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Abstract— Slow eye movement (SEM) is reported as a reliable
indicator of sleep onset period (SOP) in sleep researches, but
its characteristics and functions for detecting driving fatigue
have not been fully studied. Through visual observations on ten
subjects’ experimental data, we found that SEMs tend to occur
during eye closure events (ECEs). SEMs accompanied with
alpha wave’s attenuation during simulated driving was observed
in our study. We used box plots to analyze the distribution
of durations of different ECEs to measure sleepiness level.
Experimental results indicate that the ECEs with SEM have
higher duration distribution, representing higher sleepiness
level, especially for those accompanied by alpha wave’s at-
tenuation. This verifies that SEM can be used as a reliable
indicator for recognizing driver’s SOP. In light of this and
considering the possible accompanying of Electroencephalo-
graph (EEG) wave changes, we propose a new algorithm for
detecting SEM, which extracted EEG power related features
from occipital O2 signal to add them into features set of
horizontal Electro-Oculogram (HEOG) signal. Then, maximum
relevance and minimum redundancy (mRMR) method was used
for feature selection and support vector machine (SVM) was
used to classify the SEM class and non-SEM class. Experimental
results demonstrate that using EEG power related features can
improve the algorithm’s accuracy by an average 1.4%. The
feature P(α+θ)/β was ranked highest by mRMR among all EEG
features, indicating the interactive relationship between EEG
waves and SEM.

I. INTRODUCTION

Numerous drivers admit that they have fallen asleep at
the wheel [1]. If the driver lapses into a sleep onset pe-
riod (SOP) [2] without realizing it when performing some
critical driving task is needed at the same time, the risk
of crashing is significantly increased. For this issue, finding
a reliable physiological signal indicator for driver’s SOP is
very meaningful. It is worth noting that slow eye movement
is regarded as a reliable indicator for sleep onset period in a
lot of sleep related studies. Slow rolling eye movements are
mentioned appearing in the transition from wakefulness to
sleep in many sleep scoring manuals [2]. Rechtschaffen and
Kales linked the emergence of SEM to the disappearing of
EEG alpha wave as one indicator of sleep stage 1 [3]. With
eyes closed, SEMs showed negative correlation with EEG
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power in 1-14 Hz frequency range [4], which included alpha
wave frequency range of 8-12 Hz.

However, SEM has received little attention in the field
of driving fatigue detection. In our experiments, we found
SEM almost always occurred in ECEs. Moreover, SEM was
observed to be accompanied by alpha wave’s attenuation on
O2 channel during our simulated driving experiments. This
accompanying of alpha’s attenuation can further verify SEM
as a reliable indicator for SOP, since alpha’s attenuation
is determined to be most valid marker of sleep onset [2],
[5]. But the ECEs with SEM seemed to appear before
the ECEs with alpha’s attenuation in our study. Therefore,
detecting SEM is very useful for driving fatigue detection.
Almost existing algorithms for automatic detecting SEM
were developed in sleep related researches, which used
wavelet energy features or statistical features [6], [7]. Under
simulated driving condition, we proposed approach using
features based on wavelet singularity and combining the
SVM classifier in our previous work [8]. In general, all these
existing methods were based on the analysis of HEOG signal
without using any EEG information. Considering possible
accompanying of EEG wave changes except for alpha wave
change, we propose a new SEM detection algorithm with
EEG power related features in this paper. Moreover, the
feature selection method (mRMR) were used to further
analyze the vital function of EEG power related features.

II. MATERIALS

A. Experiment Procedure

Fig. 1. The placements of all electrodes used in our experiment. Here,
horizontal EOG: HEOG=Hr-Hl and vertical EOG: VEOG=Vu-Vd.

Ten normal students (7 male and 3 female, aged 23 ± 3.4)
who had regular siesta habits were recruited from Shanghai
Jiao Tong University. The starting time of each experiment
was half an hour before their regular sleep time at noon about
at 12:20 and each experiment lasted for more than 2 hours. In
our virtual-reality-based simulated driving environments, the
subject were seated in a real vehicle (without the unnecessary
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Fig. 2. (a) The SEMs with continuous alpha wave in an ECE (about 2-6 s). (b) The SEMs with alpha wave’s attenuation to disappearance in an ECE (about
0.5-9.5 s). SEM appears on two HEOG channels (Hr and Hl, near the outer canthi of eyes), having binocular synchrony with opposed-phase deflections.
An ECE can be determined as the period between the upward trend line caused by closing eyes and the downward trend line caused by reopening eyes
on VEOH signal (VEOG = Vu-Vd). The Short-Time Fourier Transform (STFT) of O2 shows alpha (8-13 Hz) power change over time.

engine and other components) and drove a virtual car in
a virtual four-lane highway scene shown on a big LCD
screen in front of the real vehicle by operating the real
vehicle’s steering wheel and gas pedal. The virtual highway
was mostly straight and monotonous to induce subject fatigue
more easily. During driving, closing eyes deliberately but
without feeling drowsy was strictly prohibited. However, this
did not prevent the occurrences of a large number of ECEs.
Subjects were asked to complete the Epworth Sleepiness
Scale (ESS). Their ESS values were 9.8 ± 1.5.

B. Data and Video Recording

The placements of all electrodes used were shown in
Fig. 1. The data from two HEOG electrodes (Hr, Hl),
two VEOG electrodes (Vu, Vd), and one EEG electrode
(O2) were recorded at a 1000 Hz sampling rate using
the ESI NeuroScan System. A camera was set to monitor
the subject’s face to clearly recognize open or closed eye
states. Both images from the camera and real-time displaying
HEOG/EEG signals in NeuroScan software interface were
displayed on the same computer screen synchronously. The
computer screen image change over time was recorded into
a video file for subsequent reviewing and analysis.

III. METHODS

A. Visual Observation and Statistical Analysis

Any data epoch which meets the following commonly
used visual criteria [7] is scored as SEM epoch; otherwise,
non-SEM epoch. The criteria are: (1) the slow sinusoidal
excursion (0.2-0.6 Hz) lasting more than 1 second; (2)
amplitude between 20 and 200 µV; (3) binocular synchrony
with opposed-phase deflections in the two channels (Hl,
Hr); (4) onsets of SEMs in the right channel (Hr) and in
the left channel (Hl) occur within 300ms of one another;

(5) absence of artifacts in HEOG (Hl-Hr). An eye clo-
sure event (ECE) was determined according to the VEOG
signal changes (Fig. 2 (a)) and recorded videos showing
the correspondence between eye movements and VEOG
signals. We found in ECEs SEMs were often with continuous
alpha wave, and sometimes with alpha’s attenuation on O2
channel. To our best knowledge, the SEM accompanied
by alpha’s attenuation was first observed in our simulated
driving experiments. Through careful observation, we found
that there are three main kinds of ECEs alternately appearing
in driving process: the ECEs without SEM; the ECEs with
SEM and accompanied by continuous alpha (Fig. 2 (a)); and
the ECEs with SEM and accompanied by alpha’s attenuation
to disappearance process (Fig. 2 (b)). We used box plots
to analyze their duration distributions to describe sleepiness
level.

B. The Algorithm for Detecting SEM

The problem of detecting SEM was transformed to clas-
sifying SEM class and non-SEM class. For any SEM epoch
or non-SEM epoch, it was divided into 3-s length data
fragments with a sliding step of 0.5 s and each data fragment
was labeled as SEM class or non-SEM class, respectively.
For any data fragment, we extracted features from both
HEOG (Hr-Hl) signal and O2 signal (Fig. 2) to form training
features sample sets for two classes. Then, we used mRMR
to select features and SVM to classify the two classes.

C. EEG Power Related Features from O2 Signal

Driving fatigue detection based on EEG usually investi-
gated three frequency bands and two factors of their com-
bination: theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), beta (β,
13-20 Hz), (theta+alpha)/beta and beta/alpha [9]. In this
study, we found SEMs were often accompanied by alpha
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wave change. Moreover, the existing studies reported that
SEMs correlated negatively with EEG power in 1-14 Hz
frequency range and correlated positively with the 15-30
Hz frequency range with eyes closed in sleep process [4].
Therefore, considering above information, we extracted some
EEG power related features. Each 3-s data fragment from
O2 signal was subjected to fast Fourier transform (FFT).
Then we calculated power spectral density (PSD) of each of
three basic EEG wave frequency bands respectively as EEG
features Pθ, Pα, Pβ and other two EEG combination factor
features P(α+θ)/β and P(β/α) were also calculated.

D. Features from HEOG signal
We extracted 25 features from HEOG signal, which was

done in parallel with feature extraction from O2 signal.
1) Features based on wavelet energy: In this study, we

extracted wavelet energy features in the same way as our
previous work [8]. Before using wavelet transform, HEOG
signal was filtered below 40 Hz and had a re-sample fre-
quency of 500 Hz. Then, Daubechies order 4 wavelet with or-
thogonal basis was chosen to decompose a 3-s data fragment
of HEOG signal into the 10th level. Based on the obtained
wavelet coefficients, we got 7 wavelet energy features by
calculating wavelet energy for each resolution level’s detail
signal from D10 (0.35-0.70 Hz) to D5 (22.32-44.64 Hz), and
calculating wavelet energy for one approximation signal A10
(0-0.35 Hz) of the 10th level.

2) Features based on wavelet singularity analysis: Sac-
cades appeared a lot during simulated driving under the
condition of wakefulness with eyes open. The signal wave-
form caused by saccade was like rectangular wave with
many instantaneous change points on HEOG signal. But
when SEM occurred, the caused signal waveform was like
smooth and slow sinusoidal wave (Fig. 2). If Mexican hat
mother wavelet with even symmetry structure, was used
to do the convolution with the instantaneous change point
with local even symmetry, the convolution results will be
local even symmetry; otherwise, the result will be local odd
symmetry [8]. For distinguishing different characteristics be-
tween saccades and SEM, the Continuous Wavelet Transform
(CWT) using Mexican hat mother wavelet was applied into
each 3-s HEOG signal and thus got CWT-HEOG signal.
Then, the following seven statistical features were extracted:
the mean, standard deviation, entropy, skewness and kurtosis
values of CWT-HEOG signal; the maximum value and the
second largest value of the absolute value of CWT-HEOG
signal.

3) Features based on statistics: For each 3-s data frag-
ment of HEOG signal, the following 11 statistical features
were extracted: the mean, standard deviation, skewness,
kurtosis and entropy of the signal amplitude; the mean, stan-
dard deviation, skewness, kurtosis and entropy of the signal
difference; the absolute value of the difference between the
maximum and the minimum of the signal amplitude.

E. Feature Selection and Classification
The mRMR feature selection method is adopted to sequen-

tially select features with the maximal relevancy and minimal

redundancy based on mutual information theory [10]. The
ranking value of a feature in feature sequence corresponds
to this feature’s ability to distinguish two classes. For clas-
sification, we used the SVM with RBF kernel function. By
grid search for two parameters, C ([0, 1024] ) and γ ([0.1,
2]), the best result was obtained.

IV. RESULTS AND DISCUSSION

A. Characteristics of SEM

Fig. 3. The duration distributions of three kinds of ECEs by box plots.

Fig. 3 gives the duration distributions of three kinds of
ECEs, which alternately appeared during simulated driving.
The ECEs-W including all ECEs (more than 1 s) without
SEM, has the lowest duration distribution with the median
value 2.31 s. In contrast, the ECEs-A including all ECEs
with SEM and alpha’s attenuation, has the highest duration
distribution with the median value 9.92 s. The ECEs-S in-
cluding all ECEs with SEM and continuous alpha wave, has
the moderate duration distribution. The duration distribution
is used to represent sleepiness level. The ECEs with SEM
(ECEs-S and ECEs-A) show higher sleepiness level, espe-
cially for those with alpha wave’s attenuation (ECEs-A). We
all know that alpha’s attenuation to disappearance belongs to
sleep stage 1 [2]. Therefore, the alpha’s attenuation on O2
channel accompanying SEM on HEOG further verifies SEM
as a reliable indicator for sleep onset period during simulated
driving.

B. Classification Performance

For physiological signals, individual variations usually
exceed the expected range of EEG alpha’s frequency range
and amplitude. Therefore, the SEM detection algorithm was
done within each individual. In addition, because SEMs tend
to occur in ECEs, but the number of each of the three
kinds of ECEs was not fixed for each subject due to the
complicated and repetitive driving fatigue state transform.
The ratio between the time length of all SEM epochs and that
of non-SEM epochs varied about from 1:90 to 1:23 among
ten subjects. Therefore, the number of feature samples from
SEM class was usually less than that from non-SEM class. To
deal with this imbalanced two-class classification problem,
we used simple under-sampling strategy. For individual data
section, the proportion of training set and testing set is 7:3.
During training, we randomly selected feature samples from
non-SEM class with equal number to the size of SEM class
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TABLE I
THE COMPARISON OF THE MEAN ACCURACY VALUES BETWEEN THE HEOG FEATURE GROUP AND THE HEOG+O2 FEATURE GROUP OVER TEN

SUBJECTS

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean ± SD
HEOG 92.4 93.8 91.8 91.2 91.1 90.5 92.9 90.7 92.2 92.9 92.0 ± 1.1

HEOG+O2 94.1 95.9 94.2 92.3 91.9 92.0 94.2 91.8 94.1 93.7 93.4 ± 1.4

to form a balanced training set. Then, we also got a balanced
testing set in the same way. This process was repeated 20
times, so we got 20 groups of balanced training and testing
sets.

To investigate the effect of adding EEG power related
features on classification accuracy, the detection algorithm
was done respectively for two feature groups: 1) HEOG
feature group including the features extracted from HEOG
signal; 2) HEOG+O2 feature group including the features
extracted from both HEOG and O2 signals. For each feature
group, mRMR ranked the features of two classes in original
imbalanced training set and a feature sequence was obtained.
Then, For each of 20 groups of training and testing sets,
SVM was used to train the balanced training set and the
best classification accuracy was got by forward searching
for the feature sequence. Considering the selected features
and trained model, testing was done in the corresponding
testing set. Table. I gives accuracies of two feature groups
over ten subjects. These comparative results demonstrate that
the mean accuracy values for the HEOG+O2 feature group
are higher than those for the HEOG feature group, due to
the adding of EEG power related features.

Fig. 4. The ranking values of EEG power related features by mRMR
among all features (HEOG+O2).

To show the importance of these EEG power related
features among all features, Fig. 4 gives the distribution
of ten ranking values of each EEG power related feature.
Each ranking value was obtained by mRMR ranking each
subjects’ original training set for HEOG+O2 feature group.
The ranking value corresponded to the feature importance,
which indicated this feature’s ability to discriminate between
SEM and non-SEM classes. The most useful features were
those found with the highest ranking value (close to 1)
distribution. From Fig. 4, the feature P(α+θ)/β is found to
be most useful, with median ranking value 8, the highest
ranking value 3 and the lowest ranking value 12. Followed

by the feature P(β/α) with median ranking value 10. Other
features have median ranking values near 18. We found the
number of selected features during different training process
with forward searching for feature sequence was at least
15, thus the feature P(α+θ)/β played an important role in
classification. This result is consistent with the conclusion
that SEM correlated negatively with 1-14 Hz frequency range
(α, θ within this range) and positively with 15-30 Hz (β
within this range) in sleep process [4]. Besides, (α+θ)/β and
β/α reported as two reliable factors for detecting fatigue [9],
are also proved to be important features for detecting SEMs.

V. CONCLUSION

The SEM is observed to be accompanied by alpha wave’s
attenuation in this study and it can be regarded as a re-
liable indicator for driver’s SOP. The experimental results
demostrate that adding EEG feature group to HEOG feature
group improves the accuracy of algorithm for detecting
SEMs. The importance of the EEG feature P(α+θ)/β seems
to indicate the interactions between EEG waves and SEM
during SOP in the simulated driving process.
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