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Abstract— This paper proposes a new method for extracting
features from protein sequences to deal with the problem of
protein subcellular localization. The idea behind the method
arises from Chinese segmentation techniques. We regard the
amino acid sequences as text and segment them into words in a
non-overlapping way. The words are predefined in a dictionary,
which includes valuable words according to some criteria. Every
word in the dictionary will be assigned a weight, and a matching
strategy called maximum weight product is adopted for segmen-
tation. By recording word frequencies, a given sequence can be
converted into a feature vector. To evaluate the effectiveness of
the proposed feature extraction method, two different kinds of
classifiers are used to predict protein subcellular locations. The
experimental results show that our method is superior to existing
approaches in classification accuracy and reduces the number of
dimensions of feature space at the same time.

I. INTRODUCTION

Subcellular localization of a new protein sequence is very
important for understanding its function. Since experimental
determination of subcellular location is time consuming and
costly, tools for automatic subcellular location prediction have
been largely developed in recent years. Sequences of intra-
cellular and extracellular proteins were first analyzed and re-
ported to have different amino acid compositions [1]. In 1994,
Nakashima and Nishikawa discriminated those two kinds of
proteins successfully by amino acid composition and residue-
pair frequencies [2]. After that, a lot of efforts on predicting
protein locations in a cell were made. More and more locations
can be discriminated. Cedano et al. classified the proteins
to five locations, including extracellular, integral membrane,
anchored membrane, intracellular and nuclear proteins [3].
Reinhardt and Hubbard used neural network to predict 3
locations of prokaryotic cells and 4 locations of eukaryotic
cells [4], and the average accuracies of 80.9% and 66.1% were
achieved. Afterwards, proteins in 12 subcellular locations were
discriminated [5], [6]. A recent study by Cai and Chou focused
on 22 subcellular locations in budding yeast and obtained an
overall success rate of 68.36% [7].

Till now, various pattern classification and machine learning
methods have been used, such as Mahalanobis distance [3],
neural network [4], hidden Markov model (HMM) [9] and

support vector machine [10]. But classifiers have limited
ability to improve the prediction accuracy. Therefore, how
to properly represent proteins becomes more important for
subcellular localization. Researchers have developed a lot of
feature extraction methods. Besides amino acid composition,
Emanuelsson et al. made use of the N-terminal sorting signals
[11], which is an efficient method but depends strongly on the
leader sequences and often makes mistake when the leader se-
quences are unreliable. Other methods combine new features,
such as hydrophobic [12] information and Zp parameters [13].
Chou introduced the quasi-sequence-order approach [15] and
pseudo-amino-acid-composition [14] to incorporate sequence
order information. Chou and Cai also developed functional
domain composition [17] and gene ontology methods [16]
helping to predict protein subcellular locations more precisely.
Some of the new features can improve the prediction accuracy
significantly. However, we can only obtain corresponding
information for a part of proteins. It is difficult to get knowl-
edge like functional composition and gene ontology for new
sequences.

Since the numbers of new genomes and protein sequences
which are available for prediction have increased dramatically,
it is crucial and necessary to perform some deep exploration
into the information encoded in the sequences. Similar to
analyzing DNA sequences, we can get k-tuple composition of
a protein sequence. However, a k-tuple has 20k different order
combinations. One of our goals is to find those useful ones.
After finding the valuable k-tuples, we regard the sequences
as combinations of words and segment them.

In this paper, we apply Chinese segmentation techniques
to analyze amino acid sequences and propose a new method
for extracting features from them. This method consists of
two steps: dictionary building and segmentation. The k-tuples
with highest occurrence frequencies are selected as words in
a dictionary, and then a matching strategy called maximum
weight product is adopted to segment the sequences. To evalu-
ate the effectiveness of the proposed feature extraction method,
two different kinds of classifiers are used to predict protein
subcellular locations. The experimental results show that our
method is superior to existing approaches in classification
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(I am a student)
EKTLYGSSRLEEPVPVGAAA

| | |
E|K|TL|Y|G|SS|R|L|EE|P|V|P|V|G|AAA

Segmentation

| | |
E|K|TL|Y|G|SS|R|L|EE|P|V|P|V|G|AAA

Fig. 1. Similarity between Chinese sentence and protein sequence

accuracy and reduces the number of dimensions of feature
space at the same time.

II. OUR METHOD

In English text, spaces help to separate the words and
understand the sentence well, while Chinese contain no spaces,
only punctuations indicating pause or end of a sentence. The
automatic analysis of Chinese text has been studied for tens of
years. The first step of analysis is Chinese automatic segmen-
tation, which is to separate the character string into meaningful
words or phrases [18]. This is an important and basic step for
Chinese information processing, such as information retrieval
[19] and handwriting recognition [20].

A. Similarity Between Chinese and Protein Sequences

The upper block in Fig. 1 shows an example of Chinese
sentence, which means “I am a student”. The mark “|” be-
tween characters in the lower block denotes a word separator.
Compared with a protein sequence, we can find that they
are both strings of consecutive characters, written in different
languages with respective words. Similar to Chinese text, we
model the protein sequences as concatenation of words without
any space and punctuation, and try to develop an automatic
segmentation technique for them. Thus sequences can be
divided into substrings with different lengths. By recording
occurrences of all the words in a given sequence, sequence
features can be extracted.

In text, words are minimal independent and meaningful
language units, and language text usually has a predefined
dictionary, i.e., word list. However, protein sequences are
written in an unknown language to us at the present state,
whose words are not delineated. So we first need to build a
dictionary, which is the basis of segmentation. For example,
if we have a dictionary D={A, E, P, S, SP, TPT, AAAA}

and a sequence S=TPTSPPPAAAAPAE, we can segment S

as TPT|SP|P|P|AAAA|P|A|E.

B. Dictionary Building

Unlike English words, in biosequences, any k-tuple may be
meaningful given an alphabet, though it may occur very few

times. Since proteins consist of 20 different amino acids, a
k-tuple has 20k different order combinations. This results in
a too high dimensionality of the feature space, which can be
tens or hundreds of thousands when k ¸ 3. It is prohibitively
high for many learning algorithms. And it is still difficult to
be solved by only counting k-tuples occurring in the data set.
Therefore, to develop efficient feature selection methods is a
crucial issue.

Our goal is to find out useful words for classification. We
suppose the most valuable words are those occurring most
frequently in the corpus and put them into the dictionary. To
avoid encountering unknown words, all 20 amino acids should
be included in the dictionary. And a maximum word length
MaxLen should be set, which is the biggest value of k for
k-tuples. For every k-tuple with a length less than MaxLen,
we will count its appearance time in data set in an overlapping
way. Then, for every length k, where 1 < k < MaxLen, add
k-tuples with highest frequencies to the dictionary.

C. Segmentation
After building the dictionary, we can match the sequences

with words in it. There are thousands of characters usually
used in Chinese and every sentence has tens of them at
most, while protein sequences usually have hundreds of letters,
which composed of only 20 amino acids. Thus, there may be
many more ways to segment the sequences into words. To find
the best way of segmentation, we first eliminate a large portion
of ways by numbers of segments generated, only those which
have the least segments remaining. That is to say, long words
are preferred to be matched. Then there may still exist multiple
ways. We assign a weight for every word in the dictionary and
propose a maximum weight product matching method. The
details of this matching method are as follows.

For each single letter, let frequency1,i be its occurrence
time, and Freq1 be the maximum value of them.

Freq1 = max
1≤i≤20

frequency1,i. (1)

The weights of the 20 single-letter words are defined by:

weight1,i =
frequency1,i

Freq1

, 1 ≤ i ≤ 20. (2)

Similarly, for k-tuples, we have

Freqk = max
1≤i≤N

frequencyk,i, (3)

where N is the number of k-tuples present in the data set. The
weights of the k-tuples are defined by:

weightk,i =
frequencyk,i

Freqk
× Ck−1, (4)

1 ≤ i ≤ N, 1 < k ≤ maxLen,C ¸ 1,

where C is adjustable, ensuring a part of or most of the long
words have bigger weights than short words.

For each way of segmentation with least segments, the
weight product is defined by:

PS,T =
∏

W

weightnw

w , w ∈ W (5)
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where W is the set of words matched, and nw denotes the
number of matches of word w in a way of segmentaion T in
sequence S. For any given sequence, the optimal segmentation
is the one which has the biggest weight product of all the
words segmented by itself.

After finishing the segmentation process, appearance time
of each word in the dictionary is recorded. Thus, the original
sequence can be converted into a vector with the dimension-
ality of dictionary size.

Let segNo and wordLen be two arrays. segNo(pos)
records the number of segments which have been identified
till current position pos. wordLen(pos) records the length of
the word beginning from current character. subStr

pos
len stands

for the substring of length len starting from position pos. The
process of segmentation is described as follows.

Procedure Segment (Data Set T , Dictionary D)
1) For each sequence S in T :
2) V ector(S) = ~0,
3) segNo = ~0,

4) wordLen = ~0.
5) Search(D, S, 1).

# segNo and wordLen are evaluated in this function.
6) Set counter = 0.
7) While(counter ≤ lengthofS):
8) w = subStr

wordLen(counter)
counter ;

9) V ector(S)(Idw)++;
# Idw is the index of w, w ∈ D

10) counter+ = wordLen(counter).
11) End While.
12) End For.
13) Return V ector.

The function Search called at line 5 implement a heuristic
process for searching the optimal way of segmentation for a
given sequence. It is presented in Fig. 2.

III. EXPERIMENTAL RESULTS

We conducted experiments on the dataset published by
Park and Kanehisa [6], which can be obtained at the web-
site http://web.kuicr.kyoto.ac.jp/ park/Seqdata. There are 7579
protein sequences in total, located in 12 subcellular locations:
chloroplast, cytoplasmic, cytoskeleton, endoplasmic reticu-
lum, extracellular, Golgi apparatus, lysosomal, mitochondrial,
nuclear, peroxisomal, plasma membrane and vacuolar. The
distribution of the data set is listed in Table I. All experiments
were performed on a 3GHz Pentium 4 PC with 2GB RAM.

We used K-nearest neighbor (KNN) and support vector
machine (SVM) to predict. Firstly, protein sequences should
be converted into vectors based on our method. Here comes
a problem: how many features should be used? This problem
refers to two parameters in advance. One is the maximum
length of words mentioned in II-B, and the other is the number
of words for a definite length. We aimed to reduce the dimen-
sionality of the feature space with no loss in classification
accuracy. In order to find the best number of features, plenty
of experiments were conducted. There are mainly two lines

TABLE I
DISTRIBUTION OF THE DATA SET

Location Number of sequences
Chloroplast 671
Cytoplasmic 1241
Cytoskeleton 40

Endoplasmic reticulum 114
Extracellular 861

Golgi apparatus 47
Lysosomal 93

Mitochondrial 727
Nuclear 1932

Peroxisomal 125
Plasma membrane 1674

Vacuolar 54
Total 7579

of experiments, namely searching proper number of words for
each length and maximum word length, respectively.

A. Number of Words per Length

Here we specify the maximum word length to 3, the
discussion on which will be given in Subsection III-B. So the
dictionary includes top n frequently occurring 2-tuples and 3-
tuples, respectively, and 20 letters from amino acid alphabet
Φ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,
Y}. The number of dimensions of feature vectors, Dim, can
be expressed as:

Dim =
3∑

l=1

Nl = 2n + 20, (6)

where Nl is the number of words of length l. Let n be
100, 50, 20, 10, 5 and 2, respectively. From (6) we get 220,
120, 60, 40, 30, and 24 features accordingly. The prediction
accuracies using the 6 different kinds of feature vectors as
inputs for KNN are depicted in Fig. 3. The K value of
the KNN classifier varies from 2 to 16. Accuracies are the
averages of 5-fold cross-validation results. And the dictionary
for segmentation is built only on training data.

As for SVM, one-versus-rest strategy was adopted. We used
LibSVM version 2.6 [22] and trained the classifier with a
RBF kernel. The kernel parameter γ and penalty parameter
C were searched from 225 different combinations: γ =
[24, 23, ..., 2−10] and C = [212, 211, 210, ..., 2−2]. Fig. 4 shows
classification accuracy of every dimensionality using SVM
with γ = 0.000977, C = 32 and KNN with K = 2 or 3.

B. Maximum Word Length

In the last subsection, the maximum word length is fixed to
3. Here bigger lengths are assumed. Let MaxLen be 3,4 and
5, respectively, and set the number of words per length to 5.
According to the following equation

Dim =
MaxLen∑

l=1

Nl = 20 + (MaxLen ¡ 1) × 5, (7)
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Procedure Search (Dictionary D , sequence S, Position pos)
1) If pos = N : # N is the total length of the sequence
2) segNo(pos) = 1, wordLen(pos) = 1.
3) Return 1.
4) If segNo(pos) 6= 0:
5) Return segNo(pos). # the character has been analyzed.
6) Set tempSegNo = ~0, subStrLen = ~0, counter = 0.
7) For each len, 1 ≤ len ≤ maxLen:
8) If subStrlen

pos ∈ D:
9) subStrLen(count) = len.

10) tempSegNo(count)=1+Search(D,S, pos + len).
11) count + +.
12) End If.
13) End For.
14) For each j that tempSegNo(j) = min tempSegNo(i), 1 ≤ i ≤ count.
15) Set weightProduct(j) = weight(subStr

subStrLen(j)
pos ), tmpPos = pos + subStrLen(j).

16) While(tmpPos ≤ N ):
17) weightProduct(j) = weightProduct(j) × weight(subStr

wordLen(tmpPos)
tmpPos ).

18) End While.
19) End for.
20) Find k that weightProduct(k) = maxj weightProduct(j).
21) Set wordLen(pos) = subStrLen(k), segNo(pos) = tempSegNo(k).
22) Return segNo(pos).

Fig. 2. The segmentation algorithm
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Fig. 3. Classification accuracy for different dimensions using KNN algo-
rithm.

we can get 30, 35 and 40 features accordingly. The prediction
accuracies using the three different kinds of feature vectors as
inputs for KNN are shown in Fig. 5.

For evaluating the effectiveness of classification, we use
the standard recall, precision and F1 measure [21] for single
classes, and Macroaverage and Microaverage [23] for all
classes. Recall is the ratio of samples belonging to class Ci

classified correctly compared to the number of samples of Ci.
Precision is the ratio of samples belonging to Ci classified
correctly to the number of samples classified into Ci. Let R
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Fig. 4. Classification accuracy for different dimensions using SVM and
KNN with MaxLen set to 3.

stands for recall and P for precision:

R =
tp

tp + fn
, P =

tp

tp + fp
, (8)

where tp, fp and fn denote the number of true positives, false
positives and false negatives, respectively. The F1 measure
corresponds to the harmonic mean of recall and precision in
the following form:

F1 =
2RP

R + P
, (9)

Macroaverage is the average of F1 values of all classes,
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Fig. 5. Classification accuracy for different maximum word-length using
KNN algorithm.

TABLE II
COMPARISON OF MACROAVERAGE AND MICROAVERAGE

Amino acid Segmentation method
composition 3 4 5

Macroaverage 53.4 61.2 60.9 61.4
Microaverage 70.3 74.7 74.5 74.5

and Microaverage can also be calculated by (9) regarding all
classes as one.

The detailed values of recall, precision, F1, Macroaverage
and Microaverage of 12 classes are given in Tables II and III,
which list three different cases of our method, with maximum
word length equal to 3, 4 and 5, respectively, and amino acid
composition for comparison.

As a complementary result, the frequencies of all the 2-
tuples and 3-tuples are depicted in Figs. 6 and 7. We can
find that very few 2-tuples or 3-tuples have extremely high
frequencies, and the same situation occurs at other k-tuples
with k > 3 in our experiment.

From the experimental results, several observations can be
made. Generally, SVM performed better than KNN, about 3%
higher on accuracy when both use the best parameters. Given
a maximum word length, the accuracy drops a little as the
number of features increased, and it falls relatively quickly
using KNN. So adding more words may induce some noise
hurting the accuracy. The maximum word length varying from
3 to 5 differs slightly on the results, which indicates that 3-
tuples may be enough for representing the sequences features.
Thus we can use very few features for classification.

IV. DISCUSSION

A. Criterion for Building Dictionary

In this paper, we predefine a dictionary containing a number
of words for segmenting protein sequences. The criterion for
a k-tuple to be included in the dictionary is its frequency. A
k-tuple occuring more often in the data set is considered to be
a meaningful word which should be separated out. It may take
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Fig. 6. Frequencies of 400 amino acid pairs.
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Fig. 7. Frequencies of 8000 3-tuples.

on some important information, though we know little about
that kind of knowledge at the present state.

Although the experimental results demonstrate the effec-
tiveness of the features extracted by word frequencies, it may
not be considered as the best criterion. As is well known, in
document indexing and retrieval, a lot of criteria for selecting
useful words, such as document frequency, information gain,
mutual information, are adopted rather than word frequency
[24] because some of the frequent words are non-informative
and can even hurt the classification accuracy.

Therefore, we also conducted an experiment on another
measure for word evaluation, tfidf value [25], which is com-
monly used in text categorization. tf denotes term frequency,
and idf denotes inverse document frequency. For the protein
subcellular localization problem, we redefine it as follows. Let
N be the total number of amino acid sequences, and nt be the
number of sequences in which the k-tuple t appears. freqt,S

which stands for tf part is the number of appearance time of
t in sequence S and log N

nt
stands for idf part. Then the tfidf
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TABLE III
SVM CLASSIFICATION ACCURACIES(%) FOR DIFFERENT MAXIMUM WORD LENGTHS, COMPARED WITH AMINO ACID COMPOSITION

Location Amino acid Maximum word length
composition 3 4 5

R P F1 R P F1 R P F1 R P F1

Chloroplast 60.1 60.0 60.0 69.0 66.7 67.8 68.9 66.7 67.7 68.6 66.2 67.4
Cytoplasmic 62.8 60.7 61.5 66.5 65.5 66.0 66.7 65.2 65.9 66.1 65.0 65.5
Cytoskeleton 56.2 63.8 56.0 48.0 89.3 59.0 48.0 89.3 59.0 45.5 89.3 56.6

Endoplasmic reticulum 49.9 52.9 50.4 55.2 70.4 61.3 55.2 71.1 61.9 56.1 70.8 62.2
Extracellular 70.5 72.3 71.4 78.2 77.6 77.9 77.2 77.2 77.2 78.4 78.2 78.2

Golgi apparatus 28.0 39.7 30.9 25.6 41.2 31.4 25.6 40.6 31.2 27.8 43.9 33.8
Lysosomal 62.3 49.9 55.1 65.4 76.3 69.7 65.4 74.1 68.9 66.4 71.6 68.3

Mitochondrial 36.4 51.6 42.4 49.3 60.7 53.9 48.9 59.7 53.2 49.2 58.4 53.2
Nuclear 81.5 75.2 78.2 85.2 74.1 79.21 85.0 74.4 79.3 85.0 74.4 79.4

Peroxisomal 23.9 33.4 27.4 36.7 56.5 44.2 35.2 57.5 43.3 35.9 57.1 43.8
Plasma membrane 90.4 86.8 88.6 88.4 92.5 90.4 88.4 92.2 90.2 88.1 92.3 90.1

Vacuolar 18.2 23.3 19.5 28.4 50.7 33.9 28.4 48.7 33.4 32.0 54.7 38.6

weight wt,S is calculated as follows:

wt,S = freqt,S × log
N

nt
. (10)

And the weight of t, wt, is defined as the maximum value of
wt,S :

wt = max
S∈T

wt,S , (11)

where T denotes the whole data set.
The dictionary is constructed by collecting words with high

tfidf value. Figs. 8 and 9 depict all the tfidf values for 2-
tuples and 3-tuples in descending order. It can be observed
that only a few k-tuples have extremely big tfidf values.

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

Sort Order Number

tf*
id

f

Fig. 8. tfidf values of 400 amino acid pairs

For comparison, we list the words of highest frequencies and
tfidf values in Table IV. The top frequent k-tuples are those
k-copies of a single letter. This is due to that a big number
of substrings like “QQQ. . . QQ” consisting of only one single
letter exist in the data set and we count word frequency in
an overlapping way. Most of the words selected by tfidf are
different from those by frequency, which indicates that many
high frequency words are not concentrated in a few sequences,
but instead spreading over all sequences in the data set.
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Fig. 9. tfidf values of 8000 3-tuples

For evaluating the tfidf measure, we built a dictionary
containing 30 words, with 5 words per length and maxLen

equal to 3. The experiment is conducted on the same data
set used in Section III. In Table V, F1 values by tfidf are
compared with corresponding ones by frequency.

And the Macroaverage and Microaverage obtained by using
tfidf is 60.96% and 74.67%, respectively. These statistics
show no improvement for prediction. And the computation of
tfidf has a higher time and space complexity than frequency.

Therefore, further studies on evaluating informative words
are still needed. Perhaps further improvement may be obtained
by modifying the principles of building dictionary and adjust-
ing the number of features.

B. Comparison with other methods

Since our method does not need external reference data set
or information but only protein sequences, we made compar-
isons with other methods based merely on protein sequences. It
can be found that our segmentation method outperforms amino
acid composition (AAC) on almost all the measures. As for
recall value, which indicate location accuracy, segmentation is
better than AAC at nine locations, three among which increase
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TABLE IV
WORDS SELECTED BY FREQUENCY AND tfidf VALUE

word length tfidf frequency
2 TT, TP, PT, QQ, QT, NN, TQ, MP, PK, PI LL, SS , SL, LS, AA, LA, AL, EE, LG, VL
3 TTT, TPT, PTP, TTP, PTT, TQT, GTQ, PIT, AAA, LLL, SSS, EEE, GGG, QQQ, LLS, SLL,

QTP, TPI LLA, SSL
4 TTTT, PTPT, TPTP, PTTT, TTTP, GTQT, QQQQ, AAAA, SSSS, GGGG, EEEE, PPPP,

TTPI, TPIT, TGTG, TQTP LLLL, NNNN, TTTT,RRRR
5 TPTPT, ITTTT, TTTPI, TQTPT, PTTTP, QQQQQ, AAAAA, GGGGG, SSSSS, EEEEE,

TTPTT, PTPTG, PTGTG, QTPTT, TGTGT NNNNN, PPPPP, SPTSP, TPTPT, YSPTS

TABLE V
F1 VALUES USING FREQUENCY AND tfidf

Location tfidf frequency
Chloroplast 66.3 67.8
Cytoplasmic 65.9 66.0
Cytoskeleton 54.7 59.0

Endoplasmic reticulum 61.9 61.3
Extracellular 78.2 77.9

Golgi apparatus 30.0 31.4
Lysosomal 65.7 69.7

Mitochondrial 54.1 53.9
Nuclear 79.2 79.2

Peroxisomal 48.2 44.2
Plasma membrane 90.3 90.4

Vacuolar 37.0 33.9

more than 10%. F1 is a comprehensive evaluation of recall and
precision. All the F1 values of segmentation are superior to
ACC, with four ones over 10% higher.

In addition, a comparison with other four types of compo-
sitions namely amino acid pair, one gapped amino acid pair,
two gapped amino acid pair and three gapped amino acid pair
mentioned in [6] is given. We implemented them under our
software and hardware environment.

The most obvious advantage of our method is its condensed
feature space, which has much fewer features than the four
amino acid pair methods. All of the amino acid pair methods
have a feature space of 400 dimensions, while segmentation
method achieves satisfactory result only using less than 30
features. Moreover, it performs well under both SVM and
KNN, while as shown in Fig. 10, amino acid pair composition
cannot achieve good results using KNN, about 7% lower
than segmentation at the best situation. The detailed results
by SVM are given in Table VI and VII, with γ = 16 and
C = 256 which are also choosing from 225 combinations. As
for F1 value, our methods have six ones superior to all the four
method with two over 10% higher, and both Microaverage and
Macroaverage are 1% to 5% higher than the four methods.

A conclusion can be drawn that our method can gain a
high accuracy and reduce the dimensionality of feature space
greatly compared with other methods based on counting k-
tuples overlappingly.

V. CONCLUSIONS AND FUTURE WORK

This study focuses on seeking efficient feature extraction
of protein sequences. We aim to develop a general method
for mining the information encoded in enormous protein
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Fig. 10. Comparison with 4 amino acid pair methods using KNN

TABLE VI
MACROAVERAGE AND MICROAVERAGE OF 4 AMINO ACID PAIR METHODS

Method Dimension Macroaverage Microaverage
Amino acid pair 400 58.4 73.6
One gapped pair 400 60.0 73.9
Two gapped pair 400 55.8 72.5

Three gapped pair 400 57.3 72.5
Segmentation 30 61.2 74.7

sequences. Noticing the similarity between Chinese text and
protein sequences, a segmentation method is proposed to sepa-
rate sequences of consecutive characters to words with various
lengths. By counting frequencies of the words segmented, a
protein sequence is converted into a feature vector.

To demonstrate our method, we use the feature vectors to
discriminate proteins in different subcellular locations. The
experiments were conducted on a data set of 7579 proteins
on 12 locations. Experimental results show its high efficiency
especially on feature reduction. It uses very few features, no
more than 30, and achieves an equal and even better accuracy
than the existing methods based on protein sequences which
usually have hundreds of features.

It should be noted that Park and Kanehisa reported that
they achieved an accuracy of 78%, and a much higher
one of 92.4% is obtained by Chou and Cai on the same
data set using GO-FunD-PseAA method [26]. Both of their
approaches use much more features than the segmentation
method. The former involves a voting scheme of four kinds of
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TABLE VII
RESULTS OBTAINED BY 4 AMINO ACID PAIR METHODS

Location Amino acid pair One gapped amino acid pair Two gapped amino acid pair Three gapped amino acid pair
R P F1 R P F1 R P F1 R P F1

Chloroplast 62.8 68.1 65.2 62.0 68.3 65.0 63.1 63.8 63.4 63.2 65.5 64.3
Cytoplasmic 65.0 65.1 65.1 64.7 63.8 64.2 63.0 63.6 63.3 65.0 63.7 64.3
Cytoskeleton 71.3 68.1 68.1 78.9 67.0 71.8 68.5 56.2 61.0 73.8 64.0 67.7

Endoplasmic reticulum 56.2 57.6 56.2 57.8 61.7 59.0 49.2 50.2 49.1 53.5 49.7 51.5
Extracellular 69.7 71.0 70.3 71.3 73.6 72.3 71.8 72.3 72.0 69.6 72.3 70.9

Golgi apparatus 29.8 35.0 31.5 34.0 38.6 35.9 23.6 45.2 29.7 27.3 50.1 30.4
Lysosomal 58.9 55.2 56.6 54.9 56.2 55.0 57.0 59.9 57.6 57.0 51.7 53.9

Mitochondrial 50.4 56.0 53.0 52.4 56.5 54.3 43.2 53.4 47.7 45.0 55.6 49.6
Nuclear 84.5 79.6 82.0 84.1 79.2 81.5 83.9 78.1 80.9 83.8 78.3 80.9

Peroxisomal 27.2 32.9 29.6 29.4 37.0 31.9 27.8 33.1 30.1 29.6 38.4 32.7
Plasma membrane 91.8 89.3 90.6 92.1 90.1 91.1 92.1 69.0 90.5 91.9 88.7 90.3

Vacuolar 30.0 37.1 32.9 31.8 47.1 37.4 21.8 28.5 24.4 26.0 37.5 30.5

amino acid pair compositions. And the latter references other
database, which hybridizes gene ontology, functional domain
composition and pseudo-amino acid composition approach.
As a general method based merely on protein sequences, the
segmentation method can reference the voting schemes and
other information available to improve prediction accuracy in
the future study.

In summary, our method is successful applied to subcellular
localization. Without losing generality, it may be useful in
solving other protein classification problems. In particular,
since a large number of proteins with multiple locations exist,
the multi-locational problem is one of our future works.
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