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Large-Scale Nyström Kernel Matrix Approximation
Using Randomized SVD

Mu Li, Wei Bi, James T. Kwok, and Bao-Liang Lu, Senior Member, IEEE

Abstract— The Nyström method is an efficient technique for
the eigenvalue decomposition of large kernel matrices. However,
to ensure an accurate approximation, a sufficient number of
columns have to be sampled. On very large data sets, the
singular value decomposition (SVD) step on the resultant data
submatrix can quickly dominate the computations and become
prohibitive. In this paper, we propose an accurate and scalable
Nyström scheme that first samples a large column subset from
the input matrix, but then only performs an approximate SVD
on the inner submatrix using the recent randomized low-rank
matrix approximation algorithms. Theoretical analysis shows
that the proposed algorithm is as accurate as the standard
Nyström method that directly performs a large SVD on the inner
submatrix. On the other hand, its time complexity is only as low
as performing a small SVD. Encouraging results are obtained on
a number of large-scale data sets for low-rank approximation.
Moreover, as the most computational expensive steps can be
easily distributed and there is minimal data transfer among the
processors, significant speedup can be further obtained with the
use of multiprocessor and multi-GPU systems.

Index Terms— Distributed computing, graphics processor,
large-scale learning, low-rank matrix approximation, Nyström
method, randomized SVD.

I. INTRODUCTION

IN RECENT YEARS, kernel methods have been success-
fully applied in various real-world problems with highly

complex and nonlinear structures. Well-known examples
include the support vector machine, kernel Fisher discriminant
analysis, and kernel principal component analysis [1]–[3].
In kernel methods, the kernel matrix plays the central role
of describing the similarities among data samples. For appli-
cations in manifold learning and dimensionality reduction,
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the eigenvectors of this kernel matrix can also be used to
reveal intrinsic clustering structures and low-dimensional data
manifolds [4]–[6].

Given a set of n samples, the kernel matrix K is of
size n × n. This quadratic space complexity, together with
the often-involved cubic time complexity, can be demand-
ing in modern big data applications. A useful approach to
reduce these computational burdens is to utilize the decaying
spectra of kernel matrices and perform low-rank approxima-
tion. In other words, K is approximated by GG′, for some
G ∈ R

n×k . With k � n, the complexities associated in the
handling of G is much lower than those with K . The optimal
rank-k approximation (with respect to the spectral or Frobenius
norm) can be obtained by a direct eigenvalue decomposition
of K , and then construct G from the top k eigenvalues and
eigenvectors.

However, standard eigenvalue decomposition algorithms
take O(n3) time, which can again be prohibitive.
Alternatively, one may perform partial singular value
decomposition (SVD) using the Krylov subspace methods,
such as the Arnoldi method [7]. However, time reduction
is significant only when K is sparse and matrix–vector
multiplications can be computed efficiently [8]. Moreover,
it depends heavily on the singular spectrum structure of K .
If there has no sharp jump or gap, convergence of the
Krylov method can be slow and the obtained decomposition
inaccurate. In addition, as the procedure is iterative, the
matrix–vector multiplications involved cannot be performed
in parallel. In addition, if k eigenvalues/eigenvectors are to
be obtained, at least k passes over K will be required, which
can be prohibitive for huge matrices [9].

A more general alternative is to use the Nyström method
[8], [10]–[12]. It selects a subset of m � n columns from K ,
and then uses the correlations between the sampled columns
and the remaining columns to form a low-rank approxi-
mation of the full matrix. Since only a portion of K is
sampled for computation, the time complexity can be reduced
significantly. The space complexity is also smaller as only
the sampled columns need to stored, while all the other
matrices involved in the computation can be efficiently com-
puted from them. This makes the Nyström method highly
scalable. Fowlkes et al. [12] successfully applied it to spectral
clustering for image segmentation. It has also been popularly
used for tasks, such as Gaussian processes [8] and manifold
learning [13]. A number of efficient, classical multidimen-
sional scaling (MDS) algorithms, including the FastMap [14],
MetricMap [15], and Landmark MDS [16], have all been
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shown to be variations of the Nyström algorithm [17]. More
recently, it is further extended for semisupervised learning [18]
and scaling up of nonlinear SVMs [19]–[21].

Computationally, the Nyström method only has to decom-
pose a much smaller m × m matrix, which consists of the
intersection of the selected columns and their corresponding
rows. Obviously, the more columns are sampled, the more
accurate is the resultant approximation. However, there is
a tradeoff between accuracy and efficiency. When the data
set is very large, even that small matrix may no longer be
small in practice. For example, when there are several millions
examples, sampling only 1% of the columns will lead to an
intersection matrix that is larger than 10 000× 10 000.

Instead of using only one Nyström approximation,
Kumar et al. [22] recently proposed the use of an ensemble
of ne Nyström approximators (or experts). Empirically, this
leads to a more accurate approximation, as the total number
of columns sampled is larger than that of a single expert
in standard Nyström. Moreover, its computational cost is
(roughly) only ne times larger.

Recently, a class of randomized algorithms is
proposed for constructing approximate, low-rank matrix
decompositions [9]. It also extends the Monte Carlo
algorithms in [23], on which the analysis of the Nyström
method in [11] is based. Unlike the standard Nyström method
which simply samples a column subset for approximation, it
first constructs a low-dimensional subspace that captures the
action of the input matrix, and then a standard factorization
is performed on the matrix restricted to that subspace.
Althoughit is a randomized algorithm, it is shown that
this can yield an accurate approximation with very high
probability. On the other hand, the algorithm needs to have at
least one pass over the whole input matrix, and is thus more
expensive than the Nyström method, which only accesses
a column subset. On very large data sets, this performance
difference can be significant.

In this paper, we combine the merits of the standard
Nyström method and the randomized SVD algorithm. The
standard Nyström is highly efficient but requires a large
enough number of columns to be sampled, while the ran-
domized SVD algorithm is highly accurate but less efficient.
Motivated by the observation that the ensemble Nyström
algorithm is essentially using a block-diagonal matrix
approximation, we will adopt a large column subset and then
speed up the inner SVD step by randomized SVD. Both
theoretical analysis and experimental results confirm that the
error in the randomized SVD step is more than compensated
for by the ability to use a large column subset, leading to an
efficient and accurate eigenvalue decomposition even for very
large input matrices.

Moreover, the proposed method can be easily extended
for distributed computing that allows the use of more CPUs
and GPUs. However, distributed computing also has some
overheads. First, the network bandwidth and delay are often
1000 times worse than memory-to-CPU transfer, and so data
transmission becomes more expensive. Second, as the nodes
may have different processing speeds, the system needs to
wait for the slowest node (straggler) to complete its update

before the next iteration can proceed. In other words, the
system can only move forward only at the pace of the slowest
node. However, the proposed combination of Nyström and
randomized SVD algorithms is highly suitable for distributed
implementation because:

1) most parts of the Nyström method (except for the SVD
part) can be naturally parallelized;

2) in practice, the randomized SVD algorithm only requires
a few iterations, which significantly reduces the network
traffic and synchronization cost.

The rest of this paper is organized as follows. Section II
first reviews the Nyström and randomized SVD algorithms.
Section III then describes the proposed algorithm, and its the-
oretical analysis. Section IV describes the extension to distrib-
uted environments. Experimental results on single machines,
multiprocessor, and multi-GPU systems are presented in
Section V. Finally, the last section gives some concluding
remarks.

Some preliminary results have been reported in [24].
In addition to providing a more thorough literature review,
this paper contributes the following.

1) Adds a new section on the implementations of the
proposed algorithms on distributed environments.

2) Provides more intuitions and explanations.
3) While the error analysis in [24] holds only for uniform

sampling of the column subset, this is extended to the
more sophisticated non-uniform sampling scheme pro-
posed in [11]. Moreover, technical proofs are included.

4) Provides stronger experimental evidence to demonstrate
the merits of the proposed algorithms, particularly for
its use on large data sets with multiprocessor and
multi-GPU systems.

Notations: The transpose of vector/matrix is denoted by the
superscript T. Moreover, Tr(A) denotes the trace of matrix A =
[Aij ], A+ is its pseudoinverse, ran(A) its range, A(i) is the i th
column of A, ‖A‖2 = max{√λ : λ is an eigenvalue of AT A}
is its spectral norm, ‖A‖F =

√
Tr(AT A) is its Frobe-

nius norm, and σi (A) denotes the i th largest singular value
of A.

II. RELATED WORK

A. Nyström Method

The Nyström method originates from the field of integral
equations [10]. Given a symmetric positive semidefinite (psd)
matrix K ∈ R

n×n , it obtains a low-rank approximation using
a set C of m � n columns sampled from K . Without loss
of generality, we can reorder the columns and rows so that
C and K is written as

C =
[

W
E

]
and K =

[
W ET

E F

]
(1)

where W ∈ R
m×m is the matrix containing the intersection of

C and the corresponding m rows of K , and E ∈ R
(n−m)×m ,

F ∈ R
(n−m)×(n−m). For a given k ≤ m, the Nyström method

generates a rank-k approximation K̃k of K as

K̃k = CW+k CT (2)
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where Wk is the best rank-k approximation of W . Let the
SVD of W be U�U T, where U is an orthonormal matrix and
� = diag(σ1, . . . , σm) is the diagonal matrix containing the
singular values of W in nonincreasing order. Then, W+k =∑k

i=1 σ−1
i U (i)U (i)T

. Recently, the Nyström method is further
generalized to the inductive setting with the incorporation of
side information [25].

Performing SVD on W takes O(m3) time, while the other
matrix multiplications involved above take O(nmk) time.
Thus, the total time complexity is O(m3+nmk). Since m � n,
this is much lower than the O(n3) complexity required by a
direct SVD on K .

In using the Nyström method, an important issue is how
to obtain the sampled columns. First, we introduce some
notations in [26], which will also be used in our proofs. The
sampling matrix is denoted S ∈ R

n×m , where Si j = 1 if the i th
column of K is chosen in the j th trial; and Si j = 0 otherwise.
The matrix

C = K SD (3)

then consists of the sampled columns of G, possibly scaled
by a diagonal matrix D ∈ R

m×m .
The simplest and most common sampling scheme is uniform

sampling, with replacement [8] or without replacement [27].
A variety of more sophisticated sampling schemes have also
been studied. For example, Drineas and Mahoney [11] pro-
posed a nonuniform sampling (with replacement) scheme, in
which column i of K is sampled based on the diagonal element
in that column, with probability

pi = Kii

Tr(K )
. (4)

The j th selected column, denoted s j , is then scaled as
(1/mpsj )

1/2, that is

D = diag

(
1√

mps1

, . . . ,
1√

mpsm

)
. (5)

Ouimet and Bengio [28] studied a greedy sampling scheme
based on the feature space distance between the candidate
column and the span of previously chosen columns.
Farahat et al. [29] proposed to select the column that con-
structs the best rank-1 Nyström approximation of the current
residual matrix. Zhang et al. [21], [30] used k-means cluster-
ing to sample the columns.

Recently, the leverage score has also been used to
define the sampling probabilities [27], [31]–[35]. Specifically,
Drineas et al. [31] defined pi = li/k, where li = ‖(Uk)(i)‖2
is the leverage score, Uk is the matrix containing the k
leading eigenvectors of K , and (Uk)(i) is the i th row of Uk .
However, this requires eigen-decomposition, an operation that
the Nyström algorithm aims to avoid in the first place. Faster
schemes have been proposed to approximate the leverage
scores [32], [33], though they still take O(n2 log n) time,
which is much more expensive than uniform sampling and
the scheme in (4). Moreover, the leverage scores for kernel
matrices of the linear and RBF kernels are relatively uniform,
and empirically simple uniform sampling performs well [33].
Talwalkar and Rostamizadeh [35] studied the connection

between matrix coherence and the performance of the
Nyström method, and explained why nonuniform sampling
may not outperform uniform sampling. An empirical compar-
ison of some of these sampling schemes can be found in [27].
In addition, Wang and Zhang [36] proposed an adaptive sam-
pling scheme and analyzed the sampling error. Furthermore,
Yang et al. [37] discussed the difference of sampling strategy
between the Nyström method and the random Fourier features.

B. Ensemble Nyström Algorithm

Instead of using one column subset, the ensemble Nyström
method [22] repeats the column sampling procedure
ne > 1 times, producing a total of ne Nyström approximations
which are then combined together. Specifically, let me be the
number of columns sampled by each base learner (Nyström
approximator), and C = [C(1), . . . , C(ne)] ∈ R

n×mene , with
each C(i) ∈ R

n×me , be the matrix that contains all the sampled
columns. For each C(i), we obtain its rank-k approximation
K̃ (i)

k by the Nyström method. Finally, the obtained approxi-
mations are weighted to form an ensemble approximation as

K̃ ens =
ne∑

i=1

μi K̃ (i)
k (6)

where μi ’s are the mixture weights. A number of choices for
μi ’s has been investigated [22]. Empirically, the best choice
is based on ridge regression, which optimizes a regression
objective involving the μi ’s over a validation set of columns.
The total time complexity of the ensemble Nyström method is

O(nnemek + nem3
e + Cµ) (7)

where Cµ is the cost of computing the mixture weights.
The above assumes that the ensemble Nyström method is

implemented on one single machine. Typically, it is more
computationally attractive when used in a parallel computing
environment, with each base approximator being run indepen-
dently on a separate machine. The ne factor in (7) can then be
removed, and the complexity reduces to O(nmek+m3

e+Cμ).

C. Randomized Low-Rank Approximation

Recently, Halko et al. [9] presented a class of simple
but highly efficient randomized algorithms for computing
low-rank matrix approximations. Given a matrix W , these
randomized algorithms operate in two stages. First, using
random sampling, it constructs a low-dimensional subspace
to approximate the range of W . In the second stage, W is
restricted to the obtained subspace and a standard decomposi-
tion (e.g., QR and SVD) of the reduced matrix is computed.

In the following, we elaborate on the procedure to obtain
the rank-k SVD of a real1 symmetric matrix W ∈ R

m×m .
Specifically, we first generate an m × (k + p) standard
Gaussian random matrix � (i.e., each entry of � is an
independent Gaussian random variable with mean zero and
variance one). We then form the matrix Y = W� and construct
a matrix Q whose columns form an orthogonal basis for

1In general, W can be a complex-valued rectangular matrix.
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Algorithm 1 Randomized SVD [9]

Input: symmetric matrix W ∈ R
m×m , rank k, over-sampling

parameter p, power parameter q .
Output: U , �.
1: �← a m × (k + p) standard Gaussian random matrix;
2: Z ← W�, Y ← W q−1 Z ;
3: find an orthonormal matrix Q (e.g., by QR decomposition)

such that Y = QQT Y ;
4: solve B(QT �) = QT Z ;
5: perform SVD on B to obtain V �V T = B;
6: U ← QV .

the range of Y (e.g., by QR decomposition). The number
of columns in � is often set to be slightly higher than the
required rank k by an over-sampling parameter p. Typically,
p is a small number such as 5 or 10, and enables Y = W�
to have a better chance to span the k-dimensional subspace
of W . In some applications, the spectrum of W may decay
slowly, and the above scheme will produce a poor basis. To
address this problem, one can left-multiply W� by W q−1

(i.e., Y = W q−1 Z , where Z = W�), where q is the number
of steps of the power iteration (typically a small integer, such
as 1 or 2). Y then has the same singular vectors as W , but its
singular values decay much faster as σi (Y ) = σi (W )q.

In the second stage, W is restricted to the obtained subspace
from Y , leading to the reduced matrix B = QT W Q. A stan-
dard SVD is computed on B to obtain V �V T. The SVD of
W can then be approximated as

W 	 QB QT = (QV )�(QV )T . (8)

The whole randomized SVD procedure is shown
in Algorithm 1. As can be seen, it is easy to implement and
can be applied on large-scale problems. On the theoretical
side, it also has bounds guaranteeing its approximation errors.
However, since it needs to have at least one pass over the
whole input matrix, it is computationally more expensive than
Nyström-based methods that only access a column subset.
Specifically, it takes O(m2k) time2 to compute Z and Y ,
O(mk) time for the QR decomposition, O(mk2) time to
obtain B , and O(k3) time for the SVD. Hence, the total time
complexity is O(m2k + k3), which is quadratic in m.

III. COMBINING NYSTRÖM WITH RANDOMIZED SVD

Obviously, the more columns are sampled, the more accu-
rate is the Nyström approximation. Hence, the ensemble
Nyström method samples a total of mne columns, instead of
m columns for a single Nyström approximation. However,
there is a tradeoff between accuracy and efficiency. If the
standard Nyström method were used, this would have taken
O(m3n3

e) time for the SVD of the mne×mne W matrix.3 The
ensemble Nyström method alleviates this problem by replacing
the expensive SVD by ne SVDs on smaller m × m matrices.

2Here, we compute Y by multiplying W to a sequence of m × (k + p)
matrices, as W Z , W (W Z), . . . , W (Wq−2 Z).

3This matrix will be denoted W(mne) in the sequel.

Algorithm 2 Proposed Algorithm

Input: Psd matrix K ∈ R
n×n , sampling matrix S ∈ R

n×m ,
scaling matrix D = diag{d1, . . . , dm} ∈ R

m×m , rank k,
over-sampling parameter p, power parameter q .

Output: U and �.
1: C ← K SD; // sampled, scaled columns of K
2: W ← DST C; // m ×m scaled submatrix
3: [Ũ,�] ← randsvd(W, k, p, q) using Algorithm 1;
4: U ← CŨ�+.

Our key observation is that, using (2), the ensemble Nyström
approximation in (6) can be rewritten as

K̃ ens = C diag
(
μ1

(
W (1)

k

)+
, . . . , μne

(
W (ne)

k

)+)
CT (9)

where W (i)
k ∈ R

m×m is the W matrix in (1) correspond-
ing to K̃ (i)

k , and diag(μ1(W (1)
k )+, . . . , μne (W (ne)

k )+) is the
block-diagonal matrix

⎡

⎢
⎣

μ1
(
W (1)

k

)+
. . .

μne

(
W (ne)

k

)+

⎤

⎥
⎦.

In other words, the ensemble Nyström algorithm can be
equivalently viewed as approximating W+(mne)

by the

block-diagonal matrix diag(μ1(W (1)
k )+, . . . , μne (W (ne)

k )+).
Despite the simplicity in (9), which allows the computations
of (W (i)

k )+’s to be distributed over parallel machines, the
inverse of a block-diagonal matrix is another block-diagonal
matrix. Hence, no matter how sophisticated the mixture
weights [μi ’s in (9)] are estimated, this block-diagonality
approximation is rarely valid unless W(mne) is block diagonal.
This, however, is highly unlikely in typical applications of the
Nyström method.

As pointed out in [27], one can replace the base algorithm
in the ensemble (which is a standard Nyström algorithm)
with better Nyström variants. In the following, we propose a
novel approach that can obtain better performance in an effi-
cient manner. As inspired by the ensemble Nyström method,
the proposed method will also sample more columns, or,
equivalently, use a m 
 k that is much larger than the
one typically used in the standard Nyström method. However,
instead of using the block-diagonality simplification to decom-
pose and distribute the smaller SVD problems over parallel
machines, we will use a more accurate procedure to solve the
large SVD problem directly on a serial machine. In particular,
we will adopt the randomized low-rank matrix approximation
technique reviewed in Section II-C.

The proposed algorithm is shown in Algorithm 2.
Essentially, it combines the high efficiency of the Nyström
method, which, however, requires a large enough column
subset for accurate approximation, with the ability of the
randomized algorithm to produce a very accurate SVD but still
relatively efficient approximation. Using the approximate SVD
W 	 Ũ�Ũ T obtained in Step 3, K can be approximated as

K 	 K̂ = CŨ�+Ũ T CT = (CŨ�+)�(CŨ�+)T . (10)
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TABLE I

TIME COMPLEXITIES FOR THE VARIOUS METHODS TO

OBTAIN A RANK-k NYSTRÖM APPROXIMATION

OF AN n × n MATRIX, WITH n 
 m

Instead of using the randomized SVD algorithm for the
inner SVD, one might want to apply other approximations,
such as using the standard Nyström method again. However,
the Nyström method is not good at approximating the trailing
eigenvalues, which are important in computing the inverse
of W . Preliminary experiments show that in order for the resul-
tant approximation on K to be accurate, the inner Nyström
needs to sample close to m columns, which, however, will
lead to little speedup over a standard SVD.

A. Time Complexity

The proposed algorithm is much more efficient than the
standard Nyström method. Recall that the time complexity
of the standard Nyström is O(nmk + m3). The O(m3) term
resulting from the SVD step is now replaced by O(m2k+ k3)
for the randomized SVD step in the proposed algorithm.
Hence, its time complexity is O(nmk + m2k + k3), which
is much more efficient than the standard Nyström method as
m ≥ k.

A summary of the time complexities of the various methods
is shown in Table I. Recall that n 
 m. All the methods
scale linearly with n, except for randomized SVD which scales
quadratically with n.

Moreover, if the total number of columns sampled in the
ensemble Nyström method is the same as those in the other
methods (i.e., neme = m), its complexity can be rewritten as
O(nmk + mm2

e + Cμ) for the serial implementation. If we
further assume that me 	 k, this further reduces to O(nmk +
mk2 + Cμ), which is of the same order as the proposed
algorithm. Recall, however, that the ensemble Nyström relies
on the block-diagonality simplification, its approximation error
might be larger than the proposed algorithm, unless the block-
diagonality assumption is satisfied.

B. Error Analysis

In this section, we show that the proposed algorithm, which
only performs an approximate SVD on the W matrix, is as
accurate as the standard Nyström method, which performs an
exact, but much more expensive SVD.

Recall from (3) that C = K SD contains the sampled
columns of K scaled by D. Assume that K = X T X. Then,
H = X SD contains the corresponding sampled columns of
X scaled by D. Moreover, C = X T H, W = H T H.

1) Approximation Error With Respect to the Spectral Norm
Theorem 1: For the K̂ in (10), E ‖K − K̂‖2 ≤ ζ 1/q‖K −
Kk‖2 + (1 + ζ 1/q) E ‖X X T − H H T‖2, where Kk is the

best rank-k approximation of K , and ζ = 1 + √k/p − 1 +
e
√

k + p/p
√

m − k.
Proof is in Appendix A. Note that this upper bounds

the approximation error irrespective of the column sampling
scheme, which is determined by E ‖X X T − H H T‖2. The
following two corollaries apply this theorem to the sampling
schemes of [8] and [11], respectively.

Corollary 1: If we choose the columns of K uniformly at
random without replacement and D = √n/m I (where I is
the identity matrix), then

E ‖K − K̂‖2 ≤ ζ 1/q‖K − Kk‖2 + (1+ ζ 1/q)
n√
m

K ∗ii (11)

where K ∗ii = maxi Kii .
Proof: Result follows on substituting in Corollary 5.

Remark 1: As shown in [9], the power iteration drives ζ 1/q

toward 1 exponentially fast as q increases, and so the error
in (11) decreases with the number of sampled columns m.
In particular, if we replace ζ 1/q by 1, then the right-hand side
of (11) becomes ‖K −Kk‖2 + 2n/

√
mK ∗ii , which is the same

as that for the standard Nyström method using m columns (this
can be obtained by combining (6) and (10) in [22]). In other
words, Algorithm 2 is as accurate as performing a large SVD
in the standard Nyström method.

Corollary 2: If we choose the columns of K according to
probabilities defined in (4) and the scaling matrix D in (5),
then

E ‖K − K̂‖2 ≤ ζ 1/q‖K − Kk‖2 + (1+ ζ 1/q)
1√
m

Tr(K ).

Proof: Result follows on substituting in Corollary 6.
2) Approximation Error With Respect to the Frobenius

Norm: A similar bound can be obtained for the approximation
error in terms of the Frobenius norm. However, since there
is no analogous theory for power iteration with respect to
the Frobenius norm [9, Remark 10.1], the analysis here is
restricted to q = 1 and the resultant bound is quite loose.
However, as will be observed in Section V, empirically the
approximation with just q = 2 is already very good.

Theorem 2: For the K̂ in (10)

E ‖K − K̂‖F ≤
∑

i>k+p

σi (K )+ 2ζF‖K − Kk‖F

+ 4ζF E ‖X X T − H H T‖F (12)

where Kk is the best rank-k approximation of K , and
ζF = k + p/

√
p − 1.

The proof is in Appendix B. As in Section III-B, the
upper bound in Theorem 2 can be applied to various column
sampling schemes.

Lemma 1:
∑

i>k+p σi (K ) ≤ nK ∗ii.
Corollary 3: If we choose the columns of K uniformly

at random without replacement and D = √n/m I , then
E ‖K − K̂‖F ≤ 2ζF‖K − Kk‖F + (1+ 4ζF/

√
m)nK ∗ii , where

K ∗ii = maxi Kii .
Proof: Result follows on substituting in the results in

Corollary 5 and Lemma 1.
Corollary 4: If we choose the columns of K according to

probabilities defined in (4) and the scaling matrix D in (5),
then E ‖K − K̂‖F ≤ 2ζF‖K − Kk‖F + (1+ 4ζF/

√
m) Tr(K ).
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Algorithm 3 Template for Distributing the Nyström Algorithm
on N Nodes
1: divide all data points into N parts {X1, . . . , X N };
2: for node i = 1, 2, . . . , N do // in parallel
3: get the i th part of the data Xi ;
4: get the m sampled points S, and the rank-k approximation

of the corresponding m×m kernel matrix W ≈ Ũ�Ũ T ;
5: compute kernel submatrix Ci between Xi and S;
6: compute Ui ← Ci Ũ�+;
7: end for
8: aggregate U ← [U1, . . . , UN ].

Proof: Result follows on substituting in the results in
Corollary 6 and Lemma 1.

IV. DISTRIBUTED IMPLEMENTATION

In this section, we discuss the parallelization of the
Nyström method in a distributed environment. This may be
a multiprocessor system, in which each processing node has
one or a few CPUs sharing the same main memory and
stores different subsets of the data. Another popular setup
is a multi-GPU system. As is well known, GPUs are most
suitable for compute intensive, memory intensive, and highly
parallel computations. The single precision (SP) and double
precision (DP) floating point performance (FLOPS) of GPUs,
as well as its memory bandwidth, typically far exceed those
of state-of-the-art CPUs. Taking the NVIDIA Tesla C1060
GPU card as an example. Each card contains a T10 GPU,
which is equipped with 240 streaming processor cores and can
achieve 933 SP GFLOPS and 78 DP GFLOPS (peak), together
with 102 GB/s memory bandwidth. In contrast, the Intel Core
i7-980X CPU has 6 cores with a 3.3-GHz clock rate, and thus
only 158.4 SP GFLOPS and 79.2 DP GFLOPS (peak), and
25.6 GB/s maximum memory bandwidth. A modern machine
often holds up to 4 GPUs.

To fully demonstrate the advantages of distributed comput-
ing, the algorithm must achieve two criteria. First, data transfer
between the different nodes should be minimal. Second, the
computations should be easily parallelized.

A. Template Distributed Nyström Algorithm

Algorithm 3 shows a template for the distributed Nyström
method. Note from the standard version (Algorithm 2) that C ,
the matrix containing the sampled columns, is of size n × m,
and thus may not fit into the node’s memory (where the node
can be a processing node in a multiprocessor system or a
GPU card in a multi-GPU system) when n is very large.
Hence, in Algorithm 3, the sampled data points (denoted S),
but not the sampled columns of the kernel matrix, are stored
in each node. The kernel evaluations between each sampled
point and the rest of the data samples are computed on-the-fly.
Specifically, the input data set is divided among the N nodes,
as {X1, . . . , X N }. Matrix U in Step 4 of Algorithm 2 can then
be obtained as

U = CŨ�+ = [C1Ũ�+;C2Ũ�+; . . . ;CN Ũ�+] (13)

Fig. 1. Splitting the data into blocks in a distributed Nyström implementation.

where Ci is the kernel submatrix between Xi and S. A graph-
ical representation is shown in Fig. 1. Note that Step 4 also
requires a procedure to compute the rank-k approximation of
the sampled m × m matrix W , which will be discussed in
Section IV-B.

For very large data sets, node i ’s memory may not be
sufficient to store both Xi and Ui . In this case, one can
store Xi in some slower storage (such as hard-disk for a
processing node or main memory for a GPU card). Iteratively,
a row block of Xi is loaded, the corresponding submatrix
of Ci computed, and subsequently the corresponding row
block of Ui is computed and transferred back to the main
memory, disk, or a distributed storage, such as Hadoop Dis-
tributed File System (HDFS). Finally, all the row blocks
of Ui are combined to form U . To hide the communica-
tion cost, one can also perform prefetch and transfer in the
background.

The most costly steps in Algorithm 3 are on computing
the kernel submatrices Ci s and obtaining Ui . Since most
kernel functions (such as the linear and Gaussian kernels)
involve simple vector inner products or distances, computa-
tion of Ci can be easily parallelized when GPUs are used.
For the computation of Ui , it involves only matrix–matrix
multiplication, which can again be efficiently handled4 by
GPUs.

B. Obtaining the Rank-k Approximation of W

The rank-k approximation in Step 4 of Algorithm 3 can be
computed in a single node (say, node 0), and then broadcast
the result to all the nodes. However, W may be too large to
be efficiently processed by one single machine, and requiring
all the other nodes to wait for the completion of W may
be wasteful. This can be alleviated using the distributed
randomized SVD procedure shown in Algorithm 4. Note that
during the gather operation (Steps 7 and 11), a synchronization

4Empirically, matrix–matrix multiplications can achieve 60% of peak
SP FLOPS and 97% of peak DP FLOPS on NVIDIA GPUs [38].
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Algorithm 4 Distributed Randomized SVD on N Nodes
1: divide m sampled points into N parts, with mi points in

part i ;
2: for node i = 1, 2, . . . , N do // in parallel
3: get all m sampled points S;
4: compute the mi × m kernel submatrix Wi between

Si and S;
5: draw a m× (k+ p) standard Gaussian random matrix �

with the same random seed shared by all nodes;
6: Zi ← Wi�;
7: gather Z ← [Z1; . . . , Z N ];
8: Y ← Z
9: for j = 1, . . . , q − 1 do

10: Yi = Wi Y ;
11: gather Y ← [Y1; . . . , YN ];
12: end for
13: end for
14: obtain U by performing Steps 4–6 of Algorithm 1

in node 1.

TABLE II

TIME COMPLEXITIES FOR THE VARIOUS NYSTRÖM-BASED METHODS

WHEN IMPLEMENTED ON N NODES, WHERE T (D) IS THE

COMMUNICATION COST FOR TRANSFERRING D

AMOUNT OF DATA

barrier is imposed on all the nodes [39] and a single node
collects the partial results from each node. On the other hand,
distributed SVD algorithms [40] can also be used. However,
the iterative nature of these solvers may lead to significant
synchronization overhead.

C. Time Complexity

Table II shows the time complexities for the various
Nyström-based methods when implemented on N nodes,
where T (D) is the communication cost for transferring D
amount of data. For the ensemble Nyström algorithm, its
total number of columns sampled is the same as that in the
nonensemble version, i.e., neme = m. This ensures the time
for computing the U matrix (which dominates the running
time, as will be observed in Fig. 5 and Fig. 7) is the same
[i.e., O(nmk/N)] across all the methods.

As can be seen, the time complexity is again reduced
with the use of the proposed method. Moreover, note that all
methods have the same communication cost. The dominating
term might be T (mk), as all the nodes have to wait. For the
second term, nodes can do data transmission in the background
without affecting the computation.

TABLE III

DATA SETS USED

V. EXPERIMENTS

A. Experiments on Single Machine

In this section, we study the efficiency of the proposed
method in solving the large dense eigen-systems in
low-rank approximation. All the implementations are in
MATLAB. Experiments are run on a PC with an Intel Core
i7-3770 3.4-GHz CPU and 32-G memory.

We use a number of data sets from the LIBSVM
archive5 (Table III). The linear kernel is used for the RCV1
text data set, and the Gaussian kernel for the others. The
following methods are compared.

1) Standard Nyström method [8] (denoted nys).
2) The proposed method in Algorithm 2 (denoted ours):

we fix the over-sampling p to 5, and the power
parameter q to 2.

3) Nyström method using the Arnoldi method [7] [denoted
nys(krylov)].

4) Randomized SVD (denoted r-svd) [9]: similar to the
proposed method, we also use p = 5 and q = 2.

For the Nyström-based methods (i.e., the first three meth-
ods above), the columns are sampled uniformly without
replacement. This has been shown to perform well for kernel
matrices of the linear and Gaussian kernels [33]. Due to
randomness in the sampling process, we perform 10 repeti-
tions and report the averaged result. As for the randomized
SVD algorithm, there is no sampling and the whole input
matrix is always used. The best rank-k approximation could
have been obtained by a direct SVD on the whole input matrix.
However, this is computationally expensive, even on medium-
sized data sets, and so is not compared here.

1) Different Numbers of Columns: In the first experiment,
we fix k = 600 and gradually increase the number of sampled
columns (m). Fig. 2 shows the relative approximation error
‖K − K̂‖F/‖K‖F with time. As can be seen, the randomized
SVD algorithm is often the most accurate, albeit also the
most expensive. For the Nyström variants, their approximation
errors decrease with the number of sampled columns m. The
Nyström method can be as accurate as randomized SVD when
m is large enough. However, since Nyström takes O(m3) time
for the SVD step, it also quickly becomes computationally
infeasible. The proposed method is almost as accurate as
standard Nyström, but is faster.

2) Different Ranks: In the second experiment, we study
the approximation performance on the MNIST data set when
the desired rank (k) varies. As can be observed from Fig. 3,
when k increases, the approximation error decreases, while the

5http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Fig. 2. Relative approximation errors of the various methods versus time.
Each point on the curve corresponds to a fixed number of sampled columns.
The randomized SVD algorithm cannot be run on the covtype data set because
it is too large.

Fig. 3. Relative approximation errors with time on the MNIST data set.
Each point on the curve corresponds to a fixed number of sampled columns.

time increases across all methods. Hence, there is a tradeoff
between accuracy and efficiency. Nevertheless, the relative
performance comparison among the various methods is still
the same as in Section V-A1.

B. Speedup With GPUs

In this section, we demonstrate the speedup that can be
achieved on GPUs. Experiments are performed on a machine
with two Intel Xeon X5560 2.8-GHz CPUs, 32-G RAM, and

TABLE IV

TIME (IN SECONDS) USED BY THE PROPOSED METHOD

ON THE MNIST-8 M DATA SET WITH VARYING

NUMBER OF SAMPLES n

Fig. 4. Speed of the proposed method on the MNIST-8 M data set. (a) GPU
speedup versus number of GPUs. (b) Time versus number of samples.

Fig. 5. Breakdown of the time consumption by the proposed method and
the Nyström method on the GPU, with varying number of sampled columns.
(a) Proposed method. (b) Standard Nyström.

four NVIDIA Tesla C1060 GPU cards. We implement our
GPU-based algorithm with MATLAB2013a’s parallel comput-
ing toolbox, which enables standard MATLAB code to be run
on NVIDIA CUDA-supported GPUs.

We use the MNIST-8 M data set, and set k = 600,
m = 6000. Table IV compares the time used by the proposed
method when it is run on the CPU and GPU, respectively, with
the number of samples varied from 80 K to 8.1 M. As can
be seen, running on the GPU is much faster that running on
the CPU. Fig. 4(a) shows the corresponding speedup factors,
and Fig. 4(b) shows the variation of time versus n. As can be
seen, the speedup scales linearly with the number of GPUs
used, and the time increases linearly with n.

Fig. 5(a) shows a breakdown of the GPU time when m
is varied from 2000 to 10 000 (with k = 600). Recall that
we only need to: 1) transfer the m sampled points from the
CPU to the GPU and 2) transfer the obtained U from GPU
back to CPU. Given the high data transfer bandwidth6 between

6According to http://wiki.accelereyes.com/wiki/index.php/GPU_Memory_
Transfer, the CPU-to-GPU data transfer rate is 2.5 GB/s, while that for
GPU-to-CPU is 3.9 GB/s. They are close to the rates of our machine.
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Fig. 6. Relative approximation errors on the MNIST-8.1 M in various multi-GPU and multiprocessor environments. Each point on the curve corresponds to
a fixed number of sampled columns. (a) 2CPU–4GPU. (b) 64CPU. (c) 64CPU–16GPU.

TABLE V

CPU AND GPU COMPARISON ON THE MNIST-8 M DATA SET,

WITH VARYING NUMBER OF SAMPLED COLUMNS m

CPU and GPU, the time spent on data transfer here takes just
about 1.5 s and is thus negligible. As can be seen, most of the
time is spent on computing U , which grows linearly with m.
Consequently, the total time also scales linearly with m. The
standard Nyström algorithm can also benefit by running on
the GPU, and results are shown in Fig. 5(b). In contrast to
the proposed method [Fig. 5(a)], the time is now dominated
by the SVD decomposition step. This again demonstrates
the advantage in using the randomized SVD algorithm to
approximate the inverse of W .

As the C1060 GPU has 4-GB memory, it can handle a
maximum m of around 20 000 without causing out-of-memory
problems (a 20 000 × 20 000 kernel submatrix occupies
3.2-G memory). Table V compares the speedups on the
MNIST-8 M full set when m is varied from 2000 to 20 000.
As can be seen, running on GPUs is again much faster at
all values of m, and the speedups are from 32× to 38×.
As discussed above, the time for the proposed method scales
linearly with m. Recall from Table I that the time for the
standard Nyström also scales linearly with m. Hence, as shown
in Table V, the speedup over standard Nyström is close to
constant with respect to m. Moreover, sampling more columns
leads to better approximation error, which is consistent with
the observation in Fig. 2.

C. Multi-CPU and Multi-GPU Environments

In this section, experiments are performed on the following
environments.

1) 2CPU–4GPU configuration: A single machine with two
Intel Xeon X5560 2.8-GHz CPUs, 32-G RAM, and four
NVIDIA Tesla C1060 GPU cards.

2) 64 CPU configuration: A cluster of 16 machines. Each
one has four AMD Opteron 6272 2.1-GHz CPUs
and 128-G RAM. The machines are connected via a
1 G network.

3) 64CPU–16GPU configuration: Same machine as above,
but with each one having a NVIDIA Tesla K20C
Kepler GPU.

The following methods are compared.

1) nys: Standard Nyström method. The distributed Lanczos
algorithm [40] is used to solve the SVD. Its implementa-
tion is essentially the same as Algorithm 4, but involves
more synchronization.

2) ours: The proposed distributed Nyström method
(Algorithm 3), with the distributed randomized SVD
procedure in Algorithm 4.

3) ens+ nys: Ensemble Nyström [22] with nys as the base
learner. As in [22], we use an additional s = 20 columns
for training the mixture weights by ridge regression, and
another s′ = 20 columns for choosing the regularization
parameters. The number of base learners ne is fixed
at 4,7 and the set of CPUs/GPUs are divided evenly
among the base learners.

4) ens + ours: Ensemble Nyström as above, but with the
proposed Nyström algorithm as base learner.

All methods are in C++. Matrix computations are
implemented with the Eigen 3 package8 (which supports
multithreading) on CPUs, and with CUDA9 on GPUs.
The asynchronous distributed framework parameter
server [41], [42] is used to scale these algorithms for
distributed implementation.

Experiments are performed on the MNIST-8 M data set.
We set k = 500, and vary the number of sampled columns (m)
in the range {2× 103, 4× 103, 6× 103, . . . , 24× 103}.

Results on the relative approximation error are shown in
Fig. 6. As can be seen, the approximation errors can all
be reduced to a very low level with a sufficient number of
sampled columns. In particular, ours outperforms nys, and
ens+ ours outperforms ens+ nys. This agrees with the obser-

7Preliminary experiments using ne = 16 on the 64CPU–16GPU configura-
tion lead to much higher approximation errors.

8http://eigen.tuxfamily.org/
9https://developer.nvidia.com/about-cuda
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Fig. 7. Breakdown for the timing results in Fig. 6 (with m = 10 000). (a) 2CPU–4GPU. (b) 64CPU. (c) 64CPU–16GPU.

vations on the single-machine implementations in Section V-A.
Moreover, ours performs better than ens + ours (note that
both are distributed algorithms), with the performance gap
gradually reduces when m is large. As discussed in Section III,
this is because of the block-diagonality assumption used by
ensemble Nyström. In addition, as expected, the use of GPUs
leads to a much faster decrease of the approximation error
[Fig. 6(b) versus (c)]. In addition, the 64CPU configuration
runs (slightly) slower than the 2CPU–4GPU configuration
[Fig. 6(a) versus (b)]. One of the reasons is that data in
the multiprocessor system have to be communicated over a
network, which is far slower than CPU–GPU communication.

A more detailed breakdown of the timing results
(for m = 10 × 103) is shown in Fig. 7. As can be seen,
the proposed distributed randomized SVD algorithm (used
in ours and ens + ours) is much more efficient than the
distributed Lanczos algorithm (used in nys and ens + nys)
in approximating the W matrix. Moreover, though the use of
more GPUs allows all algorithms to run faster, the problem
of straggler, namely, that the system needs to wait for the
slowest node to complete its update before the next iter-
ation can proceed, becomes more severe. In other words,
the system can only move forward only at the pace of
the slowest node, and the communication overhead increases
[Fig. 7(c)].

VI. CONCLUSION

In this paper, we proposed an accurate and scalable Nys-
tröm approximation scheme for very large data sets. It first
samples a large column subset from the input matrix, and
then performs an approximate SVD on the inner subma-
trix using the recent randomized low-rank matrix approx-
imation algorithms. Both theory and experiments demon-
strate that the proposed algorithm is as accurate as the
standard Nyström method that directly performs a large
SVD on the inner submatrix, but with a much lower
time complexity. Moreover, this can be efficiently distrib-
uted for use in environments with multiple CPUs and
multiple GPUs.

APPENDIX

The error analysis will depend on a number of results
in [9], [27] and [43]. For the readers’ convenience, we also

list these in this section. First, the following result is used in
the proof of [9, Proposition 8.6].

Proposition 1 [9]: Suppose that P is an orthogonal pro-
jector, D is a nonnegative diagonal matrix, and integer
q ≥ 1. Then, ‖P DP‖q2 ≤ ‖P Dq P‖2.

Theorem 3 [9, Th. 10.6]: Suppose that A ∈ R
m×n

with singular values σ1 ≥ σ2 ≥ · · · . Choose a target
rank k and an oversampling parameter p ≥ 2, where k +
p ≤ min{m, n}. Draw an n × (k + p) standard Gaussian
matrix �, and construct the sample matrix Y = A�.
Then, E ‖(I − PY )A‖2 ≤ (1 + (k/p − 1)1/2)σk+1 +
e(k + p)1/2/p(

∑
j>k σ 2

j )
1/2, and E ‖(I − PY )A‖F ≤ (1 +

k/p − 1)1/2(
∑

i>k σ 2
i )1/2.

Proposition 2 [27, Corollary 2]: Suppose A ∈ R
m×n .

Choose a set S of size m uniformly at random without
replacement from {1, . . . , n}, and let C be the columns of
A corresponding to indices in S scaled by (n/m)1/2. Then,
EC ‖AAT − CCT ‖F ≤ n/m1/2(maxi ‖A(i)‖)2, where A(i) is
the i th column of A.

Corollary 5: Let K ∗ii = maxi Kii . Then, E ‖X X T −
H H T‖2 ≤ n/

√
mK ∗ii.

The following is a well-known result from matrix
perturbation theory.

Proposition 3 [43]: Given matrices A ∈ R
n×n and

E ∈ R
n×n , then maxi |σi (A + E) − σi (A)| ≤ ‖E‖2, and∑n

i=1(σi (A + E)− σi (A))2 ≤ ‖E‖2F.
Proposition 4 [11, Th. 1]: Suppose A ∈ R

m×n , c ∈
Z
+ such that 1 ≤ c ≤ n and {pi}ni=1 are such that

pk = ‖A(k)‖2/‖A‖2F. Construct C with the Basic Matrix
Multiplication algorithm of [26], and let CCT be an
approximation to AAT. Then, E ‖AAT − CCT ‖F ≤
1/
√

c‖A‖2F.
Corollary 6: E ‖X X T − H H T‖2 ≤ (1/

√
m) Tr(K ).

A. Proof of Theorem 1

First, we introduce the following lemmas.
Lemma 2: Let P be an orthogonal projector and S be a psd

matrix. For integer q ≥ 1, ‖PS‖2 ≤ ‖PSq‖1/q
2 .

Lemma 3: Let U be an orthonormal basis of the range
of matrix R ∈ R

n×k . Then, for any X ∈ R
n×n , ‖X T X −

X T UU T X‖2 ≤ ‖X X T − RRT ‖2.
Proposition 5: In Algorithm 1, the expectation of
‖W − QQT W‖2 (with respect to the randomness in the
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Gaussian random matrix) is

EQ ‖W − QQT W‖2 ≤ ζ 1/qσk+1(W ) (14)

where ζ = 1+ (k/p − 1)1/2 + e(k + p)1/2/p(m − k)1/2.
Proof: Recall that Q in Algorithm 2 is an orthonormal

basis of Y , thus, PY = QQT. First, consider q = 1. Using
Theorem 3 and that

∑m
i=k+1 σ 2

i (W ) ≤ (m − k)σ 2
k+1(W ), we

obtain (14). Now, for integer q > 1, E ‖(I − PY )W‖2 ≤(
E ‖(I − PY )W‖q2

)1/q, on using Hölder’s inequality. Note
that I − PY is also an orthogonal projector. Hence, on using
Lemma 2, we have E ‖(I − PY )W‖2 ≤

(
E ‖(I − PY )B‖2

)1/q,
where B = W q. Using (14) with q = 1 (which has just
been proved), we obtain E ‖(I − PY )W‖2 ≤ (ζσk+1(B))1/q =
ζ 1/qσk+1(W ).

Proof (of Theorem 1): From Algorithm 1 and (8), Ũ�Ũ T =
QB QT = Q(QT W Q)QT. Hence

K̂ = CŨ�+Ũ T CT = C Q(QT W Q)+QT C. (15)

Let R = H Q, where Q is as defined in Algorithm 1. Let UR

be an orthonormal basis of ran(R). From (15)

K̂ = C Q(QT W Q)+QT CT

= X T H Q(QT H T H Q)+QT H T X

= X T PH Q X = X T URU T
R X. (16)

Using Lemma 3, we have ‖K − K̂‖2 = ‖X T X −
X T URU T

R X‖2 ≤ ‖X X T − RRT ‖2 ≤ ‖X X T − H H T‖2 +
‖H H T − RRT ‖2. Then, ‖H H T − RRT ‖2 = ‖H (I −
QQT )H T‖2 ≤ ‖(I − QQT )H T H‖2 = ‖W − QQT W‖2.
Assume H is fixed, then the randomness in ‖H H T −
RRT ‖2 is due to the Gaussian random matrix (i.e., random
variable Q). By Proposition 5, E ‖H H T − RRT ‖2 ≤
E ‖W − QQT W‖2 ≤ ζ 1/qσk+1(W ) = ζ 1/qσk+1(H H T ) ≤
ζ 1/qσk+1(X X T )+ ζ 1/q‖X X T − H H T‖2, where the last step
is due to Proposition 3. Now, we take expectation over both
Q and H (i.e., also including the randomness in selecting
the columns) and putting all these together, we have E ‖K −
K̂‖2 ≤ EH ‖X X T −H H T‖2+EH (EQ|H ‖H H T− RRT ‖2) ≤
ζ 1/qσk+1(X X T )+(1+ζ 1/q) EH ‖X X T−H H T‖2 ≤ ζ 1/q‖K−
Kk‖2+(1+ζ 1/q) E ‖X X T −H H T‖2, where the last step uses
‖K − Kk‖2 = σk+1(K ) = σk+1(X X T ).

B. Proof of Theorem 2

As shown in Section III-B, we first consider the error
in approximating W from Algorithm 1, which is a direct
application of Theorem 3.

Corollary 7: In Algorithm 1, the expectation of
‖W − QQT W‖F with respect to the randomness in
the Gaussian random matrix is EQ ‖W − QQT W‖F ≤
(1+ k/p − 1)1/2(

∑
i>k σ 2

i (W ))1/2.
Next, we introduce the following lemmas.
Lemma 4: Given matrices A ∈ R

n×t and B ∈ R
n×s , with

n ≥ max{s, t}. Then, for any k ≤ min{s, t}, ∑k
i=1(σ

2
i (A) −

σ 2
i (B)) ≤ √k‖AAT − B BT‖F .
Lemma 5: For matrices A ∈ R

n×k and B ∈ R
n×n , with

n ≥ k. Let U be an orthonormal basis of ran(A). Then,∑k
i=1 σ 2

i (A)− ‖U T B‖2F ≤
√

k‖AAT − B BT ‖F .

Lemma 6: Given A ∈ R
n×n , B ∈ R

n×n , and k ≤ n,
we have |(∑i>k σ 2

i (A))1/2− (
∑

i>k σ 2
i (B))1/2| ≤ ‖A− B‖F .

Proof of Theorem 2: Let R = H Q and UR be an
orthonormal basis of ran(R). From (16), ‖K − K̂‖F =
‖X T X − X T URU T

R X‖F . Since I − URU T
R is an orthogonal

projector, it is psd. Thus, for any vector u, uT X T (I −
URU T

R )Xu = (Xu)T (I − URU T
R )(Xu) ≥ 0, and so X T X −

X T URU T
R X is also psd. Moreover

‖K − K̂‖F ≤ Tr
(
X T X − X T URU T

R X
) = ‖X‖2F −

∥
∥U T

R X
∥
∥2

F .

(17)

Using Lemmas 4 and 5

‖X‖2F −
∥
∥U T

R X
∥
∥2

F

=
⎛

⎝‖X‖2F −
k+p∑

i=1

σ 2
i (X)

⎞

⎠+
⎛

⎝
k+p∑

i=1

σ 2
i (X)−

k+p∑

i=1

σ 2
i (H )

⎞

⎠

+
⎛

⎝
k+p∑

i=1

σ 2
i (H )−

k+p∑

i=1

σ 2
i (R)

⎞

⎠

+
⎛

⎝
k+p∑

i=1

σ 2
i (R)− ∥

∥U T
R X

∥
∥2

F

⎞

⎠

≤
∑

i>k+p

σ 2
i (X)+√

k + p‖X X T − H H T‖F

+√
k + p‖H H T − RRT ‖F

+√
k + p‖X X T − RRT ‖F

≤
∑

i>k+p

σ 2
i (X)+ 2

√
k + p‖X X T − H H T‖F

+ 2
√

k + p‖H H T − RRT ‖F . (18)

Let P = I − QQT , which is an orthogonal projector. Then

‖H H T − RRT ‖2F = ‖H H T − H QQT H T‖2F
= Tr(H P H T H P H T ) = ‖P H T H P‖F ≤ ‖P H T H‖F

= ‖H T H − QQT H T H‖2F = ‖W − QQT W‖2F .

Using Corollary 7, and let α = (1 + k/p − 1)1/2, then on
assuming that H is fixed

E ‖H H T − RRT ‖F

= E ‖W − QQT W‖F

≤ α

[
∑

i>k

σ 2
i (W )

]1/2

= α

[
∑

i>k

σ 2
i (H H T )

]1/2

≤ α

[
∑

i>k

σ 2
i (X X T )

]1/2

+ α‖X X T − H H T‖F

= α‖K − Kk‖F + α‖X X T − H H T‖F (19)

on using Lemma 6. Now, taking the randomness of H into
account, and on combining (17)–(19), we obtain

E ‖K − K̂‖F

≤
∑

i>k+p

σi (K )+ 2
√

k + p EH ‖X X T − H H T‖F



LI et al.: LARGE-SCALE NYSTRÖM KERNEL MATRIX 163

+ 2
√

k + p EH
(
EQ|H ‖H H T − RRT ‖)

≤
∑

i>k+p

σi (K )+ 2α
√

k + p‖K − Kk‖F

+ 2(1+ α)
√

k + p E ‖X X T − H H T‖F

≤
∑

i>k+p

σi (K )+ 2(k + p)√
p − 1

‖K − Kk‖F

+ 4(k + p)√
p − 1

E ‖X X T − H H T‖F

where the last inequality is due to α ≥ 1 and α(k + p)1/2 =
((k + p)(k + p − 1)/p − 1)1/2 ≤ k + p/(p − 1)1/2.
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