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a b s t r a c t 

In order to seek non-propagation method to train generalized single-hidden layer feed forward neural 

networks, extreme learning machine was proposed, which has been proven to be an effective and efficient 

model for both multi-class classification and regression. Different from most of existing studies which 

consider extreme learning machine as a classifier, we make improvements on it to let it become a feature 

extraction model in this paper. Specifically, a discriminative extreme learning machine with supervised 

sparsity preserving (SPELM) model is proposed. From the hidden layer to output layer, SPELM performs 

as a subspace learning method by considering the discriminative as well as sparsity information of data. 

The sparsity information of data is identified by solving a supervised sparse representation objective. 

Experiments are conducted on four widely used image benchmark data sets and the classification results 

demonstrate the effectiveness of the proposed SPELM model. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Extreme learning machine (ELM) proposed by Huang et al.

[1,2] is an efficient and effective method to train single hidden

layer feed neural networks (SLFNs), providing us a unified frame-

work for both multi-class classification and regression. The basic

ELM model can be simply seen as a random feature mapping fol-

lowed by a least square formula based linear regression. The main

contribution of ELM to general SLFNs is that the input weights

between the input layer and hidden layer as well as the biases

of hidden units can be randomly generated, which leads to the

analytical determination of the output weights between the hid-

den layer and output layer. Such improvement greatly alleviates

the burden of weight tuning caused by the widely used back-

propagation algorithms [3] and thus guarantees the fast learning

speed of ELM. As an variant of SLFNs, though the mathematical

formula of ELM is simple, the universal approximation capacity

[4,5] can be also hold. Furthermore, the rationality of the randomly

generated input weights is analyzed by some recent studies [6,7] .

ELM research has been a hotspot and studies are conducted from

diverse aspects such as theoretical investigation [6,7] , model im-
∗ Corresponding author. 

E-mail addresses: stany.peng@gmail.com , yongpeng@hdu.edu.cn (Y. Peng). 

p  

i  

u  

E  

http://dx.doi.org/10.1016/j.neucom.2016.05.113 

0925-2312/© 2017 Elsevier B.V. All rights reserved. 
rovements [8,9] and various applications [10,11] . Some of the re-

ent progresses were reviewed in [12] . 

In most of existing studies, ELM was treated as a classifier to

arious applications such as face recognition [13] and EEG signal

lassification [14] . In this paper, we make improvements on ELM

rom the feature extraction perspective. The underlying idea is to

onsider the output layer of ELM as a subspace of the ELM feature

pace, and we expect to learn a meaningful representation of data

n such subspace. Therefore, our central task is to impose appro-

riate constraints on the output weights, which is also the general

roblem in designing an effective subspace learning algorithm. In

achine learning and computer vision communities, sparse rep-

esentation (SR) has been a promising method for statistical sig-

al modeling. Identifying the sparsity information of data by solv-

ng an � 1 -norm regularized least square formula has become effi-

ient [15] and thus many related applications based on SR are put

orward such as face recognition [16] , spectral clustering [17] and

ubspace learning [18,19] . The sparsity information of data usually

resents us some excellent properties such as the self-expression

apacity and discriminative information of data. Therefore, we nat-

rally expect that the sparsity could be preserved by the ELM out-

ut weights. However, the difference lies in that what we are try-

ng to preserve is the group sparsity [20] other than the generally

sed flat sparsity. By (1) modifying the indicator matrix in original

LM definition to make it proper for discriminant analysis; and (2)

http://dx.doi.org/10.1016/j.neucom.2016.05.113
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.05.113&domain=pdf
mailto:stany.peng@gmail.com
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ncorporating the sparsity preserving term into ELM objective as

 regularizer, we formulate the objective function of the proposed

PELM model. 

The remainder of this paper is organized as follows. In

ection 2 , we briefly review extreme learning machine, sparse rep-

esentation and its supervised variant. The proposed sparsity pre-

erving extreme learning machine including the model formula-

ion of SPELM and some practical considerations is presented in

ection 3 . Experiments are conducted in Section 4 to evaluate

he effectiveness of the proposed model. Section 5 concludes the

hole paper. 

otations 

Throughout the whole paper, we use bold upper case letter

o denote matrices, bold lower case letter to denote vectors. For

ny matrix M, m i means the i th column vector of M, m 

i means

he i th row vector of M and m ij denotes the ( i, j )th element of

 . Tr( M ) is the trace of M if it is a square matrix. M 

T denotes

he transpose of M . For p ≥ 1, the � p -norm of a vector m ∈ R 

d is

efined as ‖ m ‖ p = ( 
∑ d 

i =1 | m i | p ) 1 /p . The � 0 -norm of m counts its

umber of non-zero elements. The Frobenius norm of M ∈ R 

d×n is

 M ‖ 2 F = 

∑ d 
i =1 

∑ n 
j=1 m 

2 
i j 

= Tr (M 

T M ) . 

. Preliminaries 

.1. Extreme learning machine 

Considering the data collection matrix X = [ x 1 , x 2 , . . . , x n ] ∈
 

d×n , the output function of ELM for generalized SLFNs is 

f L (x ) = 

L ∑ 

i =1 

βi h i (x ) = h (x ) β, (1)

here β = [ β1 , . . . , βL ] 
T is the output weight matrix between the

idden layer and output layer, L is the number of hidden units,

nd h (x ) = [ h 1 (x ) , . . . , h L (x )] is the ELM nonlinear feature map-

ing, e.g., the output row vector of the hidden layer with respect

o the input x . h i ( x ), i = 1 , 2 , . . . , L is the output of the i th hidden

nit. 

Basically, training SLFN based on ELM contains two stages: (1)

alculating the hidden layer representation; (2) estimating the out-

ut weight. In the first stage, given a randomly generated input

eight matrix W ∈ R 

d×L and bias vector of hidden units b ∈ R 

L ×1 ,

he hidden layer representation H can be obtained via 

 = ϕ(X 

T W + b ) , (2)

here ϕ( · ) is a nonlinear piecewise continuous function. The hid-

en layer is also called ELM feature space . In the second stage of

LM learning, the output weight between hidden layer and output

ayer, denoted by β ∈ R 

L ×c , can be estimated by solving the follow-

ng least square regression formula 

in 

β
‖ H β − Y ‖ 

2 
2 . (3)

he hidden layer output matrix H is 

 = 

⎡ 

⎣ 

h (x 1 ) 
. . . 

h (x n ) 

⎤ 

⎦ = 

⎡ 

⎣ 

h 1 (x 1 ) . . . h L (x 1 ) 
. . . 

. . . 
. . . 

h 1 (x n ) . . . h L (x n ) 

⎤ 

⎦ (4) 

o simplify the notation in following sections, we denote h 

i as

 ( x i ), which is the i th row vector in H . The training data response

atrix Y is defined as 

 = 

⎡ 

⎣ 

y 1 
. . . 

y n 

⎤ 

⎦ = 

⎡ 

⎣ 

y 11 . . . y 1 c 
. . . 

. . . 
. . . 

y n 1 . . . y nc 

⎤ 

⎦ . (5) 
Obviously, the solution to (3) is 

∗
ELM 

= H 

† Y , (6) 

here H † denotes the Moore–Penrose generalized inverse of ma-

rix H . 

To avoid the singularity problem when calculating the inverse

nd enhance the generalization performance of ELM, the regular-

zed ELM [21] can be reached via shrinking the values of β as 

in 

β
‖ H β − Y ‖ 

2 
2 + λ‖ β‖ 

2 
2 . (7)

imilarly, the closed form solution to regularized ELM is 

∗
RELM 

= 

(
H 

T H + λI 
)−1 

H 

T Y , (8) 

here I ∈ R 

L ×L is an identity matrix. 

.2. Sparse representation 

Given a data point y ∈ R 

d×1 as well as an over-complete dictio-

ary matrix A = (a 1 , a 2 , . . . , a m 

) ∈ R 

d×m , the goal of sparse repre-

entation is to represent y by using as few entries in A as possible.

his can be expressed as follows 

in 

α
‖ α‖ 0 , s.t. y = A α, (9)

here α ∈ R 

m ×1 is the representation coefficient. The above prob-

em is NP-hard due to the non-convex and discrete nature of the

 0 -norm. However, it will become tractable by using the closest

onvex surrogate � 1 -norm instead. The corresponding objective is

in 

α
‖ α‖ 1 , s.t. y = A α. (10)

Due to the noisy environment in real-world applications, the

quality constraint is hard to satisfy. Thus, by considering the cod-

ng residual and taking the sparse constraint on coefficient as reg-

larizer, the reformulated objective of sparse representation is 

in 

α

1 

2 

‖ y − A α‖ 

2 
2 + λ‖ α‖ 1 , (11)

here λ is the regularization parameter. This is an � 1 -norm reg-

larized least square problem which can be solved by many effi-

ient algorithms [15] . Sometimes, the training samples are stacked

ogether to form the dictionary A . 

.3. Supervised sparse representation 

Recently, several studies have shown that the � 1 -norm in-

uced sparse models perform well only in low-correlation settings

22,23] . Considering using the data collection matrix as dictionary,

f samples from the same class are highly correlated, the � 1 -norm

ill encounter the stability problem and it generally tends to se-

ect a single representative sample randomly and ignore other cor-

elated ones. This leads to a sparse solution but misses the correla-

ion in data and often causes suboptimal performance. Specifically,

or face recognition task in uncontrolled environment, the variation

nformation (e.g., illumination and expression) may be more signif-

cant than the identity. In this case, it is possible that face images

rom different subjects with similar variations could have higher

orrelation than those from the same subject but with different

ariations. Therefore, considering the label information of training

amples and emphasizing the sparsity of the number of classes in-

tead of the number of samples are of great necessity, which leads

he group sparsity. Below is the method to identify the group spar-

ity. 

Assume that there are total n training images from c classes,

ach class has n k images for k = 1 , . . . , c. Based on the standard

parse representation-based classification (SRC) [16] , we are given
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a test image y and then aim to optimize the following super-

vised sparse representation objective by using training samples as

columns of the dictionary matrix 

min 

α

1 

2 

‖ y − A α‖ 

2 
2 + λ‖ α‖ g , (12)

where λ is a regularization parameter, ‖ α‖ g = 

∑ c 
k =1 ‖ αk ‖ 2 and 

A = (A 1 , . . . , A c ) , A k = (x k 1 , . . . , x kn k 
) ;

α = (α1 , . . . , αc ) 
T , αk = (αk 1 , . . . , αkn k 

) T . 
(13)

Currently, we need to investigate the sparsity information and

self-expression capacity of the training samples. Therefore, y will

be replaced by each sample x i , i = 1 , 2 , . . . , n, and the correspond-

ing objective is to reconstruct x i by 

min 

α

1 

2 

‖ x i − A \ i α\ i ‖ 

2 
2 + λ‖ α\ i ‖ g , (14)

where A \ i is obtained by removing x i from A , that is, A − x i ; and

α\ i is the corresponding representation coefficient on A \ i . 

The detailed implementation to (14) based on the � 2, 1 -norm

optimization method [24] is given in Algorithm 1 , where we sim-

Algorithm 1. Optimization to (14) . 

Input: Training samples X = { x i } n i =1 
to construct the dictionary

matrix A , and regularization parameter λ; 

Output: The representation coefficient θ. 

1: Initialization. Set t = 0 and D 

(t) = I ∈ R 

n ×n ; 

2: while not converged do 

3: Calculate θ as θ(t+1) = (A 

T A + λD 

(t) ) −1 A 

T x i ; 

4: Update the diagonal matrix D 

(t+1) ∈ R 

n ×n as 

D 

(t+1) = 

⎡ 

⎢ ⎢ ⎣ 

1 

2 ‖ 

θ(t+1) 
1 ‖ 

2 

I n 1 . . . 0 

. . . 
. . . 

. . . 

0 . . . 1 

2 ‖ 

θ(t+1) 
c ‖ 

2 

I n c 

⎤ 

⎥ ⎥ ⎦ 

; (15)

5: Update t = t + 1 ; 

6: end while 

plify the notations of A \ i and α\ i respectively as A and θ to enhance

the readability. If ‖ θ(t+1) 
k 

‖ 2 , k = 1 , . . . , c is close to zero, we usually

use ‖ θ(t+1) 
k 

‖ 2 + ε, k = 1 , . . . , c instead based on regularization tech-

nique, where ε is a small constant. 

Once θ is obtained, we can construct the sparse coefficient vec-

tor s i corresponding to x i by adding a zero value in the i th position

of θ, that is, 

s i = (θ1 , . . . , θi −1 , 0 , θi , . . . , θn −1 ) ∈ R 

n ×1 . (16)

By this way, the learned coefficient s i can explore the sparse struc-

ture as well as the label information of training samples. 

3. Sparsity preserving extreme learning machine 

In this section, we will give the formulation of sparsity pre-

serving extreme learning machine (SPELM) in detail including the

strategy of sparsity preserving, the objective of SPELM and some

discussions between SPELM and related ELMs. 

3.1. Sparsity preserving method 

We expect that the group sparsity structure in the original data

space to be preserved from the ELM feature space to the projected
ubspace, which can be achieved by minimizing the following ob-

ective 

 (β) = min 

β

n ∑ 

i =1 

‖ βT h 

iT − βT H 

T s i ‖ 

2 
2 . (17)

he above objective is the total sparse representation error of all

raining samples in the projected subspace; therefore, minimizing

his term can ensure the sparse representation structure to be pre-

erved in the projected subspace. Accordingly, it is employed to

egularize the objective of extreme learning machine. With some

lgebraic transformation, we have 

n 
 

i =1 

‖ βT h 

iT − βT H 

T s i ‖ 

2 
2 

= Tr 

[ 

βT 

( 

n ∑ 

i =1 

(
h 

iT − H 

T s i 
)(

h 

iT − H 

T s i 
)T 

) 

β

] 

= Tr 

[ 

βT 

( 

n ∑ 

i =1 

(H 

T e i − H 

T s i )(H 

T e i − H 

T s i ) 
T 

) 

β

] 

= Tr 

[ 

βT H 

T 

( 

n ∑ 

i =1 

e i e 
T 
i − s i e 

T 
i − e i s 

T 
i + s i s 

T 
i 

) 

H β

] 

= Tr 
(
βT H 

T (I − S − S T + S T S ) H β
)
, (18)

here e i is an n th dimensional unit vector with the i th element 1

nd the others 0. 

.2. Objective of SPELM 

Considering the supervised sparsity preserving term J (β)

hown in (17) as a regularizer, the formulated discriminative ex-

reme learning machine with sparsity preserving (SPELM) has the

ollowing objective 

in 

β
‖ H β − Y ‖ 

2 
2 + λ1 Tr 

(
βT H 

T MH β
)

+ λ2 ‖ β‖ 

2 
2 , (19)

here M = I − S − S T + S T S , Y is a class indicator matrix defined as

ollows [25] 

 i j = 

⎧ ⎨ 

⎩ 

√ 

n 
n j 

−
√ 

n j 
n 

, if y i = j 

−
√ 

n j 
n 

, otherwise . 

(20)

 

i is the class label of x i , n j is the sample size of the j th class, and n

s the total sample size of data set. λ1 controls the impact of spar-

ity preserving by β and λ2 controls the effect of value shrinkage

f β. 

Obviously, it is easy to verify that the optimal solution to

19) can be reached when β has the following estimation 

∗ = 

(
H 

T (I + λ1 M ) H + λ2 I 
)−1 

H 

T Y . (21)

his is an analytical solution to output weights. Except the process

f sparsity identification, the computational complexity of SPELM

s similar to that of GELM [26] . 

We summarize the whole framework of SPELM in Algorithm 2 . 

.3. Efficient model selection 

Parameters λ1 and λ2 play important roles in the implemen-

ation of SPELM, which are usually selected from some candidate

alues via cross-validation. In ELM setting, the dimension of hid-

en layer representation, which equals to the number of hidden

nits, are usually large. Therefore, the sizes of H 

T MH and H 

T H are
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Algorithm 2. Sparsity preserving extreme learning machine. 

Input: Training samples X = { x i } n i =1 
, and related parameters λ, λ1 , 

λ2 ; 

Output: The output weight matrix β. 

1: Randomly generate the input weight matrix W and bias vector 

b ; 

2: Calculate the hidden layer output H by (2); 

3: Centralize H by H � H (I − 1 
n 1 n 1 

T 
n ) ; 

4: Identify the sparsity information S via Algorithm 1 ; 

5: Construct the indicator matrix Y based on (20); 

6: Estimate the output weights β based on (21); 

l  

p  

b

D  

t  

t

β

S[
 

w

β

I  

t

I  

i

H  

t  

s  

t

3

 

S  

(

 

p  

p  

d  

f

 

 

 

 

Table 1 

The summary of data sets in our experiments. c is the number 

of classes, d is the number of feature dimensions, and n is the 

number of data points. 

Dataset c d n 

COIL20 20 1024 1440 

Yale-B 38 1024 2414 

USPS 10 256 9298 

UMIST 20 644 575 

Table 2 

Classification accuracy with deviation of different algorithms (%) on the 

COIL20 data set. 

COIL20 2 train 4 train 6 train 8 train 

LDA 68.05 ± 1.80 77.61 ± 1.69 81.03 ± 2.29 83.92 ± 1.57 

LPP 68.94 ± 1.60 78.45 ± 1.87 81.58 ± 2.42 84.20 ± 1.73 

NPE 68.44 ± 1.69 78.46 ± 2.00 81.44 ± 2.29 84.26 ± 1.47 

SSC 68.54 ± 1.64 80.33 ± 1.75 84.08 ± 1.88 87.67 ± 1.71 

USELM 61.68 ± 1.79 72.22 ± 1.71 77.26 ± 2.41 79.89 ± 1.70 

RELM 70.54 ± 1.95 81.99 ± 1.94 86.35 ± 1.84 90.43 ± 1.59 

GELM 71.02 ± 1.73 82.91 ± 1.86 87.13 ± 1.69 91.29 ± 1.55 

SPELM 74.61 ± 1.90 85.23 ± 1.96 89.00 ± 1.54 92.07 ± 1.71 
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b  

a

arge and then the cross-validation process is computationally ex-

ensive. Following the pipeline in [27] , we give an efficient method

elow to do model selection. 

According to (21) , we have 

β∗ = 

(
H 

T H + λ1 H 

T MH + λ2 I 
)−1 

H 

T Y 

= 

[
λ2 

(
1 

λ2 

H 

T H + 

λ1 

λ2 

H 

T MH + I 

)]−1 

H 

T Y 

= 

1 

λ2 

(
1 

λ2 

H 

T H + 

λ1 

λ2 

H 

T MH + I 

)−1 

H 

T Y . 

(22) 

efine γ = 

λ1 
λ2 

and D λ2 
as a diagonal matrix with each element on

he diagonal as (D λ2 
) ii = 

1 
λ2 

, i = 1 , 2 , . . . , n, then we can rewrite

he above equation as 

∗ = 

1 

λ2 

[
H 

T (D λ2 
+ γ M ) H + I 

]−1 
H 

T Y . (23) 

ince ( I + AB ) 
−1 = I − A ( I + BA ) 

−1 B [28] , we have 

H 

T (D λ2 
+ γ M ) H + I 

]−1 = I − H 

T ˜ M (I + HH 

T ˜ M ) −1 H , (24)

here ˜ M = D λ2 
+ γ M . Therefore, 

∗ = 

1 

λ2 

[
I − H 

T ˜ M (I + HH 

T ˜ M ) −1 H 

]
H 

T Y . (25) 

n the case when the number of ELM hidden units L is much larger

han the sample size n , the size of matrix 

 + HH 

T (D λ2 
+ γ M ) ∈ R 

n ×n (26)

s much smaller than that of matrix 

 

T H + λ1 H 

T MH + λ2 I ∈ R 

L ×L , (27)

he computational cost will be dramatically reduced. When the

ample size is much larger than the number of ELM hidden units,

he original formulation is more efficient. 

.4. Discussions 

In this section, we give discussions on connections between

PELM and two closely related ELMs which are unsupervised ELM

US-ELM) [8] and graph regularized ELM (GELM) [26] . 

US-ELM is also a feature extraction model, which can be sim-

ly viewed as a random feature mapping followed by a locality

reserving projection (LPP) [29] . Equivalently, we can think it as

oing LPP in the ELM feature space. Basically, there are three dif-

erent aspects between SPELM and US-ELM: 

• US-ELM is an unsupervised subspace learning method and thus

the output representation is more applicable to data cluster-

ing, while SPELM is a supervised learning method and thus the

learned subspace representation is used to do supervised tasks

such as classification; 
• From the hidden layer to output layer, US-ELM expects the out-

put weights to preserve the locality information of data. How-

ever, SPELM aims to preserve the global information based on

the specially designed indicator matrix and the least square dis-

criminant analysis [25] ; 

• The dimension of the output representation in US-ELM is ar-

bitrary, which leaves the dimension of the subspace a free pa-

rameter. For SPELM, we can consider it as an enhanced nonlin-

ear discriminant analysis. Then, the maximal dimension of the

learned subspace is c −1 ( c is the number of classes). 

Though the general objective of SPELM is similar to that of

ELM, there are at least three different aspects between these two

odels: 

• GELM is an enhanced ELM and of course a classifier, while

SPELM is essentially a feature extraction method which can be

theoretically suffixed by any classifier for pattern recognition; 

• The structure information of training samples in GELM is ob-

tained based on their label information. Therefore, the corre-

sponding affinity matrix and graph Laplacian can be directly

constructed, while in SPELM the sparsity information matrix S

(can be also seen as one type of similarity measure) is obtained

by solving a sparse learning objective; 

• Specifically, GELM tries to minimize βT H 

T LH β, while

SPELM tries to minimize βT H 

T MH β. Note that, a vector

f = ( f 1 , f 2 , . . . , f n ) can be thought as a function defined on

the graph such that f i is the map of the i th node. Thus, a

matrix can be thought as an operator acting on functions on

the graph. In [30] , Belkin and Niyogi show that under certain

conditions, 

Mf ≈ 1 

2 

L 2 f . (28) 

Also, from spectral graph theory [31] , we know that L provides

a discrete approximation to the Laplace Beltrami operator L on

the manifold. Therefore, the matrix M provides a discrete ap-

proximation to L 

2 . This indicates that these two regularizers

provide two different ways to approximate the eigenfunctions

of Laplace Beltrami operator. 

. Experimental studies 

In this section, we evaluate the proposed method, i.e. , SPELM,

y comparing it with closely related subspace learning methods

nd classifiers. 
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Fig. 1. Some sample images from the four data sets used in our experiments. 

Table 3 

Classification accuracy with deviation of different algorithms (%) on the Ex- 

tended Yale B data set. 

Ext. Yale B 5 train 10 train 20 train 30 train 

LDA 76.09 ± 1.66 86.85 ± 1.13 89.69 ± 0.70 86.96 ± 1.30 

LPP 73.62 ± 1.61 84.89 ± 0.96 87.84 ± 0.84 85.55 ± 1.25 

NPE 73.36 ± 1.99 84.57 ± 1.42 87.74 ± 0.96 81.79 ± 1.29 

SSC 71.49 ± 1.68 86.55 ± 1.27 94.52 ± 0.76 97.03 ± 0.35 

USELM 42.80 ± 2.80 55.71 ± 2.03 69.78 ± 1.69 78.84 ± 1.36 

RELM 76.49 ± 1.72 88.13 ± 1.15 95.13 ± 0.76 97.72 ± 0.45 

GELM 78.18 ± 1.61 89.08 ± 1.10 95.52 ± 0.71 98.04 ± 0.43 

SPELM 77.67 ± 1.63 89.45 ± 1.15 95.68 ± 0.87 98.13 ± 0.26 

Table 4 

Classification accuracy with deviation of different algorithms (%) on the 

USPS data set. 

USPS 3 train 5 train 10 train 15 train 

LDA 65.07 ± 4.20 65.19 ± 2.88 60.16 ± 3.07 55.40 ± 3.85 

LPP 64.24 ± 4.11 65.46 ± 2.75 60.71 ± 2.81 57.32 ± 3.77 

NPE 65.60 ± 4.64 66.34 ± 2.99 62.30 ± 2.53 56.90 ± 3.57 

SSC 73.41 ± 3.25 80.18 ± 1.99 87.44 ± 0.98 89.43 ± 1.20 

USELM 62.12 ± 3.48 64.78 ± 3.15 78.15 ± 1.56 80.30 ± 2.53 

RELM 74.55 ± 2.89 80.29 ± 2.19 86.52 ± 1.10 88.66 ± 1.10 

GELM 75.19 ± 2.93 80.87 ± 2.29 86.64 ± 1.12 88.73 ± 0.93 

SPELM 76.08 ± 2.62 81.17 ± 2.47 86.76 ± 1.20 88.77 ± 1.20 

Table 5 

Classification accuracy with deviation of different algorithms (%) on the 

UMIST data set. 

UMIST 3 train 5 train 7 train 9 train 

LDA 74.84 ± 3.08 85.27 ± 2.59 89.37 ± 1.80 92.85 ± 1.94 

LPP 75.57 ± 3.00 86.07 ± 2.58 90.08 ± 1.90 93.42 ± 1.84 

NPE 75.81 ± 3.14 85.94 ± 2.57 89.83 ± 1.82 93.09 ± 1.91 

SSC 75.83 ± 3.04 86.88 ± 2.84 91.63 ± 1.96 95.08 ± 1.47 

USELM 61.08 ± 3.25 74.47 ± 2.42 81.75 ± 1.59 88.75 ± 1.08 

RELM 75.93 ± 2.97 86.03 ± 2.65 90.56 ± 1.96 93.87 ± 1.47 

GELM 80.11 ± 3.04 90.37 ± 2.68 94.08 ± 1.65 96.52 ± 1.23 

SPELM 81.47 ± 3.03 91.27 ± 2.82 95.64 ± 1.66 98.05 ± 1.06 

4
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.1. Data sets 

Four widely used image data sets are employed in our experi-

ents. The statistics of these data sets are summarized below (see

lso Table 1 .) 

• COIL20 database 1 is a data set of gray-scale images of 20 ob-

jects. The objects were placed on a motorized turntable against

a background. The turntable was rotated through 360 ° to vary
1 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php 

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Fig. 2. Pairwise comparison between RELM and SPELM on the COIL20 data set. The x -axis denotes 20 different splittings of training and testing sets. (For interpretation of 

the references to color in this figure, the reader is referred to the web version of this article.) 
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the object poses with respect to a fixed camera. Images of the

objects were taken at pose intervals of 5 °, which corresponds

to 72 images per object. In following experiments, we have re-

sized each of the original 1440 images down to 32 × 32 pixels.

• Extended Yale B database 2 contains 16128 face images of 38

human subjects under 9 pose and 64 illumination conditions.

In our experiment, we choose the frontal pose and use all the

images under different illumination, thus we get 2414 images

in total. All the face images are manually aligned and cropped.

They are resize to 32 × 32 pixels, with 256 gray levels per pixel.

Thus each face image is represented as a 1024-dimensional vec-

tor. 

• USPS database consists of gray-scale handwritten digit images.

We use a popular subset which contains 9298 handwritten digit

images in total provided by Deng Cai 3 . The size of each image

is 16 × 16 pixels with 256 gray levels. 
2 http://vision.ucsd.edu/ ∼leekc/ExtYaleDatabase/ExtYaleB.html 
3 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html 

i  

u  
• UMIST database 4 contains 20 subjects and totally 575 face im-

ages. Each covers a range of poses from profile to frontal views.

Subjects cover a range of race/sex/appearance. All images are

cropped and resized into 28 × 23 pixels per image. 

Several sample images from these four data sets are shown in

ig. 1 . 

.2. Experimental settings 

In the following experiments, we compare SPELM with some

losely related subspace learning methods such as linear discrim-

nant analysis (LDA) [32] , locality preserving projection (LPP) [29] ,

nd neighborhood preserving embedding (NPE) [33] and classifiers

uch as supervised sparse coding (SSC) [34] and � 2 -norm regular-

zed extreme learning machine (RELM) [2] . Additionally, we also

nclude the results of US-ELM [1] which can be seen as a reg-

larized locality preserving projection from ELM feature space to
4 http://images.ee.umist.ac.uk/danny/database.html 

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://images.ee.umist.ac.uk/danny/database.html


248 Y. Peng, B.-L. Lu / Neurocomputing 261 (2017) 242–252 

Table 6 

Results of paired students’ t -tests on the “> ” relationship between the two accuracies on the four data sets. 

COIL20-2 COIL2-4 COIL20-6 COIL20-8 YaleB-5 YaleB-10 YaleB-20 YaleB-30 

SPELM > LDA 1 1 1 1 1 1 1 1 

SPELM > LPP 1 1 1 1 1 1 1 1 

SPELM > NPE 1 1 1 1 1 1 1 1 

SPELM > SSC 1 1 1 1 1 1 1 1 

SPELM > USELM 1 1 1 1 1 1 1 1 

SPELM > RELM 1 1 1 1 1 1 1 1 

SPELM > GELM 1 1 1 1 0 1 0 0 

USPS-3 USPS-5 USPS-10 USPS-15 UMIST-3 UMIST-5 UMIST-7 UMIST-9 

SPELM > LDA 1 1 1 1 1 1 1 1 

SPELM > LPP 1 1 1 1 1 1 1 1 

SPELM > NPE 1 1 1 1 1 1 1 1 

SPELM > SSC 1 1 0 0 1 1 1 1 

SPELM > USELM 1 1 1 1 1 1 1 1 

SPELM > RELM 1 1 0 0 1 1 1 1 

SPELM > GELM 1 0 0 0 1 1 1 1 

Fig. 3. Pairwise comparison between RELM and SPELM on the UMIST data set. The x -axis denotes 20 different splittings of training and testing sets. (For interpretation of 

the references to color in this figure, the reader is referred to the web version of this article.) 



Y. Peng, B.-L. Lu / Neurocomputing 261 (2017) 242–252 249 

Fig. 4. Parameter sensitivity to λ on the COIL20 data set on the first splitting of training and testing sets. 
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earned subspace as well as the GELM [26] . For US-ELM, the reg-

larization parameter is empirically set as 0.1. The two regulariza-

ion parameters λ1 and λ2 are searched from 2 {−10 , ... , 10 } . In our ex-

eriment, we consider the supervised learning task and obviously

he supervised version of LPP and NPE is used. The SSC is based on

he implementation provided by Feiping Nie 5 . For subspace learn-

ng methods, the K-nearest neighbor classifier with K = 1 is used to

o classification. For accelerating the computing, samples are pro-

ected onto PCA subspace with 0.98 energy preserved before doing

upervised sparse coding. 

For COIL20 data set, p COIL20 = { 2 , 4 , 6 , 8 } images from each

lass were randomly selected as training samples, and the re-

aining samples were used for testing. Similarly, for the remain-

ng data sets, we respectively set p YaleB = { 5 , 10 , 20 , 30 } , p USPS =
 3 , 5 , 10 , 15 } , and p UMIST = { 3 , 5 , 7 , 9 } . Since the training samples

ere randomly chosen, we repeated the experiment 20 times and

hen calculated the average recognition accuracy. The random in-
5 http://escience.cn/people/fpnie/papers.html 

l  

f  

f

ices for selecting training samples are kept the same for all com-

ared algorithms. In general, the classification rate varies with the

imensionality of the subspace and thus the best average perfor-

ance obtained is reported. The number of nearest neighbors in

PE is set as n train -1 if n train is smaller than 5; otherwise, it is set

s 5. 

The ELM architecture is set as follows: the number of hid-

en units are consistently set as 20 0 0 and the ‘sigmoid’ func-

ion is used as activation function. Before being fed into ELM net-

ork, all samples are projected into PCA subspace with ratio 1.

or fair comparison, we record each randomly generated input

eight matrix of the 20 experiments in RELM and use them to

PELM. 

There are three parameters in SPELM: (1) λ is included in the

parsity identification stage; and (2) λ1 and λ2 are involved in

he output weights estimation stage. It is usually time-consuming

o do cross-validation on these three parameters by three-fold

oops. In the following experiments, λ is determined by grid search

rom candidate values 2 {−10 , ... , 10 } based on SSC classification per-

ormance since λ is the only control parameter in SSC. Then, λ
1 

http://escience.cn/people/fpnie/papers.html
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Fig. 5. Parameter sensitivity to λ1 and λ2 on the COIL20 data set on the first splitting of training and testing sets. 
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and λ2 are also determined by grid search from candidate values

2 {−10 , ... , 10 } . 

4.3. Experimental results 

The experimental results are given in Tables 2 , 3 , 4 and 5 where

the best results are shown in boldface. From these four tables, we

can find some interesting points below. 

• From pairwise comparison results, SPELM is consistently better

than RELM on all four data sets. This indicates that the sparsity

information can greatly enhance the performance of ELM and

thus it is of great necessity to identify the sparsity structure of

data. 

• Three typical supervised subspace learning methods, LPP, LDA

and NPE, have comparable performance across different data

sets. Obviously, they are superior to USELM since it is an un-

supervised subspace learning method. The only difference be-

tween USELM and unsupervised LPP is the random feature

mapping of ELM from input layer to hidden layer. LPP in su-

pervised version is similar to LDA, which has been analyzed in

detail in [35] . Also, supervised NPE is to preserve the discrimi-

native information in the neighborhood of each sample. 

• SSC works well when given more training samples each class.

Taking Extended Yale B data set for example, when given 5
training samples each class, SSC can only obtain 71.49% recog-

nition rate, which is obviously worse then the other methods.

However, it performs pretty well with accuracy 97.03% when

p YaleB = 30 , which is comparable with RELM but slightly worse

than SPELM. In most cases, SPELM performs better than GELM

since SPELM simultaneously emphasizes the differences of iter-

class and intra-class samples while GELM only considers the

difference of samples on class level. 

• Generally, all RELM, GELM and SPELM can achieve excellent

performance on all the four data sets no matter how many

training samples each class are given. This indirectly implies

the rationality of the random feature mapping in ELM and it

is a competitive classifier in pattern analysis. 

Since Tables 2, 3, 4 and 5 only give the mean accuracies as well

s standard deviations of compared algorithms. For more clearly

emonstrating the improvement of SPELM with respect to RELM,

e give the experimental results on COIL20 and UMIST data sets

ver the 20 different configurations of training and testing sam-

les, which are respectively shown in Figs. 2 and 3 . To make the

gures look neater, we first sort the results of RELM over the 20

xperiments and record the indices and then rearrange the results

f SPELM based on the indices. It is easy to find that for each con-

guration of training and testing samples, the red curve is always

ver the green curve which means SPELM actually obtains accuracy
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mprovement by incorporating the supervised sparsity information

f data. 

To illustrate the statistical difference between our approach and

ther algorithms, we did the paired students’ t -test on these data

ets. Here, the hypothesis is “the classification (mean) accuracy ob-

ained by SPELM is greater than that obtained by the other (given)

ethod”. Each test us run on two accuracy sequences, which are

btained from the 20 splits by our method and the given method.

able 6 reports the results of the statistical tests. In each entity, “1”

eans that the hypothesis is correct (true) with probability 0.95,

nd “0” means that “the hypothesis is wrong (false)” with proba-

ility 0.95. For example, on the COIL20 data set (see Table 2 ), the

ecision “92.07 (SPELM) > 90.43 (RELM)” is correct with probabil-

ty 0.95. In summary, from Table 6 , we see decision that “our al-

orithm achieves higher classification accuracy” is correct on most

ata sets. 

.4. Parameter sensitivity analysis 

In this section, taking the COIL20 data set as an example, we

how the performance sensitivity of SPELM in terms of parameters

, λ1 and λ2 . Similar results can be obtained on the other three

ata sets. 

Since we directly use the cross-validation results of λ on SSC

bjective, we plot the performance of SSC with respect to λ in

ig. 4 . As we can see, despite of being given different training sam-

les, the performance of SSC is pretty stable when λ takes val-

es from 2 {−10 , ... , 4 } . The performance of SPELM with respect to pa-

ameter combination ( λ1 , λ2 ) is shown in Fig. 5 . For each number

f training samples, there is a large flat area on the mesh where

PELM can get high accuracy, generally when λ1 and λ2 respec-

ively takes values from 2 {−10 , ... , 0 } and 2 {−10 , ... , 5 } . 

. Conclusion 

In this paper, we have proposed a novel ELM model, sparsity

reserving extreme learning machine (SPELM), by viewing ELM as

 feature extraction model instead of a classifier. Basically, SPELM

s a two-stage model in which the first stage is to identify the su-

ervised sparsity information by solving a sparse learning formula

nd the second stage is to estimate the output weights of ELM. Be-

ides the model formulation, we have given some practical consid-

rations on model selection and some discussions on the connec-

ion of SPELM and other related ELMs. Extensive experiments on

mage classification have shown the effectiveness of the proposed

PELM model. 

cknowledgments 

The authors would like to thank the anonymous reviewers for

heir helpful comments on this paper. This work was partially sup-

orted by Natural Science Foundation of China (61602140), Sci-

nce and Technology Program of Zhejiang Province (2017C33049),

iangsu Key Laboratory of Image and Video Understanding for

ocial Safety, Nanjing University of Science and Technology

30916014107) and Guangxi High School Key Laboratory of Com-

lex Systems and Computational Intelligence. 

eferences 

[1] G.-B. Huang , Q.-Y. Zhu , C.-K. Siew , Extreme learning machine: a new learning
scheme of feedforward neural networks, in: Proceedings of IEEE International

Joint Conference on Neural Networks, vol. 2, 2004, pp. 985–990 . 
[2] G.-B. Huang , Q.-Y. Zhu , C.-K. Siew , Extreme learning machine: theory and ap-

plications, Neurocomputing 70 (1) (2006) 489–501 . 
[3] D.E. Rumelhart , G.E. Hinton , R.J. Williams , Learning representations by back-
-propagating errors, Nature 323 (1986) 533–536 . 

[4] G.-B. Huang , L. Chen , C.-K. Siew , Universal approximation using incremental
constructive feedforward networks with random hidden nodes, IEEE Trans.

Neural Netw. 17 (4) (2006) 879–892 . 
[5] R. Zhang , Y. Lan , G.-B. Huang , Z.-B. Xu , Universal approximation of extreme

learning machine with adaptive growth of hidden nodes, IEEE Trans. Neural
Netw. Learn. Syst. 23 (2) (2012) 365–371 . 

[6] X. Liu , S. Lin , J. Fang , Z. Xu , Is extreme learning machine feasible? A theoreti-

cal assessment (Part I), IEEE Trans. Neural Netw. Learn. Syst. 26 (1) (2015) 7–
20 . 

[7] S. Lin , X. Liu , J. Fang , Z. Xu , Is extreme learning machine feasible? A theoretical
assessment (Part II), IEEE Trans. Neural Netw. Learn. Syst. 26 (1) (2015) 21–

34 . 
[8] G. Huang , S. Song , J.N. Gupta , C. Wu , Semi-supervised and unsupervised ex-

treme learning machines, IEEE Trans. Cybern. 44 (12) (2014) 2405–2417 . 

[9] J. Tang , C. Deng , G.-B. Huang , Extreme learning machine for multilayer percep-
tron, IEEE Trans. Neural Netw. Learn. Syst. 27 (4) (2016) 809–821 . 

[10] S. Suresh , R.V. Babu , H. Kim , No-reference image quality assessment using
modified extreme learning machine classifier, Appl. Soft Comput. 9 (2) (2009)

541–552 . 
[11] A . Iosifidis , A . Tefas , I. Pitas , Minimum class variance extreme learning ma-

chine for human action recognition, IEEE Trans. Circ. Syst. Video Technol. 23

(11) (2013) 1968–1979 . 
[12] G. Huang , G.-B. Huang , S. Song , K. You , Trends in extreme learning machines:

A review, Neural Netw.s 61 (2015) 32–48 . 
[13] W. Zong , G.-B. Huang , Face recognition based on extreme learning machine,

Neurocomputing 74 (16) (2011) 2541–2551 . 
[14] N.-Y. Liang , P. Saratchandran , G.-B. Huang , N. Sundararajan , Classification of

mental tasks from EEG signals using extreme learning machine, Int. J. Neural

Syst. 16 (1) (2006) 29–38 . 
[15] A.Y. Yang , Z. Zhou , A.G. Balasubramanian , S.S. Sastry , Y. Ma , Fast

� 1 -minimization algorithms for robust face recognition, IEEE Trans. Image
Process. 22 (8) (2013) 3234–3246 . 

[16] J. Wright , A.Y. Yang , A. Ganesh , S.S. Sastry , Y. Ma , Robust face recognition via
sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009)

210–227 . 

[17] E. Elhamifar , R. Vidal , Sparse subspace clustering: algorithm, theory, and appli-
cations, IEEE Trans. Pattern Anal. Mach. Intell. 35 (11) (2013) 2765–2781 . 

[18] L. Qiao , S. Chen , X. Tan , Sparsity preserving projections with applications to
face recognition, Pattern Recog. 43 (1) (2010) 331–341 . 

[19] F. Yin , L. Jiao , F. Shang , L. Xiong , X. Wang , Sparse regularization discriminant
analysis for face recognition, Neurocomputing 128 (2014) 341–362 . 

20] M. Yuan , Y. Lin , Model selection and estimation in regression with grouped

variables, J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 68 (1) (2006) 49–67 . 
[21] G.-B. Huang , H. Zhou , X. Ding , R. Zhang , Extreme learning machine for regres-

sion and multiclass classification, IEEE Trans. Syst. Man Cybern. Part B: Cybern.
42 (2) (2012) 513–529 . 

22] E. Grave , G.R. Obozinski , F.R. Bach , Trace lasso: a trace norm regularization for
correlated designs, in: Proceedings of Advances in Neural Information Process-

ing Systems, 2011, pp. 2187–2195 . 
23] Y. Peng , B.-L. Lu , Robust group sparse representation via half-quadratic opti-

mization for face recognition, in: Proceedings of IEEE Canadian Conference on

Electrical and Computer Engineering, 2015, pp. 146–151 . 
24] F. Nie , H. Huang , X. Cai , C.H. Ding , Efficient and robust feature selection via

joint � 2,1-norms minimization, in: Proceedings of Advances in Neural Infor-
mation Processing Systems, 2010, pp. 1813–1821 . 

25] J. Ye , Least squares linear discriminant analysis, in: Proceedings of the 24th
International Conference on Machine learning, 2007, pp. 1087–1093 . 

26] Y. Peng , S. Wang , X. Long , B.-L. Lu , Discriminative graph regularized extreme

learning machine and its application to face recognition, Neurocomputing 149
(2015) 340–353 . 

[27] X. Shu , Y. Gao , H. Lu , Efficient linear discriminant analysis with locality pre-
serving for face recognition, Pattern Recognit. 45 (5) (2012) 1892–1898 . 

28] S.R. Searle , Matrix algebra useful for statistics, Wiley, New York, 1982 . 
29] X. He , P. Niyogi , Locality preserving projections, in: Proceedings of Advances in

Neural Information Processing Systems, vol.16, 2003, pp. 153–160 . 

30] M. Belkin , P. Niyogi , Laplacian eigenmaps and spectral techniques for embed-
ding and clustering, in: Proceedings of Advances in Neural Information Pro-

cessing Systems, vol.14, 2001, pp. 585–591 . 
[31] F.R. Chung , Spectral Graph Theory, vol.92, American Mathematical Society,

Providence, R.I., 1997 . 
32] K. Fukunaga , Introduction to Statistical Pattern Recognition, Academic Press,

New York, 1990 . 

33] X. He , D. Cai , S. Yan , H.-J. Zhang , Neighborhood preserving embedding, in:
Proceedings of IEEE International Conference on Computer Vision, vol.2, 2005,

pp. 1208–1213 . 
34] J. Huang , F. Nie , H. Huang , C. Ding , Supervised and projected sparse coding for

image classification, in: Proceedings of Twenty-Seventh AAAI Conference on
Artificial Intelligence, 2013, pp. 438–4 4 4 . 

35] D. Cai, X. He, J. Han, Using graph model for face analysis, Technical Report,

Department of Computer Science, University of Illinois, Urbana-Champaign, Ur-
bana, IL, 2005. 

http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30197-2/sbref0034


252 Y. Peng, B.-L. Lu / Neurocomputing 261 (2017) 242–252 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

r  

P  

s  

t  

N

Yong Peng received the B.S. degree from Hefei New Star

Research Institute of Applied Technology, the M.S. degree
from Graduate University of Chinese Academy of Sciences,

and the PhD degree from Shanghai Jiao Tong University,

all in computer science, in 2006, 2010 and 2015, respec-
tively. From September 2012 to August 2014, he was a

visiting PhD student in the Department of Electrical En-
gineering and Computer Science, University of Michigan,

Ann Arbor. He joined in School of Computer Science and
Technology, Hangzhou Dianzi University as an Assistant

Professor in June 2015 where he is currently a Research

Associate Professor. He was awarded by the Presidential
Scholarship, Chinese Academy of Sciences in 2009 and

National Scholarship for Graduate Students, Ministry of Education in 2012. His re-
search interests are machine learning, pattern recognition and evolutionary compu-

tation. 
Bao-Liang Lu received his B.S. degree from Qingdao Uni-

versity of Science and Technology in 1982, the M.S. de-
gree from Northwestern Polytechnical University in 1989

and the Ph.D. degree from Kyoto University in 1994. From

1982 to 1986, he was with the Qingdao University of Sci-
ence and Technology. From April 1994 to March 1999, he

was a Frontier Researcher at the Bio-Mimetic Control Re-
search Center, the Institute of Physical and Chemical Re-

search (RIKEN), Japan. From April 1999 to August 2002,
he was a Research Scientist at the RIKEN Brain Science

Institute. Since August 2002, he has been a full Profes-

sor at the Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, China. His research in-

erests include brain-like computing, neural networks, machine learning, pattern
ecognition, and brain computer interface. He was the past President of the Asia

acific Neural Network Assembly (APNNA) and the general Chair of ICONIP2011. He
erves as Associate Editors of IEEE Transactions on Cognitive and Developmental Sys-

ems and Neural Networks (Elsevier). He is a governing board member of Asia Pacific

eural Network Society (APNNS) and a senior member of IEEE. 


	Discriminative extreme learning machine with supervised sparsity preserving for image classification
	1 Introduction
	 Notations

	2 Preliminaries
	2.1 Extreme learning machine
	2.2 Sparse representation
	2.3 Supervised sparse representation

	3 Sparsity preserving extreme learning machine
	3.1 Sparsity preserving method
	3.2 Objective of SPELM
	3.3 Efficient model selection
	3.4 Discussions

	4 Experimental studies
	4.1 Data sets
	4.2 Experimental settings
	4.3 Experimental results
	4.4 Parameter sensitivity analysis

	5 Conclusion
	 Acknowledgments
	 References


