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Abstract—Addressing the structural and functional variability
between subjects for robust affective brain-computer interface
(aBCI) is challenging but of great importance, since the cali-
bration phase for aBCI is time-consuming. In this paper, we
propose a subject transfer framework for electroencephalogram
(EEG)-based emotion recognition via component analysis. We
compare two state-of-the-art subspace projecting approaches
called transfer component analysis (TCA) and kernel principle
component analysis (KPCA) for subject transfer. The main idea
is to learn a set of transfer components underlying source domain
(source subjects) and target domain (target subject). When
projected to this subspace, the difference of feature distributions
of both domains can be reduced. From the experiments, we show
that the two proposed approaches, TCA and KPCA, can achieve
an improvement on performance with the best mean accuracies of
71.80% and 79.83%, respectively, in comparison of the baseline
of 58.95%. The significant improvement shows the feasibility
and efficiency of our approaches for subject transfer emotion
recognition from EEG signals.
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I. INTRODUCTION

The goal of affective computing (AC) is to narrow the
gap between the highly emotional human and the emotionally
challenged computer with the sensing of emotional states and
the modeling of the emotional processing [1]. Affective brain-
computer interfaces [2], [3] introduce affective factors into
traditional BCI and attempt to detect and recognize emotions
from neurophysiological signals using various methods in AC.
There are two main traditional BCI applications, one is motor
imagery based BCI for patients with spinal cord injury and
stroke as a rehabilitation tool [4]. The other is ERP-based
spelling systems for disabled people as a communicative tool
[5]. In these systems, the rehabilitation training is necessary
but annoying, especially for patients. The negative effect
of fatigue or discomfort when training would degrade the
efficiency of the rehabilitation. It is necessary to fuse BCI
systems with cognitive monitoring, quantifying the fatigue
or discomfort levels, providing valuable information about
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subjects’ emotional states to the BCI systems [6]. With the
quick development of wearable EEG devices and dry electrode
techniques, EEG-based emotion recognition has attracted in-
creasing interest and various studies have shown its feasibility
and effectiveness [7], [8], [9], [10].

To date, most machine learning based BCI systems rely on
a calibration phase to train the models [11]. This calibration
is time-consuming and annoying, especially for real world
applications. The intuitive and straightforward approach is to
train the classifiers on the collected data from a group of
subjects and then make inference on the unseen data from
a new subject. However, it is technically difficult due to the
structural and functional variability between subjects as well
as the nonstationary nature of EEG signals and the inherent
changes of environmental variables [12], [13]. Traditional
machine learning methods need a prior assumption that the
distributions of training data and test data are independently
and identically distributed (i.i.d.). However, due to this vari-
ability from subject to subject, this assumption can not be
always satisfied.

Domain adaptation, one of the branches of transfer learning,
is feasible to address this problem [14], [15]. Here, we
apply the domain adaptation method to EEG-based emotion
recognition across subjects. Let X ∈ X be the EEG recording
of a sample (X, y), here y ∈ Y represents the corresponding
emotion labels. In this case, X = RC×d, C is the number
of channels, and d is the number of time series samples.
Let P (X) be the marginal probability distribution of X .
According to [14], D = {X , P (X)} is a domain, which in
our case is a given subject from which we record the EEG
signals. The source and target domain in this paper share the
same feature space, XS = XT , but the respective marginal
probability distributions are different, P (XS) 6= P (XT ). The
key assumption in most domain adaptation methods is that
P (YS |XS) = P (YT |XT ).

The major problem for subject transfer is how to reduce the
difference between the distributions of the source and target
domain data. It is crucial to extract good feature representa-
tions across subjects for EEG-based emotion recognition [16].
Several researchers proposed various approaches to tackle the
subject to subject variability of EEG. For example, Matthias
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et al. [11] proposed a zero-training method, which can exploit
data from previous sessions in order to learn most of the
calibration parameters. Wojciech et al. [12] proposed an ap-
proach to transfering information about nonstationarities in the
data based on the assumption that principle nonstationarities
are similar between subjects. Their results indicate that their
method achieved an increase in performance and the extracted
patterns allow for meaningful interpretation. Morioka et al.
[13] proposed a method for extracting spatial bases shared by
multiple subjects with dictionary learning. Their approach used
the resting-state activity of target subjects as calibration data
for compensating the variability. However, most of the existing
methods are based on the common spacial patterns (CSP)
methods for the motor imagery task. To our best knowledge,
there are limited reports about the subject transfer for EEG-
based emotion recognition.

In this paper, we apply two feature reduction methods,
called transfer component analysis [17] and kernel principle
analysis [18], to subject transfer emotion recognition from
EEG. Although the distributions of source domain and target
domain in high dimensional space are different, we may find
a low dimensional manifold space where the distributions of
both domains are similar [17]. These two methods try to
learn a set of common transfer components underlying both
the source domain and the target domain. When projected
to this subspace, the difference of feature distributions of
both domains can be reduced. There exists a transformation
φ such that P (φ(XS)) ≈ P (φ(XT )) and P (YS |φ(XS)) ≈
P (YT |φ(XT )). We compare these two subject transfer meth-
ods with the baseline approach (training on the source domain
and the testing directly on target domain). We show that TCA
and KPCA can achieve an improvement on performance with
the best mean accuracies of 71.80% and 79.83%, respectively,
in comparison of the baseline of 58.95%.

II. METHODS

A. Feature Extraction
The raw EEG data is firstly downsampled to 200Hz sam-

pling rate in order to reduce computing complexity. In order
to filter the noise and remove the artifacts, the EEG data is
processed with a bandpass filter between 0.3Hz and 50Hz.
Each channel of EEG data is divided into the same-length
segments of 1s without overlapping. After preprocessing the
raw EEG data, feature extraction and smooth are further
processed on each segment of the EEG data.

According to our previous work [19], differential entropy
(DE) can achieve better performance than conventional EEG
features such as power spectral density. Since DE features have
the balance ability of discriminating the EEG patterns between
low and high frequency energy, we employ the DE features in
this study. If a random variable obeys the Gaussian distribution
N(µ, σ2), the differential entropy can be calculated as follows,

h(X) =−
∫ ∞
−∞

1√
2πσ2

exp
(x− µ)2

2σ2
log

1√
2πσ2

exp
(x− µ)2

2σ2
dx =

1

2
log 2πeσ2.

(1)

We extract the DE features in five frequency bands (delta:
1-3Hz, theta: 4-7Hz, alpha: 8-13Hz, beta: 14-30Hz, gamma:
31-50Hz) with a 256-point short time fourier transform. The
total dimension of DE features of a sample of 62 channels
is 310. It should be noted that there is often contamination
of electromyography (EMG) signals from facial expressions
in EEG data [3], [20], [21]. Although the EEG data is
preprocessed with a bandpass filter, it is also possible that
the mixture of EMG and EEG signals affects the effectiveness
of emotion recognition in later analysis.

B. TCA-based Subject Transfer

Here, we want to find a transformation φ(·) such
that P (φ(XS)) ≈ P (φ(XT )) and P (YS |φ(XS)) ≈
P (YT |φ(XT )). Since we have no labeled data in target domain
(target subject), φ(·) cannot be learned through minimizing
the distance between P (YS |φ(XS)) and P (YT |φ(XT )). Pan
et al. [17] proposed an efficient approach called transfer
component analysis to learn φ(·). An intuitive approach to
find the mapping φ(·) is to minimize the Maximum Mean
Discrepancy (MMD) [22] between the empirical means of the
two domains,

MMD(X ′S , X
′
T ) = ||

1

n1

n1∑
i=1

φ(xSi
)− 1

n2

n2∑
i=1

φ(xTi
)||2H,

(2)
where n1 and n2 represent the sample numbers of source
domain and target domain, respectively. However, it can get
stuck in poor local minima.

TCA is a dimensionality reduction based domain adaptation
method. It embeds both the source and target domain data
into a shared low-dimensional latent space using a mapping φ.
Specially, let the Gram matrices defined on the source domain,
target domain and cross-domain data in the embedded space
be KS,S , KT,T , KS,T , respectively. The kernel matrix K is
defined on all the data as

K =

[
KS,S KS,T

KT,S KT,T

]
∈ R(n1+n2)×(n1+n2). (3)

By virtue of kernel trick, the MMD distance can be rewritten
as tr(KL), where K = [φ(xi)

>φ(xj)], and Lij = 1/n21 if
xi, xj ∈ XS , else Lij = 1/n2

2 if xi, xj ∈ XT , otherwise,

Lij = −(1/n1n2). A matrix
∼
W ∈ R(n1+n2)×m transforms

the empirical kernel map K to an m-dimension space (where
m� n1 + n2). The resultant kernel matrix is

∼
K = (KK−1/2

∼
W (

∼
W
>
K−1/2K)) = KWW>K, (4)

where W = K−1/2
∼
W . With the definition of

∼
K in Eq.(4),

the MMD distance between the empirical means of the two
domain X ′S and X ′T can be rewritten as

Dist(X ′S , X
′
T ) = tr((KWW>K)L) = tr(W>KLKW ).

(5)
A regularization term tr(W>W ) is usually added to control
the complexity of W , while minimizing Eq.(5).
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Besides reducing the difference of the two distributions, φ
should also preserve the data variance that related to the target
learning task. From Eq.(4), the variance of the projected sam-
ples is W>KHKW , where H = In1+n2−(1/(n1+n2))11>
is the centering matrix, 1 ∈ Rn1+n2 is the column vector with
all 1’s, and In1+n2 ∈ R(n1+n2)×(n1+n2) is the identity matrix.

Therefore, the objective function of TCA is

min
W

tr(W>KLKW ) + µtr(W>W )

s.t. W>KHKW = Im
(6)

where µ > 0 is a regularization parameter, and Im ∈ Rm×n

is the identity matrix. According to [17], the solutions W
are the m leading eigenvectors of (KLK + µI)−1KHK,
where m ≤ n1 + n2 − 1. The algorithm of TCA for subject
transfer is summarized in Algorithm 1. We recommend the
readers to refer to [17] for the detailed descriptions of TCA.
After obtaining the transformation matrix W, standard machine
learning methods can be used in this subspace across domain.

Algorithm 1 TCA-based Subject Transfer
input : Source domain data set DS = {(xSi

, ysrci)}n1
i=1, and

target domain data set DT = {xTj}
n2
j=1.

output : Transformation matrix W.
1: Compute kernel matrix K from {xSi}n1i=1 and {xTj}n2j=1,

matrix L, and the centering matrix H .
2: Eigendecompose the matrix (KLK + µI)−1KLK and

select the m leading eigenvectors to construct the trans-
formation matrix W.

3: return tranformation matrix W.

C. KPCA-based subject transfer

Kernel PCA extends standard PCA to nonlinear dimension-
ality reduction with kernel methods [18]. Assume that we
have a nonlinear transformation φ(x) from the original D-
dimensional feature space to an M -dimensional feature space,
where M � D. Each sample xi is projected to a point
φ(xi). The covariance matrix of the projected features can be
calculated by C = 1

N

∑N
i=1 φ(xi)φ(xi)

>. Its eigenvalues and
eigenvectors are given by Cvk = λkvk, where k = 1, 2, ···,M .
Combining these two formulas, we have

1

N

N∑
i=1

φ(xi)φ(xi)
>vk = λkvk, (7)

All solutions vk lie in the span of φ(x1), · · ·, φ(xN ). This
implies that there exist coefficients α1, · · ·, αN such that

vk =
N∑
i=1

αkiφ(xi). (8)

If we define the kernel function κ(xi, xj) = φ(xi)
>φ(xj), and

combine Eq.(7) and Eq.(8), we have

K2ak = λkNKak, (9)

where Ki,j = κ(xi, xj), and ak is the N -dimensional column
vector of αki. αki, which can be obtained by

Kak = λkNak. (10)

Thus the kernel principal components can be calculated by

pk(x) = φ(x)>vk =
N∑
i=1

αkiκ(x, xi). (11)

The Gram matrix
∼
K is used to substitute the kernel matrix K.

The Gram matrix is given by
∼
K = K− 1NK−K1N + 1NK1N , (12)

where 1N is the N × N matrix with all elements equal to
1/N [23]. The algorithm of KPCA for subject transfer is
summarized in Algorithm 2.

Algorithm 2 KPCA-based Subject Transfer
input : Source domain data set DS = {(xSi

, ysrci)}n1i=1, and
target domain data set DT = {xTj

}n2j=1.
output : The kernel principal components pk.

1: Concatenate the source and target domain data sets as the
training data set, {xi}n1+n2

i=1 = [{xSi
}n1i=1; {xTj

}n2j=1].
2: Construct the kernel matrix K from the training data set
{xi}n1+n2

i=1 .

3: Compute the Gram matrix
∼
K using Eq. (12).

4: Compute the vectors ak using Eq. (10) (substitute K with
∼
K).

5: Compute the kernel principal components pk using Eq.
(11).

6: Return the kernel principal components pk.

III. EXPERIMENT SETUP

A. EEG Dataset for Emotion Recognition

In this study, we employ a publicly available EEG dataset
for emotion recognition called SJTU Emotion EEG dataset
(SEED) [24] via the project website1. In SEED, the dataset in-
cludes the EEG data from 15 subjects (7 males and 8 females;
MEAN: 23.27, STD: 2.37) when watching 15 four-minute
emotional film clips and each subject performs the experiments
three times with an interval of about one week. Therefore,
there are totally 45 experiments in the dataset. The movie clips
are carefully chosen as stimuli to help eliciting subjects’ right
emotions from a preliminary study. The categories of emotion
for each clip are defined with the highest ratings of subjects.
The dataset contains three discrete categories of emotions
(positive, neutral, and negative). There are five emotional film
clips for each emotion in one experiment. For each session,
there is a 5s hint that indicates the beginning of next session
before each clip, 45s for self-assessment, and 15s for rest after
each clip. For self-assessment, the subjects are asked to rate
their own emotional reactions in a questionnaire. The EEG is

1http://bcmi.sjtu.edu.cn/∼seed/index.html
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recorded using an ESI NeuroScan System from 62 channels
according to the international 10-20 system. For more detailed
descriptions of SEED, please refer to [24]. The sampling rate
of the preprocessed EEG data is 200Hz. And we compute
the DE features from the preprocessed EEG data with a time
window of one second. There are about 3300 samples for one
experiment.

B. Detailed Parameters for Training

In this section, we present the details of the parameters
for training and the baseline for comparison. We aim to
classify three emotions (positive, neutral and negative) from
EEG signals. For subject transfer for emotion recognition, a
straightforward method is to pool data from all subjects and
employ the leave-one-subject-out cross validation, which has
often been used for evaluating cross-subject performance in
the literature. However, following this way, it is very time
consuming to train the models with all the data from total
subjects, whose sample numbers are up to 153 thousands.
In this study, we randomly select a subset of samples from
14 subjects as the source domain and test the models with
the data from the remaining subject as the target domain
for all three methods. Since the sample numbers of different
classes for each experiment are almost the same, the randomly
selected subset of each class is balanced. Dimensionality
reductions are further performed via the baseline method
(dimension reduction in source domain and target domain
with linear KPCA separately), TCA and KPCA. We further
employ support vector machines with linear kernel and use
new features extracted from different methods as input. We
use Liblinear toolbox [25] to implement SVM classifiers with
linear kernel. We search the parameter space 2[−10:10] with a
step of one for C to find the optimal value for training. All
the algorithms are implemented in the Matlab. We evaluate
how the performance of different methods varies with respect
to the size of subset for training and dimensionality of new
feature spaces.

For TCA, there are three parameters, kernel type with kernel
parameters, regularization parameter µ, and the dimensionality
of latent space D. Unless it is explicitly described, we set
µ = 1 and D = 30. We employ linear and radial basis function
kernels for TCA. The rest of the parameters are kept the same
as [17]. For KPCA, there are two parameters, kernel type with
kernel parameters and the dimensionality of latent space D.
We compare two types of kernels, linear and Gaussian kernels
for KPCA. The Gaussian kernel width is set to 10 in all
experiments. After learning the common transfer components
from the source domain and the target domain using TCA and
KPCA, the projected features of the source subjects and the
target subject in the new subspace are further used to train
linear SVM classifiers for cross-subject emotion recognition.

IV. EXPERIMENT RESULTS

We first compare the performance of three different meth-
ods mentioned above. Table I shows the mean classification
accuracies and standard deviations of the baseline, TCA and
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Fig. 1. The accuracies of three different methods (baseline with all features,
TCA with linear kernel, KPCA with linear kernel) for total 45 experiments.

KPCA methods. For each target subject, we pool all the EEG
features from the remaining 14 subjects and randomly select a
subset of samples as the source domain. Here, we set the size
of subset as 5000. From Table I, we can see that for the same
feature dimension, TCA and KPCA outperform the baseline
method without transfer. Figure 1 shows the accuracies of
the three different methods for total 45 experiments. TCA
and KPCA perform much better than the baseline method in
most experiments. From the results, we can see that TCA and
KPCA can achieve an increase in performance with respect
to the baseline method. This improvement indicates that the
source domain and target domain share common transfer
components in the low-dimensional latent space. The new
extracted features of target domain are separable in the latent
space. Moreover, KPCA with linear kernel achieves the best
performance among these three different methods. EEG data
always contains much noise when collected, specially in dif-
ferent environments. KPCA can denoise when transferring the

TABLE I
CLASSIFICATION ACCURACIES (%) OF THE VARIOUS METHODS (THE

NUMBER INSIDE PARENTHESES IS THE STANDARD DEVIATION)

Method # dim Accuracy

Baseline

310 56.82(13.79)
10 56.87(9.54)
20 54.50(10.38)
30 53.56(10.76)

TCA

linear kernel
10 64.51(12.95)
20 68.36(14.71)
30 69.44(13.48)

RBF kernel
10 65.50(11.44)
20 66.33(11.45)
30 65.37(12.65)

KPCA

linear kernel
10 67.74(9.24)
20 72.54(11.43)
30 77.96(11.93)

Gaussian kernel
10 63.99(12.95)
20 66.04(12.70)
30 66.54(12.64)
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common components between the source and target domains.
Therefore, the classification models learned in the denoised
latent space are more accurate than that of the original feature
space. For kernel function, the linear kernel performs better
than the RBF and Gaussian kernels here. This may imply that
linear kernel is often adequate for high-dimensional EEG data.

Figure 2 shows the comparison results of the baseline, TCA
and KPCA for different dimensionality of the latent space
with the sample subset fixed to 5000. As we can see from
the results, the accuracies of TCA and KPCA increase while
the baseline decreases with the increasing dimensionality of
the latent space. When the dimensions of the latent space are
larger than 30, both TCA and KPCA can achieve relatively
high and stable performance. TCA outperforms KPCA with
very low dimensions (e.g. 3) of the latent space, while KPCA
perform better than TCA with larger dimensions of the latent
space. The performance of KPCA in low-dimensional latent
space fluctuates more than TCA. This may be because KPCA
can only project out noise in the original high-dimensional
space but cannot explicitly reduce the difference between the
source and target domains. However, in higher dimensions of
the latent space, the role of reducing the distance between data
distributions in the two domains may be weaker than that of
filtering the unrelated noise.

Figure 3 shows the comparison results of TCA, KPCA and
the baseline method by varying the numbers of samples ran-
domly selected from the source domain for training. Here, we
employ TCA with linear kernel and KPCA with linear kernel
for comparison. We fixed the dimensionalities of TCA and
KPCA as 30. From the results, we can see that the trends of
the three curves are similar. All the three methods achieve the
highest accuracies with 2000 samples selected from the source
domain. The best mean classification accuracies and standard
deviations of baseline, TCA and KPCA are 58.95%(12.23%),
71.80%(13.99%) and 79.94%(10.32%), respectively. From the
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Fig. 2. Comparison of the baseline method (dimension reduction in source
domain and target domain with linear KPCA separately), TCA and KPCA for
different dimensionality of the latent space.
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Fig. 3. Comparison of TCA, KPCA and the baseline method without
dimensionality reduction by varying the number of samples selected from
the source domain for training.

results, we can see that the performance of three methods
are relatively stable with the varying numbers of samples
randomly selected from the source domain for training. As
can be seen, even with only a few samples selected from
the source domain, the subject-transfer methods via common
components, TCA and KPCA can perform better than the
baseline method.

Figures 4 and 5 show the visualizations of the EEG features
in 3-dimension latent space using TCA and KPCA, respec-
tively. As we can see, the features from each emotion can
be clustered together in the latent space. This indicates that
there exist some common neural patterns for each emotion.
Moreover, the cluster of positive emotion is significantly far
from the other two clusters of neutral and negative emotions,
while the clusters of neutral and negative emotions have much
more overlap. This implies that the neural patterns of neutral
and negative emotions are more similar to each other and it
is easier to recognize positive emotions among these three
emotions. These findings are consistent with our previous
observations [26]. From these two figures, we can also observe
that for each cluster of different emotions, it consists of several
continuous manifold structures with shape like lines. For each
manifold structure, the data points are from the same session
in one experiment. This indicates that there even exist some
variabilities among different recording sessions from the same
experiments. For different experiments from different subjects,
the EEG patterns may suffer with more variabilities. This is
the challenge of robust affective brain-computer interfaces that
we study in this paper.

V. CONCLUSION

In this paper, we have proposed a subject transfer frame-
work for EEG-based emotion recognition via shared com-
mon components. We have applied two domain adaptation
methods called TCA and KPCA to address the structural
and functional variability across subjects. These two methods
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Fig. 4. Visualization of the EEG features of one experiment in 3-dimension
latent space using TCA.
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Fig. 5. Visualization of the EEG features of one experiment in 3-dimensional
latent space using KPCA.

can learn transfer components in a moderate low-dimensional
latent space from the source domain and target domain, where
the difference of feature distributions of both domains can
be reduced. The experimental results show that TCA and
KPCA can achieve an improvement compared to the baseline
method with mean accuracies. Moreover, we have plotted
the visualizations of EEG features in three-dimensional latent
space using TCA and KPCA. The EEG features of different
emotions have specific manifold structures, which indicates
that the neural patterns for different emotions do exist.
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