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Abstract. In this paper, we consider saliency detection problems from
a unique perspective. We provide an implicit representation for the
saliency map using level set evolution (LSE), and then combine LSE
approach with energy functional minimization (EFM). Instead of intro-
ducing sophisticated segmentation procedures, we propose a flexible and
lightweight LSE-EFM framework for saliency detection. The experimen-
tal results demonstrate our method outperforms several existing popular
approaches. We then evaluate several computation strategies indepen-
dently. The comparisons results indicate their effectiveness and strong
abilities in combatting saliency confusions.
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1 Introduction

Saliency detection has drawn much attentions in computer vision society. It aims
to extract anomalous objects and informative structures from images. Recently,
it has been widely employed in computer vision and multimedia applications [1].

In traditional saliency detection, objects are usually extracted through post-
processing of saliency map. For example, Hou and Zhang [2] proposes a simple
thresholding strategy to extract proto-objects from images. Achanta et al. [3]
suggest a widely adopted adaptive thresholding methods one step further. Un-
like the methods mentioned above, Gopalakrishnan et al. [4] formulate saliency
detection as a foreground and background labeling problem.

In this paper, we notice the interpretability of level set methods, which enable
us to readily compute the saliency posterior probability. From this perspective,
we propose a novel method, named as Saliency Level Set Evolution (SLSE), for
separating salient objects and contexts of an image. As a classical method for
shape representation, level set uses the zero level set of a 3D level set function
(LSF) to represent a closed 2D curve [5]. This implicit representation enables
numerical computations without curve and surface parametrization.
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Fig. 1. Saliency level set evolution. (a) An input image and its ground truth; (b) The
initial LSF and its binary map. The red contour marks the zero level set; (c) The LSF
and binary map after 5 iteration rounds; (d) After 30 rounds.

As shown in Fig.1(b), we firstly initialize the level set with real number values.
This enables us to evolve the LSF without explicitly determining the binary
labels. After several rounds of evolution, we obtain the final LSF as shown in
Fig.1(c)-(d). Saliency map is novelly defined as the final normalized LSF.

The main contributions of this paper include:
1) We first provide level set representation for saliency and propose saliency

detection method via LSE. This framework is interpretably plausible and pro-
vides interfaces for further adaptive improvements.

2) Experimental results show that SLSE outperforms many recently proposed
methods in MSAR-1000 [3] and SED1 [6] datasets.

The rest is organized as follows: Section 2 introduces the LSE-EFM formula-
tion. Section 3 demonstrates the experiment results and provides some discus-
sions. Finally, Section 4 gives the conclusion about our work.

2 LSE-EFM Framework

The interpretability of combining LSE with saliency comes from two points: on
the one hand, because of the ill-posed nature of saliency, it is questionable to
directly appoint each pixel a binary label. A more appropriate representation
is to utilize a binary random variable to provide a probability description. On
the other hand, saliency detection can also be viewed as a contour selection i.e.,
to exactly segment out salient objects is equivalent to select contours which
accurately envelope the object regions. Based on these two points, we introduce
the level set framework [5].
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2.1 Level Set Representation

In our formulation, every pixel z of an image I is represented as a 5D vector
I(z) = [G P ]� = [L, a, b, x, y]� where G = [L, a, b] is the value in the CIE
Lab color space [7], and P = [x, y] denotes the position of z. Background and
foreground regions are denoted as R0, R1, respectively. Using the level set ter-
minology, we get: {

z ∈ R0 if φ(z) < 0,

z ∈ R1 if φ(z) ≥ 0,
(1)

where φ is the level set function (LSF) [5]. The set B = {z|φ(z) = 0} is called
the zero level set, which indicates the boundary partitioning of R0 and R1. With
the mapping rule:

C(z) = i if z ∈ Ri, i ∈ {0, 1}, (2)

we get a level set representation based on φ instead of explicitly assigning each
pixel a binary label.

2.2 Energy Functional Minimization

We firstly review the Bayesian framework [8], in which the saliency S of a given
image I is defined as a posterior probability:

S = p(C|I), (3)

where C is the salient region matrix with each element a binary random vari-
able. We take the negative logarithm of the post probability and get the energy
functional E [9] as:

E(C; I) ∼ − log p(C|I) (4)

∼ − log p(I|C)︸ ︷︷ ︸
likelihood term

− log p(C)︸ ︷︷ ︸
prior term

(5)

where log p(I) is independent of C thus omitted. Following [10], the energy func-
tional is defined as a mutual information with a curve length penalty term,

E(C; I) = −|Ω|Î(C; I)︸ ︷︷ ︸
data term

+ α

∮
B
ds︸ ︷︷ ︸

penalty term

(6)

where |Ω| denotes the number of pixels in I, and B is a closed boundary. Î is
the mutual information which can be expanded as:

Î(C; I) = H(I)−
∑
i=0,1

|Ri|
|Ω| H(I|C = i) (7)
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Note the entropy H(I) is also independent of C thus dropped. H(I|C = i) can be
approximated by applying the weak law of large numbers and a nonparametric
kernel density estimation (KDE) [11],

H(I|C = i) = − 1

|Ri|
∫
Ri

log p̂i(I(z))dz (8)

= − 1

|Ri|
∫
Ri

log

(∫
Ri

K(I(ẑ)− I(z))dẑ

)
dz (9)

where p̂i(I(z)) � p(I(z)|z ∈ Ri) indicates the likelihood of observing I(z) when
the pixel z belongs to region Ri, p̂i(I(z)) is estimated employing a fast improved

Gaussian transform [12], and K(x) ∝ exp {− x2

2σ2 } is a Gaussian kernel function.

2.3 Gradient Flow

Since both the energy explanation and the contour explanation are reasonable
in the level set framework, the energy functional can be denoted as E(B) as well
as E(C; I). Thus the gradient flow of E(B) in (4) is

∂E(B)
∂t

=

[
log

p̂0(I(z))

p̂1(I(z))
− ακ

]
N = vN , (10)

where N = ∇φ/|∇φ| is the outward unit normal vector of B, and κ = ∇ ·
(∇φ/|∇φ|) is the curvature of B, which is defined as the divergence of N .

2.4 Saliency Computation

As shown in Fig.1(b), we can initialize the LSF as a central box function. An
alternative is to moderately narrowing the scope by thresholding. This leads to
faster evolution. For thresholding, we adopt OTSU method [13] here.

During the evolution procedure, there exists different strategies. Recall in Sec-
tion 2.1, every pixel is represented as a 5D vector. Actually, luminance contrast
does not contribute as much information as color contrast for saliency [14]. This
leads to weight tuning for luminance, i.e., suppressing the luminance weight
during the evolution. Another cue is that salient objects generally favor more
compact spatial distributions than contexts [15]. This leads to weight tuning for
position. Totally, the p̂i(I(z)) in (8) is modified as:

p̂i(I(z)) � p(I(z)|z ∈ Ri) (11)

= p([ωLL(z), a(z), b(z), ωP iP (z)]�|z ∈ Ri) (12)

In the experiments, we set ωL = 0.15, ωP 0 = 0, and ωP 1 = 0.25. In each iteration,
gradient flow (10) is employed without step searching:

φ(k + 1) = φ(k)−Δ · v (13)

whereΔ = 10 empirically is the step rate. We set the maximum iteration number
as 30, since the convergence is generally very fast in the experiments. Finally,
we normalize the LSF to obtain the saliency map.
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Fig. 2. (a) Average PR curves of different approaches on the MSRA-1000 dataset;
(b) Average precision, recall, and Fβ-measure using the adaptive thresholding. The
proposed SLSE method achieves the best performance.

3 Experiments

3.1 Performance Evaluation

We evaluate our SLSE approach on two benchmarks. One is MSRA-1000, which
contains 1000 natural images selected from the MSRA dataset [16] and accurate
human-labeled ground truth [3]. The other is SED1 [6]. We compare SLSE with
nine baselines following the selection criteria: citation number (IT [17], SR [2],
FT [3]), recency (PISA [18], TD [19], GC[20]), and relation with our approach
(HC, RC [1], SF [15], PISA [18]).

In particular, HC, RC [1] focus on color contrast, SF [15] proposed spatial
distribution cue, and PISA [18] ensemble color and spatial feature. The proposed
SLSE method combines color, spatial and luminance information.

Following [3], we evaluate the performance of each method using two metrics:
the Precision-Recall (PR) curve and the Fβ-measure where β2 = 0.3 as suggested
in [3]. In the first evaluation, each saliency map is segmented by thresholds
varying within [0, 255] and then compared to the ground truth to get PR values.
An average PR curve is generated for each method. In the second evaluation,
each saliency map is segmented by an adaptive threshold. The PR values is used
to calculate their harmonic mean value Fβ-score.

Fig.2 and Fig.3 demonstrate the comparisons on MSRA-1000 and SED1, re-
spectively. As shown in Fig.2, the proposed approach outperforms most methods,
including recently proposed HC, RC [1], TD [19] and GC [20]. Notably, SLSE
performs better than SF [15] and PISA [18] within a wide (near 90%) recall
range, and has comparable performance at high recall rates. While on the SED1
dataset, SLSE also achieves better performance than PISA in both metrics.
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Fig. 3. Evaluation results on the SED1 dataset

(a) Input (b) IT (c) SR (d) FT (e) HC (f) RC (g) SF (h) GC (i) SLSE (j) GT

Fig. 4. Visual comparison of the existing approaches to our method (SLSE) and ground
truth (GT). Here we compare with IT [17], SR [2], FT [3], HC, RC [1], SF [15] and GC
[20]. PISA [18] and TD [19] are not included since there is no public implementation
or result. SLSE consistently generates saliency maps closest to ground truth (GT). See
the text for discussion.

3.2 Visual Comparison

Fig.4 presents a visual comparison. SLSE provides the best results overall. In
particular, we notice that for images with compact bright or shadow regions,
such as the first two examples, all of the existing methods used fail to detect the
object or falsely highlight contexts while SLSE extracts the object accurately.
This validates the consideration about weight tuning for luminance. The third
example contains two seemingly similar objects. Only SLSE correctly highlight
the ground truth object, attributing to the different constraints on object and
background. The last image have relatively more salient context. Most methods
falsely detect the vertical line as a salient object while SLSE not, owing to the
benefits of level set method, which can hold the LSF contour close to the natural
object boundaries.
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Fig. 5. Experimental comparison of different methods on the MSRA-1000 dataset. (a)
PR curves; (b) Average precision, recall, and Fβ-measure.

3.3 Strategy Comparison

We briefly introduce several computation strategies in Section 2.4. For com-
pleteness, we experimentally verify their effects. In Fig.5, we compare results of
employing different strategies on the MSRA-1000 dataset. BLSE denotes basic
LSE without using any strategy; LSET denotes using only thresholding; LSEL
denotes using only luminance tuning; LSEP denotes using only position tuning;
and SLSE represents using all the computation strategies.

From Fig.5, we see that the performance of BLSE is the worst. We notice that
utilizing any single strategy only slightly improves the performance. And the best
result is achieved by SLSE (outperforms the baseline SF [15] method). Following
the comparison, we observe that the strategies assist LSE and are complementary
to each other, providing effective detection cues to visual saliency.

3.4 Discussion

The LSE framework can easily ensemble different cues for saliency detection,
and the computation is independent of the feature dimensionality [12]. We ex-
ploit color, luminance and spatial information here, all of which are low-level
features. Some high-level features, such as shape, text and face should be pru-
dently considered. How to ensemble both high-level and low-level information in
our framework is an open question.

4 Conclusions

In this paper, we have proposed a flexible LSE-EFM framework for saliency
detection. The proposed framework is different from the existing methods and
provides a level set representation for saliency and transforms the evolution into
an EFM problem. The proposed SLSE method is extensively evaluated on two
public datasets and achieves good performance. We have further validated the
computation strategies and the results demonstrate their effectiveness.
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