

sequence of rolls,

source:
Speech signal,

Z
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Predicting Tumor Cell States

Chromosomes of tumor cell:

S F RBEA .
h BEE B

AJLKITT

2de sose
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DNA Copy number aberration cece
types in breast cancer .

60-70 fold amplification of CMYC region

(a) (b)
2 T N

((u)
-

Py Lo e LR C§ *

Iug‘-ra:c

[ g,

L

Copy number profile for chromosome Copy number profile for chromosome
1 from 600 MPE cell line 8 from COILO320 cell line

ic)
1:; Copy number profile for chromosome 8
p in MDA-MB-231 cell line
N P

R s deletion

s i U S — (

. Chromasama 8 position (Kb}
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A real CGH run

k!
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o
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o 00 1000 1500 2000
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Hidden Markov Model

e Observation space

Alphabetic set: C= {CI'CZ""1CK} @ @ @ @
Euclidean space: Rd
e Index set of hidden states @ @ @ @
}[:{1,2,...,,14} _

e Transition probabilities between any two states
plyi =1lyli=D=aq,,
or  p(y,|y/, =1)~ Multinomia I(a,.,l,cz,,2 ..... a,.,M),v/'e}[.
e Start probabilities
p(y,) ~ Multinomia 1(z,, 7,,...,7,).
e Emission probabilities associated with each state
p(x, |y =1) ~ Multinomia I(b,ll,b,,2 ..... b ¢ ),v/' el.

or in general:
plx |yl =1)~1(16,)viel

Eric Xing © Eric Xing @ CMU, 2006-2010 30
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The Dishonest Casino o
A casino has two dice:
e Fair die
P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
e Loaded die
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth
between fair and loaded die once every
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)

3. Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2

Eric Xing © Eric Xing @ CMU, 2006-2010 31



The Dishonest Casino Model

0.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

Eric Xing

0.05

0.05

© Eric Xing @ CMU, 2006-2010

0.95

P(1IL) = 1/10
P(2IL) = 1/10
P(3|L) = 1/10
P(4]L) = 1/10
P(5|L) = 1/10
P(6IL) = 1/2

32



Puzzles Regarding the Dishonest | 2322

casino o2

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
works?

e Thisis the EVALUATION problem in HMMs

e What portion of the sequence was generated with the fair die, and
what portion with the loaded die?
e Thisis the DECODING question in HMMs

e How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question in HMMs

Eric Xing © Eric Xing @ CMU, 2006-2010 33



Joint Probability o

64621461461361366616646616366163661636165156 6 6

Eric Xing © Eric Xing @ CMU, 2006-2010 34
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Probability of a Parse :
e Given a sequence X = xj...... Xt
and aparsey=y, ...... . Vi, @ @ @ @
e To find how likely is the parse:
(given our HMM and the sequence) @ @ @ @

px,y) =p(x...... Xov Vi eveenns }%29) (Joint probability)
= py1) plxi | 1) pPOya | ya) PO | yo) - POy | yved) pOxe | )
=p) POal ya) - POy | yra) X pl | y) PO | yo) <o P | )

T T
e Marginal probability:  p(x) = Zyp(x, y) = Zy1 Zyz e Zm 7,1 1a,.,. 112X 1y)
#-1

t=2

e Posterior probability:  p(y|x) = p(x,y)/ p(X)

Eric Xing © Eric Xing @ CMU, 2006-2010 35



Example: the Dishonest Casino :

e Letthe sequence of rolls be:
e x=1,2,1,56,2,1,6,2 4

=

e Then, what is the likelihood of
e y= Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs ape,, = Y2, 84 oaded = ¥2)

Y2 x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

15 x (1/6)10 x (0.95)° = .00000000521158647211 = 5.21 x 109
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Example: the Dishonest Casino

e S0, the likelihood the die is fair in all this run
IS just 5.21 x 10°

=

e OK, hut what is the likelihood of

e w = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

Y% x P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

15 x (1/10)® x (1/2)2 (0.95)° = .00000000078781176215 = 0.79 x 10

e Therefore, it is after all 6.59 times more likely that the die is fair
all the way, than that it is loaded all the way
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Example: the Dishonest Casino

e Letthe sequence of rolls be:

e xXx=1,6,6,56,2,6,6,3,6 i ﬁ
I?

e Now, what is the likelihood = =F, F, ..., F~
e % x(1/6)10 x (0.95)° = 0.5 x 10, same as before

e What is the likelihood y=1L, L, ..., L?
5 x (1/10)% x (1/2)8 (0.95)° = .00000049238235134735 = 5 x 1077

e SO, itis 100 times more likely the die is loaded
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Three Main Questions on HMMs -

1. Evaluation

GIVEN an HMM M, and a sequence X,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y | x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 0 = (7, g, 1) that maximize P(x| 0)
ALGO. Baum-Welch (EM)

Eric Xing © Eric Xing @ CMU, 2006-2010 39



Applications of HMMSs

e Some early applications of HMMs

finance, but we never saw them
speech recognition
modelling ion channels

e Inthe mid-late 1980s HMMs entered genetics and molecular
biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

Eric Xing

mapping chromosomes

aligning biological sequences
predicting sequence structure
inferring evolutionary relationships
finding genes in DNA sequence

© Eric Xing @ CMU, 2006-2010 40



The Forward Algorithm 4+

e We want to calculate Ax), the likelihood of x, given the HMM
e Sum over all possible ways of generating x:
T T
p(x) - Zyp(x’y) - Zyl Zyz ' ”Zy,\, ﬂYlHa}’r—lv)’r Hp(xf | yf)
t=2 t=

e To avoid summing over an exponential number of paths y, define
p p def p

a(y, =l)=a; =P(x,,... X, vy, =1) (the forward probability)

e The recursion:
k k /
ay = pX; |y = I)Zaf—la/,k
y
k
P(X) = Z oy
k

Eric Xing © Eric Xing @ CMU, 2006-2010 41



The Forward Algorithm — T
derivation oe

e Compute the forward probability:
Y1) ™Y1

Xl K Xt-l

:Zyrlp(xl ----- Xf—11Yr—1)P(Yrk :1|Yr—1’X1 ----- Xr—1)’D(Xr |)’fk =1,x,,... X, 1, Y1)

=P(x, |Yfk = I)Z/ a;—la/,k

Chain rule : P(A,B,C)=P(A)P(B|A)P(C|A,B)

Eric Xing © Eric Xing @ CMU, 2006-2010 42



The Forward Algorithm

e \We can compute af for all &, #, using dynamic programming!

Initialization: af =P(x, ¥ =1)
b b =P(x Iy =DP(y =1)
a; =P(x | y; =Dz, =P(x, |y} =Dr,
lteration:

af - 'D(Xf |y1’k - I)Z/ a;_la"’k

Termination:

P(X) = Za{f
P

Eric Xing © Eric Xing @ CMU, 2006-2010 43



The Backward Algorithm o

e We want to compute AP(y/ =1|x) , @ @

the posterior probability distribution on the

1™ position, given x @ @ @

e We start by computing
P(Yfk :l’x):P(XI""’Xf’Yfk =1X 1000 X7)
:P(Xp---’xr’}’fk =1)P(X; g, Xy |X1’---’Xr’)/fk =1)
:P(Xl---Xr,Yfk =1)P (X, X7 |Yfk =1)

Forward, a;/* Backward, /3y =P(X.i, X | i =1)

,Btk — Z Ay i p(Xt+1 | Yti+1 — 1),Bti+1

Eric Xing © Eric Xing @ CMU, 2006-2010 44
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Example: 1

x=1,2,1,5,6,2,1,6,2,4 0.95 ' ’ 0.95
)

P(1|F) = 1/6 0.05 P(1IL) =1/10

P(2|F) = 1/6 P(2L) = 1/10
P(3|F) = 1/6 P(3|L) = 1/10
P(4|F) = 1/6 P(4|L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10
P(6|F) = 1/6 P(B|L) = 1/2

af =P(x, |yf =1 oy a;,
B = Z,- a, PXea | i =B
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x=1,2,1,5,6,2,1,6,2,4

Alpha (actual)

0.0833
0.0136
0.0022
0.0004
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000

Eric Xing

0.0500
0.0052
0.0006
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Beta (actual)

0.0000
0.0000
0.0000
0.0000
0.0001
0.0007
0.0045
0.0264
0.1633
1.0000

0.0000
0.0000
0.0000
0.0000
0.0001
0.0006
0.0055
0.0112
0.1033
1.0000
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0.95 '@

P(|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

0.05

0.95
god

P(1]L) = 1/10
P(2IL) = 1/10
P(3|L) = 1/10
P(4]L) = 1/10
P(5|L) = 1/10
P(6IL) = 1/2

Olf = P(Xf |y¢k :1)2/ a;—la/',k
B = Z,— a, P | yia =05
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x=1,2,1,5,6,2,1,6,2,4

Alpha (logs)
-2.4849 -2.9957
-4.2969 -5.2655
-6.1201 -7.4896
-7.9499 -9.6553
-9.7834 -10.1454
-11.5905 -12.4264
-13.4110 -14.6657
-15.2391 -15.2407
-17.0310 -17.5432
-18.8430 -19.8129

Eric Xing

Beta (logs)

-16.2439
-14.4185
-12.6028
-10.8042
-9.0373
-7.2181
-5.4135
-3.6352
-1.8120
0

-17.2014

-14.9922

-12.7337

-10.4389
-9.7289
-7.4833
-5.1977
-4.4938
-2.2698

0

© Eric Xing @ CMU, 2006-2010

0.95 '@

P(|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

0.05

0.95
god

P(1]L) = 1/10
P(2IL) = 1/10
P(3|L) = 1/10
P(4]L) = 1/10
P(5|L) = 1/10
P(6IL) = 1/2

Olf = P(Xf |y¢k :1)2/ a;—la/',k
B = Z,— a, P | yia =05
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What is the probability of a
hidden state prediction?




Posterior decoding -

e \We can now calculate

k k nk
P(yfk:]"X):P(yf _I’X):afﬁf

P(X) P(X)
e Then, we can ask

e What is the most likely state at position t of sequence x:

k' =argmax , P(y} =1|x)

e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?

e Posterior Decoding: {}/fk: =1:+=1---T }

e This is different from MPA of a whole sequence of hidden
states >~ [ Poes)

e This can be understood as bit error rate o o0 0535
vs. word error rate Example: o £ L=
MPA of X ? Z O 0.3

MPA of (X, Y) ? 7 7 0.3
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Viterbi decoding oo

e GIVENX=X, .. x5wewanttofindy = y,, .., v, such that
Ay|x) is maximized:

y* = argmax, Aly|x) = argmax, Ay x)
o Let

Vi =max,, o P(Xp Xog, Yiven Yo X Y =1)

— Probability of most likely sequence of states ending at state y; = &

e The recursion: Xy Xg X3 evereessessesseseesesssmmsesessens Xy
State 1 I

Vi =px |y =D)max; a W/, 2

e Underflows are a significant problem k[ /
p(Xl’""Xf’yl’”"yf) - 7[)’10)’1’)’2 .”a)’rfh)’rb)’l-/\ﬁ ”.b)’rw\’r

These numbers become extremely small — underflow
Solution: Take the logs of all values:  V,* = log p(x, |y,k =1) + max ,.(Iog (a,-,k)+ l/,/l)
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Computational Complexity and T
Implementation detalls +-

e What is the running time, and space required, for Forward,
and Backward?

o = p(x | ¥y =1)Zat‘1ai,k

B =2 8P | Vin =D)B,

V= pl(xt |y, =1)max; a; V.,
Time: O(KEN); Space: O(KN).

e Useful implementation technique to avoid underflows
e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a constant
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Learning HMM

o Given x= xj...x)y for which the true state path y= y;...yyIs
known,

£(0;x,y) =log p(x,y) =log H(p(ynl)l_[ P(Yos | Yag 1)1_[ Je xm)j
e Define:
A = # times state transition /= occurs in'y
B, = # times state /in y emits Ain X

e We can show that the maximum likelihood parameters @are:

R ) DI M 7 G

’ #(/ =) Z Z P yﬂ,f—l ZJ‘A/J

pML _ #(/ — k) ZZHYM nt _ B,

to#i>e) Zn Zf:ly”f Zk'g"k'

e Whatif y is continuous? We can treat {(x +=1:T.n=1: N} as NxT
observations of, e.g., a Gaussian, and apply rearnlng rules for Gaussian ...

(Homework!)

o (Homework!)
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Unsupervised ML estimation

o Given x= x;...xy for which the true state path y= y,...yyIs
unknown,

e EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters 6.

1. Estimate A;;, By in the training data

How? /’,'J-:Zn,,<)’n",f_1}’/zj;n> B/'/\’:an<y/;',f>xﬂ/‘7f1 How? (homework)
2. Update @according to A, B,

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set & each iteration
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The Baum Welch algorithm o

e The complete log likelihood
£0:x)=kg px) =9 T1{ 201200 11 D 1205, 15, |

e The expected complete ,I70g Iikelih_ood _

(£.0:x,y)) = g((yi,l}mﬂx") log 7,,,) + ;g((y;my,{J

e EM
e The E step
7//17‘ <yn7‘> p(}//;f :1|Xn)
én,’f = <yn,f—1y/;/,'7‘> - p(y;,r—l = 1’ y/;/f = 1 | Xn)
e The M step ("symbolically" identical to MLE)

ML_Zny;,I Z Zt 2 b//(m_z Zr 17nf nf
= N /J Z Z: 117/,,7'7L Z Z: 117/,;7‘
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/109 g; j+;Z(X"kf<y ﬂl">p(yn,,|xﬂ) g b4 )

p(yﬂ,ffl ’y | n 1




Summary

e Modeling hidden transitional trajectories (in discrete state
space, such as cluster label, DNA copy number, dice-choice,
etc.) underlying observed sequence data (discrete, such as
dice outcomes; or continuous, such as CGH signals)

e Useful for parsing, segmenting sequential data

e Important HMM computations:

e The joint likelihood of a parse and data can be written as a product to local terms
(i.e., initial prob, transition prob, emission prob.)

e Computing marginal likelihood of the observed sequence: forward algorithm
e Predicting a single hidden state: forward-backward

e Predicting an entire sequence of hidden states: viterbi

e Learning HMM parameters: an EM algorithm known as Baum-Welch

Eric Xing © Eric Xing @ CMU, 2006-2010 55



	Machine Learning�
	Gaussian Discriminative Analysis
	Clustering
	Unobserved Variables
	Mixture Models
	Gaussian Mixture Models (GMMs)
	Gaussian Mixture Models (GMMs)
	Learning mixture models
	Why is Learning Harder?
	Toward the EM algorithm
	Recall K-means
	Expectation-Maximization
	E-step
	M-step
	How is EM derived?
	How is EM derived?
	Compare: K-means
	Theory underlying EM
	Complete & Incomplete Log Likelihoods
	Expected Complete Log Likelihood
	Lower Bounds and Free Energy
	E-step: maximization of expected lc w.r.t. q
	E-step º plug in posterior expectation of latent variables
	M-step: maximization of expected lc w.r.t. q
	Summary: EM Algorithm
	From static to dynamic mixture models
	Predicting Tumor Cell States
	DNA Copy number aberration types in breast cancer
	A real CGH run
	Hidden Markov Model
	The Dishonest Casino
	The Dishonest Casino Model
	Puzzles Regarding the Dishonest Casino 
	Joint Probability
	Probability of a Parse
	Example: the Dishonest Casino
	Example: the Dishonest Casino
	Example: the Dishonest Casino
	Three Main Questions on HMMs
	Applications of HMMs
	The Forward Algorithm
	The Forward Algorithm – derivation
	The Forward Algorithm
	The Backward Algorithm
	Example:
	Slide Number 46
	Slide Number 47
	What is the probability of a hidden state prediction?
	Posterior decoding
	Viterbi decoding
	Computational Complexity and implementation details
	Learning HMM
	Unsupervised ML estimation
	The Baum Welch algorithm
	Summary

