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1.  Introduction

Humans interact with their surrounding complex environ­
ments based on their current states, and context awareness 
plays an important role during such interactions. However, the 

majority of the existing systems lack this ability and gener­
ally interact with users in a rule-based fashion. Covert aspects 
of ongoing user mental states provide key context informa­
tion in user-aware human computer interactions (Zander and 
Jatzev 2012), which can help systems react adaptively in a 
proper manner. Various studies have introduced the assess­
ment of the mental states of users, such as intention, emotion, 
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Abstract
Objective. Covert aspects of ongoing user mental states provide key context information for 
user-aware human computer interactions. In this paper, we focus on the problem of estimating 
the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as 
vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and 
wearability of vigilance estimation devices for real-world applications, we adopt a novel 
electrode placement for forehead EOG and extract various eye movement features, which 
contain the principal information of traditional EOG. We explore the effects of EEG from 
different brain areas and combine EEG and forehead EOG to leverage their complementary 
characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic 
changing process because the intrinsic mental states of users involve temporal evolution, 
we introduce continuous conditional neural field and continuous conditional random field 
models to capture dynamic temporal dependency. Main results. We propose a multimodal 
approach to estimating vigilance by combining EEG and forehead EOG and incorporating the 
temporal dependency of vigilance into model training. The experimental results demonstrate 
that modality fusion can improve the performance compared with a single modality, EOG 
and EEG contain complementary information for vigilance estimation, and the temporal 
dependency-based models can enhance the performance of vigilance estimation. From the 
experimental results, we observe that theta and alpha frequency activities are increased, 
while gamma frequency activities are decreased in drowsy states in contrast to awake states. 
Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and 
achieves comparative performance using only four shared electrodes in comparison with the 
temporal and posterior sites.

Keywords: brain-computer interfaces, vigilance estimation, EEG, EOG, multimodal approach, 
temporal dependency
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and workload, to promote active interactions between users 
and machines (Mühl et  al 2014, Kang et  al 2015, Lu et  al 
2015, Zheng and Lu 2015). Zander and Kothe proposed the 
concept of a passive brain-computer interface (BCI) to fuse 
conventional BCI systems with cognitive monitoring (Zander 
and Kothe 2011). It is attractive to implement these novel BCI 
systems with increasing information flow of human states 
without simultaneously increasing the cost significantly. 
Among these cognitive states, vigilance is a vital component, 
which refers to the ability to endogenously maintain focus.

Various working environments require sustained high vigi­
lance, particularly for some dangerous occupations such as 
driving trucks and high-speed trains. In these cases, a decrease 
in vigilance (Grier et al 2003) or a momentary lapse of atten­
tion (Davidson et al 2007, Peiris et al 2011) might severely 
endanger public transportation safety. Driving fatigue is 
reported to be a major factor in fatal road accidents.

Various approaches for estimating vigilance levels have 
been proposed in the literature (Ji et al 2004, Dong et al 2011, 
Sahayadhas et al 2012). However, several research challenges 
still exist. Vigilance decrement is a dynamic changing process 
because the intrinsic mental states of users involve temporal 
evolution rather than a time point. This process cannot simply 
be treated as a function of the duration of time while engaged 
in tasks. The ability to predict vigilance levels with high tem­
poral resolution is more feasible in real-world applications 
(Davidson et  al 2007). Moreover, drivers’ vigilance levels 
cannot be simply classified into several discrete categories 
but should be quantified in the same way as the blood alcohol 
level (Ranney 2008, Dong et al 2011). We still lack a stand­
ardized method for measuring the overall vigilance levels of 
humans.

Among various modalities, EEG is reported to be a prom­
ising neurophysiological indicator of the transition between 
wakefulness and sleep in various studies because EEG 

signals directly reflect human brain activity (Berka et  al 
2007, Khushaba et al 2011, Shi and Lu 2013, Kim et al 2014, 
Lin et al 2014, Martel et al 2014). Rosenberg and colleagues 
recently presented a neuromarker for sustained attention from 
whole-brain functional connectivity (Rosenberg et al 2016).  
They developed a network model called the sustained attention 
network for predicting attentional performance. Moreover, 
EEG has intrinsic potential to allow fatigue detection at onset 
or even before onset (Davidson et al 2007). O’Connell and 
colleagues examined the temporal dynamics of EEG signals 
preceding a lapse of sustained attention (O’Connell et  al 
2009). Their results demonstrated that the specific neural sig­
natures of attentional lapses are registered in the EEG up to 
20 s prior to an error. Lin et al presented a wireless and wear­
able EEG system for evaluating drivers’ vigilance levels, and 
they tested their system in a virtual driving environment (Lin 
et al 2014). They also combined lapse detection and feedback 
efficacy assessment for implementing a closed-loop system. 
By monitoring the changes of EEG patterns, they were able 
to detect driving performance and estimate the efficacy of 
arousing warning feedback delivered to drowsy subjects (Lin 
et al 2013).

In addition to EEG, EOG signals contain characteristic 
information on various eye movements, which are often 
utilized to estimate vigilance because of its easy setup and 
high signal-noise ratio (Papadelis et al 2007, Damousis and 
Tzovaras 2008, Ma et  al 2010, 2014). Researchers have 
developed various multimodal approaches for constructing 
hybrid BCIs (Pfurtscheller et al 2010) and combining brain 
signals and eye movements for robotic control and cogni­
tive monitoring (Lee et al 2010, Ma et al 2014, McMullen 
et al 2014, Zheng et al 2014). Bulling and colleagues found 
that eye movements from EOG signals are good indicators 
for activity recognition (Bulling et al 2011). However, the 
electrodes in the traditional EOG are placed around the 

Figure 1.  The simulated driving system and the experimental scene. (a) The virtual-reality-based simulated driving scenes, including 
various weather and roads. (b) Forehead EOG, EEG and eye movements are simultaneously recorded using the Neuroscan system and eye 
tracking glasses. (c) The simulated driving experiments are performed in a real vehicle without unnecessary engine and other components. 
During the experiments, the subjects are asked to drive the car using the steering wheel and gas pedal. The driving scenes are synchronously 
updated according to subjects’ operations. There is no warning feedback to subjects after sleeping.
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eyes, which may distract users and cause discomfort. In our 
previous study, we proposed a new electrode placement on 
the forehead and extracted various eye movement features 
from the forehead EOG (Zhang et al 2015a, Huo et al 2016). 
Various studies have indicated that signals from different 
modalities represent different aspects of convert mental 
states (Calvo and D’Mello 2010, Sahayadhas et  al 2012, 
D’mello and Kory 2015). EEG and EOG represent internal 
cognitive states and external subconscious behaviours, 
respectively. These two modalities contain complementary 
information and can be integrated to construct a more robust 
vigilance estimation model.

2.  Methods

2.1.  Experiment setup

To collect EEG and EOG data, we developed a simulated 
driving system. A four-lane highway scene is shown on a large 
LCD screen in front of a real vehicle without the unneces­
sary engine and other components. The vehicle movements 
in the software are controlled by the steering wheel and gas 
pedal, and the scenes are simultaneously updated according 
to the participants’ operations. The road is primarily straight 
and monotonous to induce fatigue in the subjects more easily. 
The simulated driving system and the experimental scene are 
shown in figure 1.

A total of 23 subjects (mean age: 23.3, STD: 1.4, 12 females) 
participated in the experiments. All participants possessed 
normal or corrected-to-normal vision. Caffeine, tobacco, and 
alcohol were prohibited prior to participating in the experiments. 
At the beginning of the experiments, a short pre-test was per­
formed to ensure that every participant understood the instruc­
tions. Most experiments were performed in the early afternoon 
(approximately 13:30) after lunch to induce fatigue easily when 
the circadian rhythm of sleepiness reached its peak (Ferrara and 
De Gennaro 2001). The duration of the entire experiment was 
approximately 2 h. The participants were asked to drive the car 
in the simulated environments without any alertness.

Both EEG and forehead EOG signals were recorded simul­
taneously using the Neuroscan system with a 1000 Hz sampling 
rate. The electrode placement of the forehead EOG (Zhang 
et al 2015a) is shown in figure 2(b). For the EEG setup, we 
recorded 12-channel EEG signals from the posterior site (CP1, 
CPZ, CP2, P1, PZ, P2, PO3, POZ, PO4, O1, OZ, and O2)  
and 6-channel EEG signals from the temporal site (FT7, 
FT8, T7, T8, TP7, and TP8) according to the international 
10–20 electrode system shown in figure  3. Eye movements 

Figure 2.  Electrode placements for the traditional (a) and forehead (b) EOG setups. The yellow and blue dots indicate the electrode 
placements of the traditional EOG and forehead EOG, respectively. Electrode four is the shared electrode of both setups.

Figure 3.  Electrode placements for the EEG setups. 12-channel and 
6-channel EEG signals were recorded from the posterior site  
(red colour) and temporal site (green colour), respectively.

J. Neural Eng. 14 (2017) 026017
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were simultaneously recorded using SMI ETG eye tracking 
glasses5, and the facial video was recorded from a video 
camera mounted in front of the participants.

For reproducing the results in this paper and enhancing 
cooperation in related research fields, the dataset used in this 
study will be freely available to the academic community as a 
subset of SEED6.

2.2.  Vigilance annotations

The primary challenge of vigilance estimation using a super­
vised machine learning paradigm is how to quantitatively 
label the sensor data because the ground truth of convert 
mental states cannot be accurately obtained in theory. To 
date, researchers have proposed various vigilance annotation 
methods in the literature, such as lane departure and local 
error rates (Makeig and Inlow 1993, Wang et al 2015). Lin 
et al designed an event-related lane-departure driving task in 
which the subjects were asked to respond to the random drifts 
as soon as possible and the response time reflected the vigi­
lance states of the subjects (Lin et al 2010, 2013). Shi and Lu 
(2013) conducted a study in which the local error rate of the 
subjects’ performance was used as the vigilance measurement. 
The subjects were asked to press correct buttons according 
to the colours of traffic signs. These two annotation methods 
are based on subjects’ behaviours and can reflect their actual 
vigilance levels to some extent. However, they are not feasible 
for dual tasks, particularly in real-world driving environments.

There is another annotation method called PERCLOS 
(Dinges and Grace 1998), which refers to the percentage of 
eye closure. It is one of the most widely accepted vigilance 
indices in the literature (Bergasa et al 2006, Dong et al 2011, 
Trutschel et  al 2011). Conventional driving fatigue detec­
tion methods utilize facial videos to calculate the PERCLOS 
index. However, the performance of facial videos can be 
influenced by environmental changes, especially for various 
illuminations and heavy occlusion. In this study, we adopt an 
automatic continuous vigilance annotation method using eye 
tracking glasses, which was proposed in our previous work 
(Gao et al 2015). This approach allows vigilance to be meas­
ured in both laboratory and real-world environments.

Compared with facial videos, eye tracking glasses can more 
precisely capture different eye movements, such as blink, 

fixation, and saccade, as shown in figure 4. The eye tracking-
based PERCLOS index can be calculated from the percentage 
of the durations of blinks and ‘CLOS’ over a specified time 
interval as follows:

 =
+

PERCLOS
blink CLOS

interval
, and� (1)

= + + +interval blink fixation saccade CLOS,� (2)

where ‘CLOS’ denotes the duration of the eye closures.
We evaluated the efficiency of the eye tracking-based 

method for vigilance annotations with the facial videos 
recorded simultaneously and found a high correlation between 
the PERCLOS index and the subject’s current cognitive 
states. Compared with other approaches (Shi and Lu 2010, 
Ma et al 2014, Wang et al 2015), this method is more feasible 
for real-world driving environments, where performing dual 
tasks can distract attention and cause safety issues (Oken and 
Salinsky 2007). This new vigilance annotation method can be 
performed automatically without too much interference to the 
drivers.

Note that although the eye tracking-based approach can 
estimate the vigilance level more precisely, it is not currently 
feasible to apply it to real-world applications due to its very 
expensive cost. Here, we utilize eye tracking glasses as a vigi­
lance annotation device to obtain more accurate labelled EEG 
and EOG data for training vigilance estimation models.

2.3.  Feature extraction

2.3.1.  Preprocessing for forehead EOG.  For traditional EOG 
recordings, the electrodes are mounted around the eyes using 
the electrodes numbered one to four in figure 2(a). However, 
in real-world applications, such electrode placement is not 
easily mounted and may distract users with discomfort. To 
implement wearable devices for real-world vigilance estima­
tion, we propose placing all the electrodes on the forehead, as 
shown in figure 2(b), and separating vertical EOG (VEO) and 
horizontal EOG (HEO) using the electrodes numbered four 
to seven shown in figure 2(b). For the traditional EOG setup 
shown in figure 2(a), the VEO and HEO signals are obtained 
by subtracting electrodes four and three and electrodes one 
and two, respectively. VEO and HEO signals contain details 
of eye movements, such as blink, saccade, and fixation.

How to extract VEO and HEO signals from the forehead 
EOG setup is one of the key problems in this study. We 

Figure 4.  The SMI eye tracking glasses used in this study and the pupillary image captured in one experiment.

5 http://eyetracking-glasses.com/
6 http://bcmi.sjtu.edu.cn/~seed/
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extracted VEOf signals from electrodes numbered four and 
seven and extracted HEOf signals from electrodes five and 
six using two separation strategies: the minus rule and inde­
pendent component analysis (ICA). For the minus rule, the 
subtraction of channels five and seven is an approximation of 
VEO, named VEOf, and the subtraction of channels five and 
six is an approximation of HEO, named HEOf. Here, the sub­
script ‘f ’ indicates ‘forehead’.

ICA is a blind source separation method proposed to decom­
pose a multivariate signal into independent non-Gaussian sig­
nals (Delorme and Makeig 2004). We extracted the VEOf and 
HEOf components using FASTICA (Delorme and Makeig 
2004) from channels four and seven and channels five and six, 
respectively. The comparison of the traditional EOG and fore­
head EOG using the minus operation and ICA separation strat­
egies is depicted in figure 5. As shown, the extracted VEOf and 
HEOf from the forehead electrodes have similar waves to the 
traditional ones, and the forehead VEOf and HEOf can capture 
critical eye movements, such as blinks and saccades.

2.3.2.  Feature extraction from forehead EOG.  After prepro­
cessing forehead EOG signals and extracting VEOf and HEOf, 
we detected eye movements such as blinks and saccades using 
the wavelet transform method (Bulling et al 2011). We com­
puted the continuous wavelet coefficients at a scale of 8 with 
a Mexican hat wavelet defined by

( ) ( )ψ
σπ σ

= − σ
−

t
t2

3
1 e ,

t

1
4

2

2
2

2

2� (3)

where σ is the standard deviation. Because the wavelet trans­
form is sensitive to singularities, we used the peak detection 

algorithm on the wavelet coefficients to detect blinks and sac­
cades from the forehead VEOf and HEOf, respectively. The 
detected blinks and saccades are shown in figures  6 and 7, 
respectively.

By applying thresholds on the continuous wavelet coeffi­
cients, we encoded the positive and negative peaks in fore­
head VEOf and HEOf into sequences, where the positive peak 
was encoded as ‘1’ and the negative one as ‘0’. A saccade is 
characterized by a sequence of two successive positive and 

Figure 5.  Comparison of traditional EOG and forehead EOG using minus operation and ICA separation strategies. Here, (a) and (d) are 
traditional VEO and HEO; (b) and (e) are extracted VEOf and HEOf from forehead EOG using the minus operation; and (c) and (f) are 
extracted VEOf and HEOf from forehead EOG using the ICA approach.

Figure 6.  The blink detected by using continuous wavelet 
transform. We applied two thresholds θh and θl on the transformed 
wavelet signals and detected peaks to locate blink segments. 
Red markers indicate the peaks of each blink, and green markers 
indicate the start and end points of each blink.

J. Neural Eng. 14 (2017) 026017
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negative peaks in the coefficients. A blink contains three suc­
cessive large peaks, namely, negative, positive, and negative, 
and the time between two positive peaks should be smaller 
than the minimum time. Therefore, for the encoding, seg­
ments with ‘01’ or ‘10’ are recognized as saccade candidates, 
and segments with ‘010’ are recognized as blink candidates. 
Moreover, there are some other constraints, such as slope, cor­
relation, and maximal segment length, for guaranteeing a pre­
cise detection of blinks and saccades. Following the detection 
of blinks and saccades, we extracted the statistical parameters, 
such as the mean, maximum, variance, and derivative, of dif­
ferent eye movements with an 8 s non-overlapping window as 
the EOG features. We extracted a total of 36 EOG features 
from the detected blinks, saccades, and fixations. Table 1 pre­
sents the details of the extracted 36 eye movement features.

2.3.3.  Forehead EEG signal extraction.  For conventional 
EEG-based approaches, the EOG signals are always consid­
ered to be severe contamination, particularly for frontal sites. 
Many methods have been proposed for removing eye move­
ment and blink artifacts from EEG recordings (Delorme and 
Makeig 2004, Daly et al 2015, Urigüen and Garcia-Zapirain 
2015). However, in this study, we consider that both EEG and 
EOG contain discriminative information for vigilance esti­
mation. Our intuitive concept is that it is possible to separate 
EEG and EOG signals from the shared forehead electrodes. 
The main advantage of this concept is that we can leverage the 
favourable properties of both EEG and EOG modalities while 
simultaneously not increasing the setup cost.

We utilize the FASTICA algorithm to extract EEG and 
EOG components from the four forehead channels (Nos. 4–7) 
shown in figure 2(b). The ICA algorithm decomposes the multi-
channel data into a sum of independent components (Jung et al 
2000). Similar to artifact removal using blind signal separa­
tion in conventional approaches, the forehead EEG signals are 
reconstructed with a weight matrix by discarding the EOG 

components. The raw data recorded at the four forehead chan­
nels (Nos. 4–7) are concatenated as the input matrix X for ICA 
as follows:

[ ]= −X Ch Ch Ch Ch_4; _5; _6; _7 ,� (4)

where the rows of the input matrix X are signals Ch_4, Ch_5, 
−Ch_6, and Ch_7 from channels Nos. 4–7. After ICA decom­
position, the un-mixing matrix W can be obtained, which 
decomposes the multi-channel data into a sum of independent 
components as follows:

= ∗U W X,� (5)

where the rows of U are time courses of activations of the ICA 
components. The columns of the inverse matrix W−1 indicate 
the projection strengths of the corresponding components. 
Therefore, the clean forehead EEG signals can be derived as

= ∗
∼∼ −X W U ,1� (6)

where 
∼
U  is the matrix of activation waveforms U with rows 

representing EOG components set to zero.
The decomposed independent components and recon­

structed forehead EEG of one segment under eye closure con­
ditions are shown in figure 8. Under eye closure conditions, 
the alpha rhythm appears more dominant in EEG signals in 
previous studies (Papadelis et  al 2007). From figure  8(a), 
we can observe that the first two rows are the corresponding 
eye movement components, and the last two rows contain 
EEG components with high alpha power values. The recon­
structed signals contain characteristics of EEG waves, which 
are accompanied by high alpha bursts. The results presented 
in figure  8 demonstrate the efficiency of our approach in 
extracting EEG signals from forehead electrodes.

2.3.4.  Feature extraction from EEG.  In addition to forehead 
EOG, we recorded EEG data from temporal and posterior 
sites, which showed high relevance along with vigilance in 
the literature and our previous work (Khushaba et al 2011, 
Shi and Lu 2013). For preprocessing, the raw EEG data were 
processed with a band-pass filter between 1 and 75 Hz to 
reduce artifacts and noise and downsampled to 200 Hz to 
reduce the computational complexity. For feature extraction, 
an efficient EEG feature called differential entropy (DE) was 
proposed for vigilance estimation and emotion recognition 
(Duan et  al 2013, Shi et  al 2013), which showed superior 
performance compared to the conventional power spectral 
density features.

The original formula for calculating differential entropy is 
defined as

( ) ( ) ( ( ))∫= −h X f x f x xlog d .
X

� (7)

If a random variable obeys the Gaussian distribution ( )µ σN , 2 , 
the differential entropy can simply be calculated by the fol­
lowing formulation,

( ) ( ) ( ( ))∫ π σ= − =
−∞

∞
h X f x f x x elog d

1

2
log 2 ,2� (8)

where ( ) ( )=
πσ

µ
σ
−f x exp x1

2 22

2

2 .

Figure 7.  The saccade detected by using continuous wavelet 
transform. Similar to blink detection, we applied two thresholds θh 
and θl on the transformed wavelet signals and used peak detection 
on the transformed wavelet signals. Blue cross markers and 
diamond markers indicate the start and end points of each saccade, 
respectively.

J. Neural Eng. 14 (2017) 026017
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According to the DE definition mentioned above, for 
each EEG segment, we extracted the DE features from 
five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha  
(8–14 Hz), beta (14–31 Hz), and gamma (31–50 Hz). We also 
extracted the DE features from the total frequency band (1–50 
Hz) with a 2 Hz frequency resolution. All the DE features 
were calculated using short-term Fourier transforms with an 
8 s non-overlapping window.

2.4.  Vigilance estimation

After obtaining vigilance labels and EOG/EEG features, we 
used support vector regression (SVR) with radial basis func­
tion (RBF) kernels as a basic regression model. The optimal 
values of the parameters c and g were tuned with the grid 
search. As the modality fusion strategy, we used feature-level 
fusion, in which the feature vectors of EEG and EOG are 
directly concatenated into a larger feature vector as inputs. 
For evaluation, we separated the entire data from one experi­
ment into five sessions and evaluated the performance with 
5-fold cross validation. There are a total of 885 samples for 
each experiment.

The root mean square error (RMSE) and correlation coef­
ficient (COR) are the most commonly used evaluation met­
rics for continuous regression models (Nicolaou et al 2011). 
RMSE is the squared error between the prediction and the 
ground truth, and it is defined as follows:

( ˆ ) ( ˆ )∑= −
=

Y Y
N

y yRMSE ,
1

,
i

N

i i
1

2� (9)

where ( )=Y y y y, , ..., N
T

1 2  is the ground truth and 
ˆ ( ˆ ˆ ˆ )=Y y y y, , ..., N

T
1 2  is the prediction.

Since RMSE-based evaluation cannot provide structural 
information, we used COR to overcome the shortcomings of 
RMSE. COR provides an evaluation of the linear relationship 
between the prediction and the ground truth, which reflects 
the consistency of their trends. Pearson’s correlation coeffi­
cient is defined as follows:

( ˆ )
( ¯)( ˆ ˆ̄ )

( ¯) ( ˆ ˆ̄ )
=

∑ − −

∑ − ∑ −
=

= =

Y Y
y y y y

y y y y
COR , ,i

N
i i

i
N

i i
N

i

1

1
2

1
2

� (10)

where ȳ and ˆ̄y  are the means of Y and Ŷ . However, COR is 
sensitive to short segments and is appropriate for long evalu­
ation metrics. Therefore, we concatenated the predictions and 
ground truth of five sessions and calculated COR as the final 
evaluation. In general, the more accurate the model is, the 
higher the COR is and the lower the RMSE is.

2.5.  Incorporating temporal dependency into vigilance  
estimation

Vigilance is a dynamic changing process because the intrinsic 
mental states of users involve temporal evolution. To incor­
porate the temporal dependency into vigilance estimation, 
we introduced continuous conditional neural field (CCNF) 
and continuous conditional random field (CCRF) when con­
structing vigilance estimation models. CCNF and CCRF are 
extensions of conditional random field (CRF) (Lafferty et al 
2001) for continuous variable modelling that incorporates 
temporal or spatial information and have shown promising 
performance in various applications (Baltrusaitis et al 2013, 
Baltrušaitis et al 2014, Imbrasaite et al 2014). CCNF com­
bines the nonlinearity of conditional neural fields (Peng et al 
2009) and the continuous output of CCRF.

The probability distribution of CCNF for a particular 
sequence is defined as follows:

( ∣ ) ( )
( )∫

=
Ψ

Ψ
−∞

∞P y x
y

exp

exp d
,� (11)

where ( )∫ Ψ
−∞

∞
yexp d  is the normalization function,  

{ }= �x x xx , , , n1 2  is a set of input observations,  
=y  �y y y, , , n1 2{ } is a set of output variables, and n is the 

length of the sequence.
There are two types of features defined in these models: 

vertex features fk and edge features gk. The potential function 
Ψ is defined as follows:

( ) ( )∑∑ ∑∑θα βΨ = +
= =

f y g y yx, , , ,
i k

K

k k i i k
i j k

K

k k i j
1 , 1

1 2

� (12)

where α > 0k , β > 0k , the vertex features fk denote the map­
ping from xi to yi with a one-layer neural network, and θk is 
the weight vector for the neuron k.

The vertex features of CCNF are defined as

( ) ( ( ))  θ θ= − −x xf y y h, , , , andk i i k i k i
2� (13)

( )θ =
+ θ−

xh ,
1

1 e
,

xi T
i

� (14)

where the optimal number of vertex features K1 is tuned 
with  cross-validation. In our experiments, we evaluated 
K1  =  {10, 20, 30}.

The edge features gk denote the similarities between obser­
vations yi and yj, which are defined as

( ) ( )( )= − −g y y S y y,
1

2
,k i j i j

k
i j,

2� (15)

Table 1.  The details of the extracted 36 eye movement features.

Group Extracted features

Blink Maximum/mean/sum of blink rate maximum/minimum/mean of blink amplitude, mean/maximum 
of blink rate variance and amplitude variance power/mean power of blink amplitude blink numbers

Saccade Maximum/minimum/mean of saccade rate and saccade amplitude, maximum/mean of saccade rate 
variance and amplitude variance, power/mean power of saccade amplitude, saccade numbers

Fixation mean/maximum of blink duration variance and saccade duration variance maximum/minimum/
mean of blink duration and saccade duration
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where the similarity measure S(k) controls the existence of the 
connections between two vertices.

In the experiments, K2 is set to 1 and S(k) is set to 1 
when two nodes i and j are neighbours; otherwise, it is 0. 
The sequence length n is set to seven. The formulas for 

CCRF are the same as those for CCNF, except for the defi­
nition of vertex features. The vertex features of CCRF are 
defined as

( ) ( )= − −x xf y y, .k i i k i i k, ,
2� (16)

Figure 8.  (a) The decomposed independent components from the four forehead channels (Nos. 4–7) using ICA. IC 1 and IC 2 are EOG 
components for eye activities. (b) The reconstructed forehead EEG by filtering out the EOG components. It can be observed that strong 
alpha activities are verified under eye closure conditions.
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The training of parameters in CCRF and CCNF is based 
on the conditional log-likelihood ( ∣ )P y x  as a multivariate 
Gaussian. For more details regarding the learning and infer­
ence of CCRF and CCNF, please refer to Baltrušaitis et  al 
(2014) and Imbrasaite et  al (2014). The outputs of support 
vector regression are used to train CCRF, and the original 
multi-dimensional features are used to train CCNF. The CCRF 
and CCNF regularization hyper-parameters for αk and βk are 
chosen based on a grid search in 10[0,1,2] and 10[−3,−2,−1,0]  
using the training set, respectively.

3.  Experimental results

3.1.  Forehead EOG-based vigilance estimation

First, we evaluated the similarity between forehead EOG and 
traditional EOG and the performance of forehead EOG-based 
vigilance estimation for different separation strategies. We 
extracted forehead VEOf and HEOf using the minus and ICA 
separation approaches and computed the correlation with tra­
ditional VEO and HEO. The mean correlation coefficients of 
VEOf -MINUS, VEOf -ICA, HEOf -MINUS, and HEOf -ICA 
are 0.63, 0.80, 0.81, and 0.75, respectively. These comparative 
results demonstrate that the extracted forehead VEOf and HEOf 
contain most of the principal information of traditional EOG.

The mean RMSE, the mean COR and their standard 
deviations for different separation methods are presented 
in table  2. ‘ICA-MINUS’ denotes ICA-based VEOf and 
minus-based HEOf separations, and it has the highest corre­
lation coefficient with traditional VEO and HEO. As shown 
in table  2, ICA-MINUS achieves the best performance for 

vigilance estimation in terms of both COR and RMSE. It is 
consistent with the above results that VEOf-ICA and HEOf-
MINUS are more similar to the original VEO and HEO. For 
VEO, it contains many blink components, such as impulses, 
which are more likely to be detected by ICA. In contrast, the 
minus method reduces the amplitude of VEO signals since the 
polarity of the pair electrodes is the same. For HEO, saccade 
components are more difficult to be detected by ICA, and the 
polarity of the pair electrodes is different.

3.2.  EEG-based vigilance estimation

We reconstructed the frontal 4-channel EEG from the forehead 
signals based on the ICA algorithm. In the experiments, we also 
recorded 12-channel and 6-channel EEG signals from poste­
rior and temporal sites. We extracted the DE features in two 
ways: one is from the five frequency bands, and the other is to 
use a 2 Hz frequency resolution in the entire frequency band. 
The mean COR, mean RMSE and their standard deviations of 
different EEG features from different brain areas are shown in 
table 3. The ranking of the performance for EEG-based vigi­
lance estimation from different brain areas is as follows: poste­
rior, temporal, and forehead sites. For the single EEG modality, 
the posterior EEG contains the most critical information for 
vigilance estimation, which is consistent with previous findings 
(Khushaba et  al 2011, Shi and Lu 2013). The EEG features 
with a 2 Hz frequency resolution achieve better performance 
than those with five frequency bands. In the later experimental 
evaluation in this paper, we employ the EEG features with a 
2 Hz frequency resolution of the entire frequency band.

In addition to the accuracy that we discussed above 
for decoding brain states, another important concern is to 
examine whether patterns of brain activity under different 
cognitive states exist and whether these patterns are to some 
extent common across individuals. Identifying the specific 
relationship between brain activities and cognitive states 
provides evidence and support for understanding the infor­
mation processing mechanism of the brain and brain state 
decoding (Haynes and Rees 2006). Huang et al demonstrated 
the specific links between changes in EEG spectral power 
and reaction time during sustained-attention tasks (Huang 
et al 2009). They found that significant tonic power increases 
occurred in the alpha band in the occipital and parietal areas 
as reaction time increased. Ray and colleagues proposed that 
alpha activities of EEG reflect attentional demands and that 
beta activities reflect emotional and cognitive processes (Ray 
and Cole 1985). They found increasing parietal alpha activi­
ties for tasks that do not require attention.

In this work, to investigate the changes in neural patterns asso­
ciated with vigilance, we split the EEG data into three categories 
(awake, tired, and drowsy) with two thresholds (0.35 and 0.7) 
according to the PERCLOS index. We averaged the DE features 
over different experiments. Figure  9 presents the mean neural 
patterns of awake and drowsy states as well as the difference 
between them. As shown in figure 9, increasing theta and alpha 
frequency activities and decreasing gamma frequency activities 
exist in temporal and parietal areas in drowsy states in contrast to 
awake states ( p  <  0.01, one-way analysis of variance, ANOVA). 

Table 2.  The mean RMSE, the mean COR, and their standard 
deviations with different separation methods. Here, the numbers in 
the first and second rows are the averages and standard deviations, 
respectively.

ICA-MINUS EOG-ICA EOG-MINUS

COR RMSE COR RMSE COR RMSE

0.7773 0.1188 0.4774 0.1582 0.7193 0.1288
0.1745 0.0391 0.5381 0.0844 0.3492 0.0588

Table 3.  The average and standard deviations of COR and RMSE 
for different EEG features. Here, the numbers in the first and second 
rows are the averages and standard deviations, respectively.

(a) COR

Posterior Temporal Forehead

2 Hz 5 Bands 2 Hz 5 Bands 2 Hz 5 Bands

0.7001 0.6807 0.6678 0.6410 0.6502 0.5749
0.2250 0.2129 0.2349 0.2246 0.2116 0.2463

(b) RMSE

Posterior Temporal Forehead

2 Hz 5 Bands 2 Hz 5 Bands 2 Hz 5 Bands

0.1327 0.1429 0.1385 0.1603 0.1463 0.1640
0.0303 0.0393 0.0343 0.0722 0.0383 0.0483
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These results are consistent with previous findings in the litera­
ture (Ray and Cole 1985, Davidson et al 2007, Huang et al 2009, 
O’Connell et al 2009, Peiris et al 2011, Lin et al 2013, Martel 
et al 2014) and support the previous evidence that the increasing 
trend for the ratio of slow and fast waves of EEG activities reflects 
decreasing attentional demands (Jap et al 2009).

3.3.  Modality fusion with temporal dependency

In this section, we introduced a multimodal vigilance esti­
mation approach with the fusion of EEG and forehead 
EOG. We combined the EEG signals from different sites 
(forehead, temporal, and posterior) and forehead EOG sig­
nals to utilize their complementary characteristics for vigi­
lance estimation. The performance of each single modality 
and different modality fusion strategies are shown in 

Figure 9.  The mean neural patterns of awake (a) and drowsy (b) states 
as well as the difference (c) between these two states. By applying two 
thresholds (0.35 and 0.7) to the PERCLOS index, we split the EEG 
data into three categories: awake, tired, and drowsy. From the average 
neural patterns, we observe that drowsy states have higher theta and 
alpha frequency activities and lower gamma frequency activities in 
temporal and parietal areas ( p  <  0.01, ANOVA).

Figure 10.  The mean COR (a) and mean RMSE (b) of each single 
modality and different modality fusion strategies.
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figure  10. For a single modality, forehead EOG achieves 
better performance than posterior EEG ( p  =  0.2003 for 
COR and p  =  0.1866 for RMSE, ANOVA). The reason 
for this result is that forehead EOG has more informa­
tion in common with the annotations of eye tracking data. 
Modality fusion can significantly enhance the regression 
performance in comparison with a single modality with a 
higher COR and lower RMSE. We evaluated the statistical 
significance using one-way analysis of variance, and the p 
values of COR for forehead EOG and posterior EEG are 
0.2978 and 0.0264, respectively. The p values of RMSE for 
forehead EOG and posterior EEG are 0.0654, and 0.0002, 
respectively.

For different brain areas, an interesting observation is 
that the fusion of forehead EOG and forehead EEG achieves 
better performance than that of forehead EOG and posterior 
EEG, whereas for single EEG, the posterior site achieves 
the best performance. These results indicate that forehead 
EEG and forehead EOG have more coherent information. 
The temporal EEG performs slightly better than the forehead 
EEG. However, the former requires six extra electrodes for 
the setup. The forehead setup only uses four shared elec­
trodes and both EOG and EEG features can be extracted. 
Therefore, the information flow can be increased without 
any additional setup cost. From the above discussion, we 
see that the forehead approach is preferred for real-world 
applications.

To incorporate temporal dependency information into 
vigilance estimation, we adopted CCRF and CCNF in this 
study. As shown in figures 10(a) and (b), the temporal depend­
ency models can enhance the performance. For the forehead 
setup, the mean COR/RMSE of SVR, CCRF, and CCNF are 
0.83/0.10, 0.84/0.10, and 0.85/0.09, respectively. The CCNF 
achieves the best performance with higher accuracies and 
lower standard deviations.

To verify whether the predictions from our proposed 
approaches are consistent with the true subjects’ behaviours 
and cognitive states, the continuous vigilance estimation 
of one experiment is shown in figure  11. The snapshots in 
figure  11 show the frames corresponding to different vigi­
lance levels. We can observe that our proposed multimodal 
approach with temporal dependency can moderately predict 
the continuous vigilance levels and its trends.

To further investigate the complementary characteris­
tics of EEG and EOG, we analysed the confusion matrices 
of each modality, which reveals the strength and weakness 
of each modality. We split the EEG data into three catego­
ries, namely, awake, tired and drowsy states, with thresh­
olds according to the corresponding PERCLOS index as 
described above. Figure  12 presents the mean confusion 
graph of forehead EOG and posterior EEG of all experi­
ments. These results demonstrate that posterior EEG and 
forehead EOG have important complementary characteris­
tics. Forehead EOG has the advantage of classifying awake 
and drowsy states (77%/76%) compared to the posterior 
EEG (65%/72%), whereas posterior EEG outperforms fore­
head EOG in recognizing tired states (88% versus 84%). The 
forehead EOG modality achieves better performance than 
the posterior EEG overall. This result may be because our 
ground truth labels are obtained with eye movement param­
eters from eye tracking glasses. The forehead EOG contains 
more similar information with the experimental observa­
tions. Moreover, awake states and tired states are often mis­
classified with each other, and similar results are observed 
for drowsy and tired states. In contrast, awake states are 
seldom misclassified as drowsy states and vice versa for both 
modalities. These observations are consistent with our intui­
tive knowledge. EEG and EOG features of awake and drowsy 
states should have larger differences. These results indicate 
that EEG and EOG have different discriminative powers for 

Figure 11.  The continuous vigilance estimation of different methods in one experiment. As shown, the predictions from our proposed 
approaches are almost consistent with the true subjects’ behaviours and cognitive states.
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vigilance estimation. Combining the complementary infor­
mation of these two modalities, modality fusion can improve 
the prediction performance.

4.  Discussion

In this study, we have developed a multimodal approach for 
vigilance estimation regarding temporal dependency and 
combining EEG and forehead EOG in a simulated driving 
environment. The main contributions of this paper are as fol­
lows: (1) we have explored the effect of EEG for vigilance 
estimation in different brain areas: frontal, temporal, and pos­
terior; (2) a multimodal vigilance estimation framework with 
EEG and forehead EOG has been proposed in terms of feasi­
bility and accuracy; (3) both EEG and EOG signals have been 
acquired simultaneously with four shared electrodes on the 
forehead and combined for vigilance estimation; (4) we have 
revealed the complementary characteristics of EEG and fore­
head EOG modalities for vigilance estimation; (5) continuous 
conditional neural field (CCNF) and continuous conditional 
random field (CCRF) models have been introduced to enhance 
the performance to capture dynamic temporal dependency; 
and (6) Neural patterns regarding critical frequency activities 
under awake and drowsy states have been investigated.

Several researchers have performed pilot studies for on-
road real driving tests. Papadelis et al designed an on-board 
system to assess a driver’s alertness level in real driving 
conditions (Papadelis et al 2007). They found that EEG and 
EOG are promising neurophysiological indicators for moni­
toring sleepiness. Haufe et al performed a study to assess the 
real-world feasibility of EEG-based detection of emergency 
braking intention (Haufe et  al 2014). Indeed, in addition 
to driving applications, there are many other scenarios that 
require vigilance estimation, such as students’ performance 
in classes. Sievertsen and colleagues examined how cognitive 

fatigue influences students’ performance on standardized tests 
in their study (Sievertsen et al 2016).

Considering the wearability and feasibility of a vigi­
lance estimation device for real-world applications, we have 
designed four-electrode placements on the forehead, which 
are suitable for attachment in a wearable headset or head­
band. We can collect both EEG and EOG simultaneously and 
combine their advantages via shared forehead electrodes. The 
experimental results demonstrate that our proposed approach 
can achieve comparable performance with the conventional 
methods on critical brain areas, such as parietal and occipital 
sites. This approach increases the information flow with easy 
setups while not considerably increasing the cost.

In recent years, substantial progress has been made in dry 
electrodes and high-performance amplifiers. Several commer­
cial EEG systems have emerged for increasing the usability 
in real-world applications (Grozea et al 2011, Hairston et al 
2014, Mullen et al 2015). It is feasible to integrate these tech­
niques with our proposed approach to design a new wearable 
hybrid EEG and forehead EOG system for vigilance estima­
tion in the future.

There are still some limitations for our work, e.g. the age 
range of subjects in the experiments. All subjects were young 
adults in the university, which limits the generalization of our 
approach to other age groups. And in this study, we focus 
only on vigilance estimation without considering any neuro­
feedback. For example, a feedback can be timely provided to 
the driver to enhance driving safety if the vigilance detection 
system indicates that he or she is in an extremely tired state. 
An adaptive closed-loop BCI system that consists of vigilance 
detection and feedback is very useful in changing environ­
ments (Wu et al 2010, Lin et al 2013). How to efficiently pro­
vide and assess the feedback in high vigilance tasks should be 
further investigated.

Due to individual differences of neurophysiological sig­
nals across subjects and sessions, the performance of vigi­
lance estimation models may be dramatically degraded. The 
generalization performance of vigilance estimation models 
should be considered for individual differences and adapt­
ability. However, training subject-specific models requires 
time-consuming calibrations. To address these problems, one 
efficient approach is to train models on the existing labelled 
data from a group of subjects and generalize the models to the 
new subjects with transfer learning techniques (Pan and Yang 
2010, Morioka et  al 2015, Wronkiewicz et  al 2015, Zhang 
et al 2015b, Zheng and Lu 2016).

5.  Conclusion

In this paper, we have proposed a multimodal vigilance estima­
tion approach using EEG and forehead EOG. We have applied 
different separation strategies to extract VEOf, HEOf and 
EEG signals from four shared forehead electrodes. The COR 
and RMSE of single forehead EOG-based and EEG-based 
methods are 0.78/0.12 and 0.70/0.13, respectively, whereas 
the modality fusion with temporal dependency can signifi­
cantly enhance the performance with values of 0.85/0.09. The 

Figure 12.  Confusion graph of forehead EOG and posterior EEG, 
which shows their complementary characteristics for vigilance 
estimation. Here, the numbers denote the percentage values of 
samples in the class (arrow tail) classified as the class (arrow head). 
Bolder lines indicate higher values.
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experimental results have demonstrated the feasibility and 
efficiency of our proposed approach based on the forehead 
setup. Our vigilance estimation method has the following three 
main advantages: both EEG and EOG signals can be acquired 
simultaneously with four shared electrodes on the forehead; 
modelling both internal cognitive states and external subcon­
scious behaviours with fusion of forehead EEG and EOG; and 
introducing temporal dependency to capture the dynamic pat­
terns of the vigilance of users. From the experimental results, 
we have observed that phenomena of increasing theta and 
alpha frequency activities and decreasing gamma frequency 
activities in drowsy states do exist in contrast to awake states. 
We have also investigated the complementary characteris­
tics of forehead EOG and EEG for vigilance estimation. Our 
experimental results indicate that the proposed approach can 
be used to implement a wearable passive brain-computer 
interface for tasks that require sustained attention.
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