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Machine Learning

Mixture Model, HMM, and 
Expectation Maximization

Eric Xing

Lecture 9, August 14, 2010

Reading:
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 Data log-likelihood

 MLE

 What if we do not know zn?
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Gaussian Discriminative Analysis
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Clustering
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Unobserved Variables
 A variable can be unobserved (latent) because:

 it is an imaginary quantity meant to provide some simplified and abstractive view 
of the data generation process
 e.g., speech recognition models, mixture models …

 it is a real-world object and/or phenomena, but difficult or impossible to measure
 e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

 it is a real-world object and/or phenomena, but sometimes wasn’t measured, 
because of faulty sensors; or was measure with a noisy channel, etc.
 e.g., traffic radio, aircraft signal on a radar screen, 

 Discrete latent variables can be used to partition/cluster data 
into sub-groups (mixture models, forthcoming).

 Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models
 A density model p(x) may be multi-modal.
 We may be able to model it as a mixture of uni-modal 

distributions (e.g., Gaussians).
 Each mode may correspond to a different sub-population 

(e.g., male and female).

⇒
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Gaussian Mixture Models (GMMs)
 Consider a mixture of K Gaussian components:

 Z is a latent class indicator vector:

 X is a conditional Gaussian variable with a class-specific mean/covariance

 The likelihood of a sample:
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Gaussian Mixture Models (GMMs)
 Consider a mixture of K Gaussian components:

 This model can be used for unsupervised clustering.
 This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.
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Learning mixture models
 Given data

 Likelihood:  
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Why is Learning Harder?
 In fully observed iid settings, the log likelihood decomposes 

into a sum of local terms.

 With latent variables, all the parameters become coupled 
together via marginalization
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 Recall MLE for completely observed data

 Data log-likelihood

 MLE

 What if we do not know zn?
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Toward the EM algorithm
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Recall K-means
 Start: 

 "Guess" the centroid µk and coveriance Σk of each of the K clusters 

 Loop
 For each point n=1 to N,

compute its cluster label:

 For each cluster k=1:K
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Expectation-Maximization
 Start: 

 "Guess" the centroid µk and coveriance Σk of each of the K clusters 

 Loop
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─ Expectation step: computing the expected value of the 
sufficient statistics of the hidden variables (i.e., z) given 
current est. of the parameters (i.e., π and µ). 

 Here we are essentially doing inference

∑ ),|,(
),|,(),,|( )()()(

)()()(
)()()(

)(

i

t
i

t
in

t
i

t
k

t
kn

t
kttk

nq
k
n

tk
n xN

xNxzpz t Σ
Σ

=Σ===
µπ

µπµτ 1

E-step

Zn

Xn
N



Eric Xing © Eric Xing @ CMU, 2006-2010 14

─ Maximization step: compute the parameters under               
current results of the expected value of the hidden variables

 This is isomorphic to MLE except that the variables that are hidden are 
replaced by their expectations (in general they will by replaced by their 
corresponding "sufficient statistics") 
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How is EM derived?
 A mixture of K Gaussians:

 Z is a latent class indicator vector

 X is a conditional Gaussian variable with a class-specific mean/covariance

 The likelihood of a sample:

 The “complete” likelihood
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How is EM derived?
 The complete log likelihood:

 The expected complete log likelihood

 We maximize             iteratively using the above               
iterative procedure:
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Compare: K-means
 The EM algorithm for mixtures of Gaussians is like a "soft 

version" of the K-means algorithm.
 In the K-means “E-step” we do hard assignment:

 In the K-means “M-step” we update the means as the 
weighted sum of the data, but now the weights are 0 or 1:
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Theory underlying EM
 What are we doing?

 Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

 But we do not observe z, so computing 

is difficult!

 What shall we do?
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Complete & Incomplete Log 
Likelihoods
 Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

 Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 
observed models).

 Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.

 But given that Z is not observed, lc() is a random quantity, cannot be 
maximized directly.

 Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

 This objective won't decouple 
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Expected Complete Log 
Likelihood
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 For any distribution q(z), define expected complete log likelihood:

 A deterministic function of θ
 Linear in lc() --- inherit its factorizabiility 
 Does maximizing this surrogate yield a maximizer of the likelihood?

 Jensen’s inequality
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Lower Bounds and Free Energy
 For fixed data x, define a functional called the free energy:

 The EM algorithm is coordinate-ascent on F :
 E-step:

 M-step:
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E-step: maximization of expected 
lc w.r.t. q
 Claim: 

 This is the posterior distribution over the latent variables given the data and the 
parameters. Often we need this at test time anyway (e.g. to perform 
classification).

 Proof (easy): this setting attains the bound l(θ;x)≥F(q,θ )

 Can also show this result using variational calculus or the fact 
that
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E-step ≡ plug in posterior 
expectation of latent variables
 Without loss of generality: assume that p(x,z|θ) is a 

generalized exponential family distribution:

 Special cases: if p(X|Z) are GLIMs, then 

 The expected complete log likelihood under                            
is
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M-step: maximization of expected 
lc w.r.t. θ
 Note that the free energy breaks into two terms:

 The first term is the expected complete log likelihood (energy) and the second 
term, which does not depend on θ, is the entropy.

 Thus, in the M-step, maximizing with respect to θ for fixed q
we only need to consider the first term:

 Under optimal qt+1, this is equivalent to solving a standard MLE of fully observed 
model p(x,z|θ), with the sufficient statistics involving z replaced by their 
expectations w.r.t. p(z|x,θ).
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Summary: EM Algorithm
 A way of maximizing likelihood function for latent variable 

models. Finds MLE of parameters when the original (hard) 
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

 Alternate between filling in the latent variables using the best 
guess (posterior) and updating the parameters based on this 
guess:
 E-step: 
 M-step: 

 In the M-step we optimize a lower bound on the likelihood. In 
the E-step we close the gap, making bound=likelihood.
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From static to dynamic mixture 
models

Dynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixture

AX1

Y1

N
The sequence:

The underlying 
source:

Phonemes,

Speech signal, 

sequence of rolls, 

dice,
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Chromosomes of tumor cell:

Predicting Tumor Cell States
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Copy number profile for chromosome
1 from 600 MPE cell line

Copy number profile for chromosome
8 from COLO320 cell line

60-70 fold amplification of  CMYC region

Copy number profile for chromosome 8
in MDA-MB-231 cell line

deletion

DNA Copy number aberration 
types in breast cancer
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A real CGH run
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Hidden Markov Model
 Observation space

Alphabetic set:
Euclidean space:

 Index set of hidden states

 Transition probabilities between any two states

or

 Start probabilities

 Emission probabilities associated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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The Dishonest Casino

A casino has two dice:
 Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
 Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once every 
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, 

maybe with loaded die)
4. Highest number wins $2
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FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

The Dishonest Casino Model
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Puzzles Regarding the Dishonest 
Casino 

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
 How likely is this sequence, given our model of how the casino 

works?
 This is the EVALUATION problem in HMMs

 What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?
 This is the DECODING question in HMMs

 How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?
 This is the LEARNING question in HMMs
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Joint Probability

1245526462146146136136661664661636616366163616515615115146123562344
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Probability of a Parse
 Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
 To find how likely is the parse:

(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)

 Marginal probability:

 Posterior probability:
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Example: the Dishonest Casino
 Let the sequence of rolls be:

 x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

 Then, what is the likelihood of
 y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs a0Fair = ½, aoLoaded = ½)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ × (1/6)10 × (0.95)9 = .00000000521158647211 = 5.21 × 10-9
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Example: the Dishonest Casino
 So, the likelihood the die is fair in all this run

is just 5.21 × 10-9

 OK, but what is the likelihood of
 π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 

Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded | Loaded) … P(4 | Loaded) =

½ × (1/10)8 × (1/2)2 (0.95)9 = .00000000078781176215 = 0.79 × 10-9

 Therefore, it is after all 6.59 times more likely that the die is fair 
all the way, than that it is loaded all the way
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Example: the Dishonest Casino
 Let the sequence of rolls be:

 x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

 Now, what is the likelihood π = F, F, …, F?
 ½ × (1/6)10 × (0.95)9 = 0.5 × 10-9, same as before

 What is the likelihood y = L, L, …, L?

½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 = 5 × 10-7

 So, it is 100 times more likely the die is loaded
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Three Main Questions on HMMs
1. Evaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x | M)
ALGO. Forward

2. Decoding
GIVEN an HMM M, and a sequence x ,
FIND the sequence y of states that maximizes, e.g., P(y | x , M),    

or the most probable subsequence of states
ALGO. Viterbi, Forward-backward 

3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,
FIND parameters θ = (πi, aij, ηik) that maximize P(x | θ)
ALGO. Baum-Welch (EM)
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Applications of HMMs
 Some early applications of HMMs

 finance, but we never saw them  
 speech recognition  
 modelling ion channels 

 In the mid-late 1980s HMMs entered genetics and molecular 
biology, and they are now firmly entrenched.

 Some current applications of HMMs to biology
 mapping chromosomes
 aligning biological sequences
 predicting sequence structure
 inferring evolutionary relationships
 finding genes in DNA sequence
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The Forward Algorithm
 We want to calculate P(x), the likelihood of x, given the HMM

 Sum over all possible ways of generating x:

 To avoid summing over an exponential number of paths y, define

(the forward probability)

 The recursion:
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The Forward Algorithm –
derivation
 Compute the forward probability:
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The Forward Algorithm
 We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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The Backward Algorithm
 We want to compute                      ,

the posterior probability distribution on the                                          
t th position, given x

 We start by computing

 The recursion:
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Example:

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

kii
i
t

k
tt

k
t ayxP ,)|( ∑ −== 11 αα

i
t

i
tti ik

k
t yxPa 111 1 +++ ==∑ ββ )|(,



Eric Xing © Eric Xing @ CMU, 2006-2010 46

Alpha (actual)
0.0833    0.0500
0.0136    0.0052
0.0022    0.0006
0.0004    0.0001
0.0001    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000

Beta (actual)
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0001    0.0001
0.0007    0.0006
0.0045    0.0055
0.0264    0.0112
0.1633    0.1033
1.0000    1.0000

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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tt
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t ayxP ,)|( ∑ −== 11 αα
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Alpha (logs)
-2.4849   -2.9957
-4.2969   -5.2655
-6.1201   -7.4896
-7.9499   -9.6553
-9.7834  -10.1454

-11.5905  -12.4264
-13.4110  -14.6657
-15.2391  -15.2407
-17.0310  -17.5432
-18.8430  -19.8129

Beta (logs)
-16.2439  -17.2014
-14.4185  -14.9922
-12.6028  -12.7337
-10.8042  -10.4389
-9.0373   -9.7289
-7.2181   -7.4833
-5.4135   -5.1977
-3.6352   -4.4938
-1.8120   -2.2698

0         0

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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tt

k
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What is the probability of a 
hidden state prediction?
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Posterior decoding
 We can now calculate

 Then, we can ask
 What is the most likely state at position t of sequence x:

 Note that this is an MPA of a single hidden state, 
what if we want to a MPA of a whole hidden state sequence?

 Posterior Decoding: 

 This is different from MPA of a whole sequence of hidden 
states

 This can be understood as bit error rate
vs. word error rate
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Example:
MPA of X ?
MPA of (X, Y) ?

x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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Viterbi decoding
 GIVEN x = x1, …, xT, we want to find y = y1, …, yT, such that 

P(y|x) is maximized:
y* = argmaxy P(y|x) = argmaxπ P(y,x) 

 Let

= Probability of most likely sequence of states ending at state yt = k
 The recursion:

 Underflows are a significant problem

 These numbers become extremely small – underflow
 Solution: Take the logs of all values:
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Computational Complexity and 
implementation details
 What is the running time, and space required, for Forward, 

and Backward?

Time:   O(K2N); Space: O(KN).

 Useful implementation technique to avoid underflows
 Viterbi: sum of logs
 Forward/Backward:   rescaling at each position by multiplying by a constant
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(Homework!)

Learning HMM
 Given x = x1…xN for which the true state path y = y1…yN is 

known,

 Define:
Aij = # times state transition i→j occurs in y
Bik = # times state i in y emits k in x

 We can show that the maximum likelihood parameters θ are:

 What if y is continuous? We can treat                                               as N×T
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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Unsupervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is 

unknown,

 EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ:
1. Estimate Aij , Bik in the training data 

 How?                             , ,    How? (homework)

2. Update θ according to Aij , Bik
 Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration
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The Baum Welch algorithm
 The complete log likelihood

 The expected complete log likelihood

 EM
 The E step

 The M step ("symbolically" identical to MLE)
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Summary
 Modeling hidden transitional trajectories (in discrete state 

space, such as cluster label, DNA copy number, dice-choice, 
etc.) underlying observed sequence data (discrete, such as 
dice outcomes; or continuous, such as CGH signals)

 Useful for parsing, segmenting sequential data
 Important HMM computations:

 The joint likelihood of a parse and data can be written as a product to local terms 
(i.e., initial prob, transition prob, emission prob.)

 Computing marginal likelihood of the observed sequence: forward algorithm
 Predicting a single hidden state: forward-backward
 Predicting an entire sequence of hidden states: viterbi
 Learning HMM parameters: an EM algorithm known as Baum-Welch
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