Machine Learning

Mixture Model, HMM, and Expectation Maximization

Eric Xing

Lecture 9, August 14, 2010

Reading:

© Eric Xing @ CMU, 2006-2010

Eric Xing

Gaussian Discriminative Analysis

• Data log-likelihood

$$\ell(\mathbf{\theta}; D) = \log \prod_{n} p(z_n, x_n) = \log \prod_{n} p(z_n \mid \pi) p(x_n \mid z_n, \mu, \sigma)$$
$$= \sum_{n} \log \prod_{k} \pi_k^{z_n^k} + \sum_{n} \log \prod_{k} N(x_n; \mu_k, \sigma)^{z_n^k}$$
$$= \sum_{n} \sum_{k} z_n^k \log \pi_k - \sum_{n} \sum_{k} z_n^k \frac{1}{2\sigma^2} (x_n - \mu_k)^2 + C$$

• MLE
$$\hat{\pi}_{k,MLE} = \arg \max_{\pi} \ell(\boldsymbol{\theta}; D),$$

 $\hat{\mu}_{k,MLE} = \arg \max_{\mu} \ell(\boldsymbol{\theta}; D)$
 $\hat{\sigma}_{k,MLE} = \arg \max_{\sigma} \ell(\boldsymbol{\theta}; D)$
 $p(y_n^k = 1 | \mathbf{x}_n, \mu, \sigma) = \frac{\pi_k \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x}_n - \mu_k)^2\right\}}{\sum_{k'} \pi_{k'} \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x}_n - \mu_k)^2\right\}}$

• What if we do not know z_n ?

Clustering

Unobserved Variables

- A variable can be unobserved (latent) because:
 - it is an imaginary quantity meant to provide some simplified and abstractive view of the data generation process
 - e.g., speech recognition models, mixture models ...
 - it is a real-world object and/or phenomena, but difficult or impossible to measure
 - e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
 - it is a real-world object and/or phenomena, but sometimes wasn't measured, because of faulty sensors; or was measure with a noisy channel, etc.
 - e.g., traffic radio, aircraft signal on a radar screen,
- Discrete latent variables can be used to partition/cluster data into sub-groups (mixture models, forthcoming).
- Continuous latent variables (factors) can be used for dimensionality reduction (factor analysis, etc., later lectures).

Mixture Models

- A density model p(x) may be multi-modal.
- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).
- Each mode may correspond to a different sub-population (e.g., male and female).

(a)

Gaussian Mixture Models (GMMs)

- Consider a mixture of *K* Gaussian components:
 - Z is a latent class indicator vector:

$$p(\boldsymbol{z}_n) =$$
multi $(\boldsymbol{z}_n : \pi) = \prod_k (\pi_k)^{\boldsymbol{z}_n^k}$

• X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(\boldsymbol{x}_{n} | \boldsymbol{z}_{n}^{k} = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_{k}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}_{n} - \mu_{k})^{T} \Sigma_{k}^{-1}(\boldsymbol{x}_{n} - \mu_{k})\right\}$$

• The likelihood of a sample:

$$p(\boldsymbol{x}_{n}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{k} p(\boldsymbol{z}^{k} = 1 | \boldsymbol{\pi}) p(\boldsymbol{x}, | \boldsymbol{z}^{k} = 1, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \sum_{\boldsymbol{z}_{n}} \prod_{k} \left((\boldsymbol{\pi}_{k})^{\boldsymbol{z}_{n}^{k}} \mathcal{N}(\boldsymbol{x}_{n} : \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{\boldsymbol{z}_{n}^{k}} \right) = \sum_{k} \boldsymbol{\pi}_{k} \mathcal{N}(\boldsymbol{x}, | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

mixture proportion

mixture component

Gaussian Mixture Models (GMMs)

• Consider a mixture of K Gaussian components:

- This model can be used for unsupervised clustering.
 - This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

Learning mixture models

• Given data

$$\mathcal{D} = \{\mathbf{x}_n\}_{n=1}^N$$

• Likelihood:

$$L(\pi, \mu, \Sigma; D) = \prod_{n} p(x_{n} | \pi, \mu, \Sigma) = \prod_{n} \left(\sum_{k} \pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k}) \right)$$

$$\{\pi^*, \mu^*, \Sigma^*\}$$
 = arg max $L(\pi, \mu, \Sigma, D)$

Why is Learning Harder?

• In fully observed iid settings, the log likelihood decomposes into a sum of local terms.

 $\ell_{c}(\theta; D) = \log p(x, z \mid \theta) = \log p(z \mid \theta_{z}) + \log p(x \mid z, \theta_{x})$

• With latent variables, all the parameters become coupled together via *marginalization*

Toward the EM algorithm

- Recall MLE for completely observed data
- Data log-likelihood

 $\ell(\mathbf{\theta}; D) = \log \prod_{n} p(z_n, x_n) = \log \prod_{n} p(z_n \mid \pi) p(x_n \mid z_n, \mu, \sigma)$ $= \sum_{n} \log \prod_{k} \pi_k^{z_n^k} + \sum_{n} \log \prod_{k} N(x_n; \mu_k, \sigma)^{z_n^k}$ $= \sum_{n} \sum_{k} z_n^k \log \pi_k - \sum_{n} \sum_{k} z_n^k \frac{1}{2\sigma^2} (x_n - \mu_k)^2 + C$

• MLE $\hat{\pi}_{k,MLE} = \arg \max_{\pi} \ell(\theta; D),$ $\hat{\mu}_{k,MLE} = \arg \max_{\mu} \ell(\theta; D)$ $\hat{\sigma}_{k,MLE} = \arg \max_{\sigma} \ell(\theta; D)$

 $\square \quad \hat{\mu}_{k,MLE} = \frac{\sum_{n} z_{n}^{k} x_{n}}{\sum_{n} z_{n}^{k}}$

• What if we do not know z_n ?

Recall K-means

• Start:

- "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop
 - For each point n=1 to N, compute its cluster label:

$$z_n^{(t)} = \arg\min_k (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})$$

• For each cluster k=1:K

Eric Xing

© Eric Xing @ CMU, 2006-2010

Expectation-Maximization

- Start:
 - "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop

© Eric Xing @ CMU, 2006-2010

E-step

 Z_n X_n

- Expectation step: computing the expected value of the sufficient statistics of the hidden variables (i.e., z) given current est. of the parameters (i.e., π and μ).

$$\tau_n^{k(t)} = \left\langle \mathbf{z}_n^k \right\rangle_{q^{(t)}} = p(\mathbf{z}_n^k = 1 | \mathbf{x}, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} \mathcal{N}(\mathbf{x}_n, | \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} \mathcal{N}(\mathbf{x}_n, | \mu_i^{(t)}, \Sigma_i^{(t)})}$$

• Here we are essentially doing inference

M-step

- Maximization step: compute the parameters under current results of the expected value of the hidden variables
 - $\pi_{k}^{*} = \arg \max \left\langle l_{c}(\boldsymbol{\theta}) \right\rangle, \qquad \Box \quad \frac{\partial}{\partial \pi_{k}} \left\langle l_{c}(\boldsymbol{\theta}) \right\rangle = \mathbf{0}, \Box k, \quad \text{s.t.} \sum_{k} \pi_{k} = \mathbf{1}$ $\Box \quad \pi_{k}^{*} = \frac{\sum_{n} \left\langle \boldsymbol{z}_{n}^{k} \right\rangle_{q^{(t)}}}{N} = \frac{\sum_{n} \tau_{n}^{k(t)}}{N} = \frac{\left\langle \boldsymbol{n}_{k} \right\rangle}{N}$ $\mu_{k}^{*} = \arg \max \left\langle l(\boldsymbol{\theta}) \right\rangle, \qquad \Box \quad \mu_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} x_{n}}{\sum_{n} \tau_{n}^{k(t)}}$ $\Sigma_{k}^{*} = \arg \max \left\langle l(\boldsymbol{\theta}) \right\rangle, \qquad \Box \quad \Sigma_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} (\boldsymbol{x}_{n} \mu_{k}^{(t+1)}) (\boldsymbol{x}_{n} \mu_{k}^{(t+1)})^{T}}{\sum_{n} \tau_{n}^{k(t)}}$
 - This is isomorphic to MLE except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their corresponding "sufficient statistics")

© Eric Xing @ CMU, 2006-2010

How is EM derived?

- A mixture of K Gaussians:
 - Z is a latent class indicator vector

 $p(\boldsymbol{z}_n) =$ multi $(\boldsymbol{z}_n : \pi) = \prod_{k} (\pi_k)^{\boldsymbol{z}_n^k}$

• X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(\boldsymbol{x}_{n} | \boldsymbol{z}_{n}^{k} = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_{k}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}_{n} - \mu_{k})^{T} \Sigma_{k}^{-1}(\boldsymbol{x}_{n} - \mu_{k})\right\}$$

• The likelihood of a sample:

$$p(x_n | \mu, \Sigma) = \sum_k p(z_n^{k} = 1 | \pi) p(x, | z_n^{k} = 1, \mu, \Sigma)$$

=
$$\sum_{z_n} \prod_k \left((\pi_k)^{z_n^{k}} N(x_n : \mu_k, \Sigma_k)^{z_n^{k}} \right) = \sum_k \pi_k N(x, | \mu_k, \Sigma_k)$$

• The "complete" likelihood

$$p(x_{n}, z_{n}^{k} = 1 | \mu, \Sigma) = p(z_{n}^{k} = 1 | \pi) p(x_{n} | z_{n}^{k} = 1, \mu, \Sigma) = \pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k})$$
$$p(x_{n}, z_{n} | \mu, \Sigma) = \prod_{k} [\pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k})]^{z_{n}^{k}}$$

But this is itself a random variable! Not good as objective function

© Eric Xing @ CMU, 2006-2010

How is EM derived?

• The complete log likelihood:

$$\ell(\boldsymbol{\theta}; D) = \log \prod_{n} p(z_n, x_n) = \log \prod_{n} p(z_n \mid \pi) p(x_n \mid z_n, \mu, \sigma)$$
$$= \sum_{n} \log \prod_{k} \pi_k^{z_n^k} + \sum_{n} \log \prod_{k} N(x_n; \mu_k, \sigma)^{z_n^k}$$
$$= \sum_{n} \sum_{k} z_n^k \log \pi_k - \sum_{n} \sum_{k} z_n^k \frac{1}{2\sigma^2} (x_n - \mu_k)^2 + C$$

• The expected complete log likelihood

$$\langle \ell_{c}(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{z}) \rangle = \sum_{n} \langle \log \ \boldsymbol{\rho}(\boldsymbol{z}_{n} \mid \boldsymbol{\pi}) \rangle_{\boldsymbol{\rho}(\boldsymbol{z}\mid\boldsymbol{x})} + \sum_{n} \langle \log \ \boldsymbol{\rho}(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n},\boldsymbol{\mu},\boldsymbol{\Sigma}) \rangle_{\boldsymbol{\rho}(\boldsymbol{z}\mid\boldsymbol{x})}$$

$$= \sum_{n} \sum_{k} \langle \boldsymbol{z}_{n}^{k} \rangle \log \ \boldsymbol{\pi}_{k} - \frac{1}{2} \sum_{n} \sum_{k} \langle \boldsymbol{z}_{n}^{k} \rangle ((\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) + \log |\boldsymbol{\Sigma}_{k}| + \boldsymbol{C})$$

$$\text{We maximize } \langle I_{c}(\boldsymbol{\theta}) \rangle \text{ iteratively using the above iterative procedure:}$$

Compare: K-means

- The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.
- In the K-means "E-step" we do hard assignment:

$$\boldsymbol{Z}_{n}^{(t)} = \arg\max_{\boldsymbol{k}} \left(\boldsymbol{X}_{n} - \boldsymbol{\mu}_{k}^{(t)}\right)^{T} \boldsymbol{\Sigma}_{k}^{-1(t)} \left(\boldsymbol{X}_{n} - \boldsymbol{\mu}_{k}^{(t)}\right) \qquad \left(\boldsymbol{\tau}_{n}^{k(t)} = \left\langle \boldsymbol{z}_{n}^{k} \right\rangle_{q^{(t)}}\right)$$

• In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:

© Eric Xing @ CMU, 2006-2010

Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe *z*, so computing

$$\ell_{c}(\theta; D) = \log \sum_{z} p(x, z \mid \theta) = \log \sum_{z} p(z \mid \theta_{z}) p(x \mid z, \theta_{x})$$

is difficult!

• What shall we do?

Eric Xing

Complete & Incomplete Log Likelihoods

• Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s).

If Z could be observed, then

 $\boldsymbol{\ell}_{c}(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{z}) = \log \boldsymbol{p}(\boldsymbol{x},\boldsymbol{z} \mid \boldsymbol{\theta})$

- Usually, optimizing ℓ_c () given both z and x is straightforward (c.f. MLE for fully observed models).
- Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor can be estimated separately.
- But given that Z is not observed, ℓ_c () is a random quantity, cannot be maximized directly.

Incomplete log likelihood

With *z* unobserved, our objective becomes the log of a marginal probability:

$$\ell_{c}(\theta; \mathbf{X}) = \log p(\mathbf{X} \mid \theta) = \log \sum_{\mathbf{X}} p(\mathbf{X}, \mathbf{Z} \mid \theta)$$

• This objective won't decouple

Eric Xing

Expected Complete Log Likelihood

• For **any** distribution q(z), define expected complete log likelihood:

$$\left\langle \ell_{c}(\theta; \boldsymbol{x}, \boldsymbol{z}) \right\rangle_{q} \stackrel{\text{def}}{=} \sum_{\boldsymbol{z}} q(\boldsymbol{z} \mid \boldsymbol{x}, \theta) \log \boldsymbol{p}(\boldsymbol{x}, \boldsymbol{z} \mid \theta)$$

- A deterministic function of θ
- Linear in $\ell_c()$ --- inherit its factorizabiility
- Does maximizing this surrogate yield a maximizer of the likelihood?
- Jensen's inequality

Lower Bounds and Free Energy

- For fixed data x, define a functional called the free energy:

$$F(q,\theta) \stackrel{\text{def}}{=} \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)} \le \ell(\theta;x)$$

- The EM algorithm is coordinate-ascent on *F* :
 - E-step:

 $\boldsymbol{q}^{t+1} = \arg \max_{\boldsymbol{q}} \boldsymbol{F}(\boldsymbol{q}, \boldsymbol{\theta}^{t})$

• M-step:

E-step: maximization of expected ℓ_c w.r.t. q

• Claim:

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t}) = p(z \mid x, \theta^{t})$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting attains the bound $\ell(\theta, x) \ge F(q, \theta)$

$$F(p(z|x,\theta^{t}),\theta^{t}) = \sum_{z} p(z|x,\theta^{t}) \log \frac{p(x,z|\theta^{t})}{p(z|x,\theta^{t})}$$
$$= \sum_{z} p(z|x,\theta^{t}) \log p(x|\theta^{t})$$

 $= \log p(x \mid \theta^t) = \ell(\theta^t; x)$

• Can also show this result using variational calculus or the fact that $\ell(\theta; x) - F(q, \theta) = KL(q \parallel p(z \mid x, \theta))$

E-step ≡ plug in posterior expectation of latent variables

• Without loss of generality: assume that $p(x, z | \theta)$ is a generalized exponential family distribution:

$$p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} h(\boldsymbol{x},\boldsymbol{z}) \exp\left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x},\boldsymbol{z})\right\}$$

• Special cases: if p(X|Z) are GLIMs, then

$$f_i(\boldsymbol{X},\boldsymbol{Z}) = \eta_i^T(\boldsymbol{Z})\xi_i(\boldsymbol{X})$$

• The expected complete log likelihood under $q^{t+1} = p(z | x, \theta^t)$ is

$$\left\langle \ell_{c}(\theta^{\dagger};\boldsymbol{X},\boldsymbol{Z}) \right\rangle_{q^{t+1}} = \sum_{z} q(\boldsymbol{Z} \mid \boldsymbol{X}, \theta^{\dagger}) \log p(\boldsymbol{X}, \boldsymbol{Z} \mid \theta^{\dagger}) - \boldsymbol{A}(\theta)$$

$$= \sum_{i} \theta_{i}^{\dagger} \left\langle f_{i}(\boldsymbol{X}, \boldsymbol{Z}) \right\rangle_{q(\boldsymbol{Z} \mid \boldsymbol{X}, \theta^{\dagger})} - \boldsymbol{A}(\theta)$$

$$= \sum_{i} \theta_{i}^{\dagger} \left\langle \eta_{i}(\boldsymbol{Z}) \right\rangle_{q(\boldsymbol{Z} \mid \boldsymbol{X}, \theta^{\dagger})} \xi_{i}(\boldsymbol{X}) - \boldsymbol{A}(\theta)$$

© Eric Xing @ CMU, 2006-2010

M-step: maximization of expected $\ell_{\rm c}$ w.r.t. θ

• Note that the free energy breaks into two terms:

$$F(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$
$$= \sum_{z} q(z \mid x) \log p(x, z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$
$$= \left\langle \ell_{c}(\theta; x, z) \right\rangle_{q} + \mathcal{H}_{q}$$

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ , is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$\theta^{t+1} = \arg \max_{\theta} \left\langle \ell_{c}(\theta; \boldsymbol{X}, \boldsymbol{Z}) \right\rangle_{q^{t+1}} = \arg \max_{\theta} \sum_{\boldsymbol{y}} q(\boldsymbol{Z} \mid \boldsymbol{X}) \log \boldsymbol{p}(\boldsymbol{X}, \boldsymbol{Z} \mid \theta)$$

• Under optimal q^{t+1} , this is equivalent to solving a standard MLE of fully observed model $p(x, z | \theta)$, with the sufficient statistics involving *z* replaced by their expectations w.r.t. $p(z | x, \theta)$.

Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - Estimate some "missing" or "unobserved" data from observed data and current 1. parameters.
 - Using this "complete" data, find the maximum likelihood parameter estimates. 2.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - E-step:

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t})$$

M-step:

$$\boldsymbol{q}^{t+1} = \arg \max_{\boldsymbol{q}} \boldsymbol{\mathcal{F}}(\boldsymbol{q}, \boldsymbol{\theta}^{t})$$
$$\boldsymbol{\theta}^{t+1} = \arg \max_{\boldsymbol{\theta}} \boldsymbol{\mathcal{F}}(\boldsymbol{q}^{t+1}, \boldsymbol{\theta}^{t})$$

In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

From static to dynamic mixture models

Static mixture

The underlying source: Speech signal,

dice,

The sequence: Phonemes, sequence of rolls,

© Eric Xing @ CMU, 2006-2010

Dynamic mixture

Predicting Tumor Cell States

Chromosomes of tumor cell:

DNA Copy number aberration types in breast cancer

60-70 fold amplification of CMYC region

Chromosome 1 position (kb)

Copy number profile for chromosome 1 from 600 MPE cell line

Copy number profile for chromosome 8 from COLO320 cell line

A real CGH run

Hidden Markov Model

• Observation space

Alphabetic set: Euclidean space:

- Index set of hidden states
 - $\mathbb{I} = \left\{ 1, 2, \cdots, \mathcal{M} \right\}$
- Transition probabilities between any two states

 \mathbb{R}^{d}

 $p(y_{t}^{j} = 1 | y_{t-1}^{i} = 1) = a_{i,j},$ or $p(y_{t} | y_{t-1}^{i} = 1) \sim \text{Multinomia} \ l(a_{i,1}, a_{i,2}, \dots, a_{i,M}), \forall i \in \mathbb{I}.$

 $\mathbb{C} = \{ \mathcal{C}_1, \mathcal{C}_2, \cdots, \mathcal{C}_k \}$

• Start probabilities

 $p(\mathbf{y}_1) \sim \text{Multinomia } l(\pi_1, \pi_2, \dots, \pi_M).$

• Emission probabilities associated with each state

 $p(\mathbf{x}_t | \mathbf{y}_t^i = 1) \sim \text{Multinomia } l(\mathbf{b}_{i,1}, \mathbf{b}_{i,2}, \dots, \mathbf{b}_{i,K}), \forall i \in \mathbb{I}.$

or in general:

 $p(\mathbf{x}_t | \mathbf{y}_t^i = \mathbf{1}) \sim f(\cdot | \theta_i), \forall i \in \mathbb{I}.$

Graphical model

The Dishonest Casino

A casino has two dice:

• Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6

• Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10 P(6) = 1/2

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:

1. You bet \$1

- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

The Dishonest Casino Model

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question in HMMs

Joint Probability

Probability of a Parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$,
- To find how likely is the parse: (given our HMM and the sequence)

$$p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)$$
(Joint probability)
= $p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)$
= $p(y_1) P(y_2 | y_1) \dots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \dots p(x_T | y_T)$

• Marginal probability:

$$p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^T a_{y_{t-1}, y_t} \prod_{t=1}^T p(\mathbf{x}_t | \mathbf{y}_t)$$

Posterior probability:

 $p(\mathbf{y} | \mathbf{x}) = p(\mathbf{x}, \mathbf{y}) / p(\mathbf{x})$

Example: the Dishonest Casino

- Let the sequence of rolls be:
 - **x**=1, 2, 1, 5, 6, 2, 1, 6, 2, 4

- Then, what is the likelihood of
 - y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
 (say initial probs a_{0Fair} = ½, a_{oLoaded} = ½)

 $\frac{1}{2} \times P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) \dots P(4 | Fair) =$

 $\frac{1}{2} \times (1/6)^{10} \times (0.95)^9 = .0000000521158647211 = 5.21 \times 10^{-9}$

Example: the Dishonest Casino

- So, the likelihood the die is fair in all this run is just 5.21×10^{-9}
- OK, but what is the likelihood of
 - π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?
- $\frac{1}{2} \times P(1 \mid Loaded) P(Loaded \mid Loaded) \dots P(4 \mid Loaded) =$

 $\frac{1}{2} \times (1/10)^8 \times (1/2)^2 (0.95)^9 = .00000000078781176215 = 0.79 \times 10^{-9}$

• Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way

Eric Xing

© Eric Xing @ CMU, 2006-2010

Example: the Dishonest Casino

- Let the sequence of rolls be:
 - *x* = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6
- Now, what is the likelihood $\pi = F, F, ..., F$?
 - $\frac{1}{2} \times (\frac{1}{6})^{10} \times (0.95)^9 = 0.5 \times 10^{-9}$, same as before
- What is the likelihood y = L, L, ..., L?

 $\frac{1}{2} \times (1/10)^4 \times (1/2)^6 (0.95)^9 = .00000049238235134735 = 5 \times 10^{-7}$

• So, it is 100 times more likely the die is loaded

Three Main Questions on HMMs

1. Evaluation

GIVENan HMM M,FIND Prob (x | M)ALGO.Forward

and a sequence x,

2. Decoding

GIVEN	an HMM <i>M</i> ,	and a sequence <i>X</i> ,		
FIND	the sequence y of states that maximizes, e.g., $P(y)$			
	or the most probable subsequence of states			
ALGO.	Viterbi, Forward	backward		

3. Learning

GIVEN	an HMM <i>M</i> , with unspecified transition/emission probs.,	
	and a sequence <i>x</i> ,	
FIND	parameters $\theta = (\pi_i, a_{ij}, \eta_{ik})$ that maximize $P(\boldsymbol{x} \mid \theta)$	
ALGO.	Baum-Welch (EM)	

Applications of HMMs

Some early applications of HMMs

- finance, but we never saw them
- speech recognition
- modelling ion channels
- In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.

• Some current applications of HMMs to biology

- mapping chromosomes
- aligning biological sequences
- predicting sequence structure
- inferring evolutionary relationships
- finding genes in DNA sequence

The Forward Algorithm

- We want to calculate P(x), the likelihood of x, given the HMM
 - Sum over all possible ways of generating **x**:

$$p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y}_1} \sum_{\mathbf{y}_2} \cdots \sum_{\mathbf{y}_N} \pi_{\mathbf{y}_1} \prod_{t=2}^T a_{\mathbf{y}_{t-1}, \mathbf{y}_t} \prod_{t=1}^T p(\mathbf{x}_t \mid \mathbf{y}_t)$$

• To avoid summing over an exponential number of paths y, define

$$\alpha(\boldsymbol{y}_{t}^{k}=1) = \alpha_{t}^{k} \stackrel{\text{def}}{=} \boldsymbol{P}(\boldsymbol{x}_{1},...,\boldsymbol{x}_{t},\boldsymbol{y}_{t}^{k}=1) \quad (\text{the forward probability})$$

• The recursion:

$$\alpha_t^k = p(\mathbf{x}_t \mid \mathbf{y}_t^k = 1) \sum_i \alpha_{t-1}^i \mathbf{a}_{i,k}$$
$$P(\mathbf{x}) = \sum_k \alpha_t^k$$

The Forward Algorithm – derivation

• Compute the forward probability:

$$\alpha_t^k = P(x_1, ..., x_{t-1}, x_t, y_t^k = 1)$$

$$= \sum_{y_{t-1}} P(x_1, ..., x_{t-1}, y_{t-1}) P(y_t^k = 1 | y_{t-1}, x_1, ..., x_{t-1}) P(x_t | y_t^k = 1, x_1, ..., x_{t-1}, y_{t-1})$$

$$= \sum_{y_{t-1}} P(x_1, ..., x_{t-1}, y_{t-1}) P(y_t^k = 1 | y_{t-1}) P(x_t | y_t^k = 1)$$

$$= P(x_t | y_t^k = 1) \sum_i P(x_1, ..., x_{t-1}, y_{t-1}^i = 1) P(y_t^k = 1 | y_{t-1}^i = 1)$$

$$= P(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

Chain rule : P(A, B, C) = P(A)P(B | A)P(C | A, B)

The Forward Algorithm

 $\alpha_1^k = P(x_1, y_1^k = 1)$

 $= P(x_1 | y_1^k = 1)\pi_k$

 $= P(x_1 | y_1^k = 1)P(y_1^k = 1)$

• We can compute α_t^k for all k, t, using dynamic programming!

Initialization:

$$\alpha_1^k = \boldsymbol{P}(\boldsymbol{X}_1 \mid \boldsymbol{y}_1^k = \boldsymbol{1}) \boldsymbol{\pi}_k$$

Iteration:

$$\alpha_t^k = \mathcal{P}(\boldsymbol{x}_t \mid \boldsymbol{y}_t^k = 1) \sum_i \alpha_{t-1}^i \boldsymbol{a}_{i,k}$$

Termination:

$$\boldsymbol{P}(\mathbf{x}) = \sum_{k} \alpha_{T}^{k}$$

The Backward Algorithm

- We want to compute $P(y_t^k = 1 | \mathbf{x})$, the posterior probability distribution on the t^{th} position, given \mathbf{x}
- $\cdots \underbrace{y_{t}}_{t} \xrightarrow{y_{t+1}} \cdots \xrightarrow{y_{T}}_{t}$ $\cdots \underbrace{x_{t}}_{t} \xrightarrow{x_{t+1}} \cdots \xrightarrow{x_{T}}$

• We start by computing

$$P(y_{t}^{k} = 1, \mathbf{x}) = P(x_{1}, ..., x_{t}, y_{t}^{k} = 1, x_{t+1}, ..., x_{T})$$

$$= P(x_{1}, ..., x_{t}, y_{t}^{k} = 1)P(x_{t+1}, ..., x_{T} | x_{1}, ..., x_{t}, y_{t}^{k} = 1)$$

$$= P(x_{1}...x_{t}, y_{t}^{k} = 1)P(x_{t+1}...x_{T} | y_{t}^{k} = 1)$$

Forward, α_t^k Backward, $\beta_t^k = P(x_{t+1}, ..., x_T | y_t^k = 1)$ The recursion: $\beta_t^k = \sum_i a_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$

© Eric Xing @ CMU, 2006-2010

Example:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Alpha (actual)				
0.0833	0.0500			
0.0136	0.0052			
0.0022	0.0006			
0.0004	0.0001			
0.0001	0.0000			
0.0000	0.0000			
0.0000	0.0000			
0.0000	0.0000			
0.0000	0.0000			
0.0000	0.0000			

Beta (actual) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0007 0.0006 0.0045 0.0055 0.0264 0.0112 0.1633 0.1033 1.0000 1.0000

-9.7834	-10.1454	-9.0373	-9.7289
-11.5905	-12.4264	-7.2181	-7.4833
-13.4110	-14.6657	-5.4135	-5.1977
-15.2391	-15.2407	-3.6352	-4.4938
-17.0310	-17.5432	-1.8120	-2.2698
-18.8430	-19.8129	0	0
Eric Xing			© Eric Xing @

Beta (logs)

-16.2439 -17.2014

-14.4185 -14.9922

-12.6028 -12.7337

-10.8042 -10.4389

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Alpha (logs)

-4.2969

-2.4849 -2.9957

-6.1201 -7.4896

-7.9499 -9.6553

-5.2655

What is the probability of a hidden state prediction?

Posterior decoding

• We can now calculate

$$\mathcal{P}(\boldsymbol{y}_{t}^{k}=1 \mid \mathbf{x}) = \frac{\mathcal{P}(\boldsymbol{y}_{t}^{k}=1,\mathbf{x})}{\mathcal{P}(\mathbf{x})} = \frac{\alpha_{t}^{k}\beta_{t}^{k}}{\mathcal{P}(\mathbf{x})}$$

- Then, we can ask
 - What is the most likely state at position *t* of sequence **x**:

$$k_t^* = \arg \max_k P(y_t^k = 1 | \mathbf{x})$$

- Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
- Posterior Decoding:

$$\left\{ \boldsymbol{y}_{t}^{k_{t}^{*}} = 1: t = 1 \cdots T \right\}$$

- This is different from MPA of a whole sequence states
- This can be understood as bit error rate vs. word error rate

Example: MPA of X ? MPA of (X, Y) ?

Viterbi decoding

GIVEN x = x₁, ..., x_T, we want to find y = y₁, ..., y_T, such that P(y|x) is maximized:

$$\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} \mathcal{P}(\mathbf{y} | \mathbf{x}) = \operatorname{argmax}_{\pi} \mathcal{P}(\mathbf{y}, \mathbf{x})$$

• Let

$$V_{t}^{k} = \max_{\{y_{1},...,y_{t-1}\}} P(x_{1},...,x_{t-1},y_{1},...,y_{t-1},x_{t},y_{t}^{k} = 1)$$

= Probability of most likely sequence of states ending at state $y_t = k$

• The recursion:

 $V_t^k = p(x_t | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i$

• Underflows are a significant problem $\kappa = p(x_1, \dots, x_t, y_1, \dots, y_t) = \pi_{y_1} a_{y_1, y_2} \cdots a_{y_{t-1}, y_t} b_{y_1, x_1} \cdots b_{y_t, x_t}$

- These numbers become extremely small underflow
- Solution: Take the logs of all values: $V_t^k = \log p(x_t | y_t^k = 1) + \max_i (\log (a_{i,k}) + V_{t-1}^i)$

Computational Complexity and implementation details

- What is the running time, and space required, for Forward, and Backward?

$$\alpha_{t}^{k} = p(x_{t} \mid y_{t}^{k} = 1) \sum_{i} \alpha_{t-1}^{i} a_{i,k}$$
$$\beta_{t}^{k} = \sum_{i} a_{k,i} p(x_{t+1} \mid y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$
$$V_{t}^{k} = p(x_{t} \mid y_{t}^{k} = 1) \max_{i} a_{i,k} V_{t-1}^{i}$$

Time: $O(K^2N)$; Space: O(KN).

- Useful implementation technique to avoid underflows
 - Viterbi: sum of logs
 - Forward/Backward: rescaling at each position by multiplying by a constant

Learning HMM

• Given $x = x_1 \dots x_N$ for which the true state path $y = y_1 \dots y_N$ is known, $\prod \left(p(y_{n+1}) \prod^{T} p(y_{n+1} | y_{n+1}) \prod^{$

$$\boldsymbol{\ell}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_{n} \left(p(y_{n,1}) \prod_{t=2}^{t} p(y_{n,t} \mid y_{n,t-1}) \prod_{t=1}^{t} p(x_{n,t} \mid x_{n,t}) \right)$$

Define:

 A_{ij} = # times state transition $i \rightarrow j$ occurs in y

 B_{ik} = # times state *i* in y emits *k* in x

We can show that the maximum likelihood parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{l} \gamma_{n,t-1}^{i} \gamma_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} \gamma_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j'} A_{ij'}}$$
$$b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} X_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k'} B_{ik'}}$$

(Homework!)

What if y is continuous? We can treat $\{(\chi_{n,t}, \gamma_{n,t}): t = 1: T, n = 1: N\}$ as $N \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Unsupervised ML estimation

• Given $x = x_1 \dots x_N$ for which the true state path $y = y_1 \dots y_N$ is unknown,

EXPECTATION MAXIMIZATION

- o. Starting with our best guess of a model M, parameters θ :
- 1. Estimate A_{ij} , B_{ik} in the training data
 - How? $A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$ $B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle X_{n,t}^k$, How? (homework)
- 2. Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
- 3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

The Baum Welch algorithm

• The complete log likelihood

$$\ell_{c}(\boldsymbol{\theta};\mathbf{x},\mathbf{y}) = \log \boldsymbol{p}(\mathbf{x},\mathbf{y}) = \log \prod_{n} \left(\boldsymbol{p}(\boldsymbol{\gamma}_{n,1}) \prod_{t=2}^{T} \boldsymbol{p}(\boldsymbol{\gamma}_{n,t} \mid \boldsymbol{\gamma}_{n,t-1}) \prod_{t=1}^{T} \boldsymbol{p}(\boldsymbol{x}_{n,t} \mid \boldsymbol{x}_{n,t}) \right)$$

• The expected complete log likelihood

$$\left\langle \ell_{c}(\boldsymbol{\theta};\mathbf{x},\mathbf{y})\right\rangle = \sum_{n} \left(\left\langle \boldsymbol{y}_{n,1}^{i}\right\rangle_{p(y_{n,1}|\mathbf{x}_{n})} \log \pi_{i}\right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \boldsymbol{y}_{n,t-1}^{i} \boldsymbol{y}_{n,t}^{j}\right\rangle_{p(y_{n,t-1},y_{n,t}|\mathbf{x}_{n})} \log \boldsymbol{a}_{i,j}\right) + \sum_{n} \sum_{t=1}^{T} \left(\boldsymbol{x}_{n,t}^{k} \left\langle \boldsymbol{y}_{n,t}^{i}\right\rangle_{p(y_{n,t}|\mathbf{x}_{n})} \log \boldsymbol{b}_{i,k}\right)$$

- EM
 - The E step

$$\gamma_{n,t}^{i} = \left\langle \mathbf{y}_{n,t}^{i} \right\rangle = \mathbf{p}(\mathbf{y}_{n,t}^{i} = \mathbf{1} | \mathbf{x}_{n})$$

$$\xi_{n,t}^{i,j} = \left\langle \mathbf{y}_{n,t-1}^{i} \mathbf{y}_{n,t}^{j} \right\rangle = \mathbf{p}(\mathbf{y}_{n,t-1}^{i} = \mathbf{1}, \mathbf{y}_{n,t}^{j} = \mathbf{1} | \mathbf{x}_{n})$$

• The **M** step ("symbolically" identical to MLE)

$$\pi_i^{ML} = \frac{\sum_n \gamma_{n,1}^i}{N} \qquad a_{ij}^{ML} = \frac{\sum_n \sum_{t=2}^T \xi_{n,t}^{i,j}}{\sum_n \sum_{t=1}^{T-1} \gamma_{n,t}^i}$$

Eric Xing

© Eric Xing @ CMU, 2006-2010

Summary

- Modeling hidden transitional trajectories (in discrete state space, such as cluster label, DNA copy number, dice-choice, etc.) underlying observed sequence data (discrete, such as dice outcomes; or continuous, such as CGH signals)
- Useful for parsing, segmenting sequential data
- Important HMM computations:
 - The joint likelihood of a parse and data can be written as a product to local terms (i.e., initial prob, transition prob, emission prob.)
 - Computing marginal likelihood of the observed sequence: forward algorithm
 - Predicting a single hidden state: forward-backward
 - Predicting an entire sequence of hidden states: viterbi
 - Learning HMM parameters: an EM algorithm known as Baum-Welch