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Abstract—Subject variability is a major obstacle to vigilance
estimation. The conventional subject-specific models fail to per-
form well on unknown subjects. The existing studies mainly
focus on domain adaptation utilizing labeled/unlabeled subject-
specific data. However, it is still expensive and inconvenient
to collect task-specific data from unknown subjects in some
real-world applications. In this paper, we introduce domain
generalization methods for building vigilance estimation models
without requiring any information from the unknown subjects.
We first generalize the structure of Domain Adversarial Neu-
ral Network (DANN) into Domain Generalization (DG-DANN),
and then propose a novel adversarial structure called Domain
Residual Network (DResNet). We compare a popular domain
generalization method, Domain-Invariant Component Analysis
(DICA), with our proposed approach. In terms of the estimation
accuracy and generalization ability, we designed two different
settings for evaluation experiments on a public dataset called
SEED-VIG. Experimental results indicate that our new model
achieves comparable accuracy but more stable performance with-
out using additional information from the unknown subjects in
comparison with the state-of-the-art domain adaptation methods.
Furthermore, domain generalization models also perform well on
the tasks with multiple unknown subjects.

Index Terms—domain generalization, adversarial network,
electroencephalography (EEG), electrooculography (EOG), vigi-
lance estimation

I. INTRODUCTION

With the rapid increase of vehicles, driving safety has

become a crucial issue. Fatigue driving is reported to be one

of the most prominent causes of traffic accidents [1]. People

usually fail to drive safely due to lack of vigilance. Therefore,

it is of great importance to estimate drivers’ vigilance in real-

time.

In the past decades, various kinds of signal modalities have

been exploited to estimate drivers’ vigilance [2]. As a signal

which directly reflects brain activity, electroencephalography

(EEG) has been demonstrated to be a reliable and promising

indicator of human mental state [3] [4]. Recently, a close

relationship and complementary characteristics between EEG

and eye movement data have been found in emotion recogni-

tion [5]. Thus, multimodal approaches have been employed to

further improve the performance of the vigilance estimation

models [6] [7].

*Corresponding author: Bao-Liang Lu (bllu@sjtu.edu.cn)

In Brain-Computer Interface (BCI) systems, subject vari-

ability is one of the major problems for real-world applications

[8]. Due to the subject variability, conventional models trained

on the data from one subject suffer from compromised perfor-

mance when applied to estimate the vigilance level of another

subject. There are the following several causes for subject

variability in EEG and EOG data: a) individual differences

in human brain functional and anatomical connection [9]; b)

misregistration during data collection resulting from different

skull shapes across subjects; c) changes of environment and

sensors’ state in different experiment sessions and days; and d)

variety of subjects’ mental state, emotional condition and task-

irrelevant brain activity disturbance. Collecting labeled EEG

data is extremely expensive and time-consuming. Therefore,

it is necessary to explore an efficient approach to reduce the

subject dependency of the BCI systems. In previous studies,

efforts have been made to address this problem. The methods

for tackling subject variability can be classified into two cat-

egories, the subject-variant approach and the subject-invariant

approach. Specifically, subject-variant approaches calibrate the

pre-trained models with additional data from the test subject,

while subject-invariant approaches investigate robust models

which can perform well on other subjects.

Currently, transfer learning has attracted the attention of

many researchers [10] [11], which can transfer the knowl-

edge learned from the existing data to new application cir-

cumstances. Thus, transfer learning has a high potential in

developing the generalized BCI systems. When training data

and test data are sampled from different distributions, transfer

learning methods are considered to be an appropriate choice

in comparison with traditional machine learning approaches.

There are two popular branches of transfer learning: domain

adaptation and domain generalization. Training with labeled

source domain data and unlabeled target domain data, domain

adaptation methods focus on model enhancement on the target

domain. As another branch of transfer learning, domain gen-

eralization [12] considers applying knowledge extracted from

multiple related domains to other previously unseen domains.

Domain adaptation methods are effective in the circumstances

where target domain information is available. However, when

dealing with unknown domains without extra information,

domain generalization methods are more suitable.
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Many studies have demonstrated that domain adaptation

methods are effective in BCI systems [13] [14]. Among these

domain adaptation methods, significant performance improve-

ment has been achieved by using deep adversarial models

such as Deep Adversarial Neural Network (DANN) [15] [16].

However, a typical characteristic of EEG data is that each

individual is regarded as an independent data domain. In order

to train an EEG-based model, domain adaptation methods need

to collect task-related EEG data from the specific subject,

which is quite costly and inconvenient. Another challenging

problem is the poor generalization ability of this well-trained

model, which is designed for the specific subject and cannot

exhibit excellent performance for other new subjects. As a

result, domain adaptation approaches are only suitable to the

circumstances of personalizing models for specific subjects,

where we have to recollect data and retrain a new model

whenever there are new subjects to be estimated. Hence, for

a BCI system which is applicable for unknown users, i.e., a

depersonalized BCI system, domain adaptation methods may

become inefficient.

Ideally, a generalized method is supposed to address this

problem, which leads to the topic of domain generalization.

Domain generalization methods in BCI systems aim at robust

performance on unknown subjects with only one deperson-

alized model. From the perspective of transfer learning, the

domain adaptation and domain generalization methods usually

correspond to subject-variant and subject-invariant approaches

in BCI systems, respectively.

In this paper, we aim to apply domain generalization

methods to dealing with depersonalized cross-subject vigilance

estimation problem without requiring any information from the

new subjects. The main contributions of this paper are the fol-

lowing three aspects. Firstly, to the best of our knowledge, this

work is the first to accomplish the depersonalized vigilance

estimation task with domain generalization models. Addition-

ally, we first extended DANN to the domain generalization

situation, and then proposed a new deep adversarial model

called Domain Residual Network (DResNet) by introducing

domain residual components, which are similar to the structure

of the ResNet [17]. Finally, we applied a conventional do-

main generalization method to this problem. According to the

experimental results on a public multimodal dataset, domain

generalization methods can reach a comparable accuracy as

the state-of-the-art domain adaptation methods, and have more

advantages in stability when dealing with the subject variabili-

ty problem. Furthermore, domain generalization methods have

the capability of conducting vigilance estimation over multiple

new subjects with only one well-trained model.

The rest of this paper is organized as follows. Section

II gives a brief review about the related work on subject

variability and domain generalization. Section III introduces

several domain generalization methods we used in this paper.

Section IV describes the experiment setup and the dataset.

Section V discusses the experimental results. Finally, we

conclude our work in Section VI.

II. RELATED WORK

A. Traditional Solutions to Subject Variability in BCI Systems

In recent years, efforts have been made to diminish the

influence of subject variability in BCI systems. For the subject-

variant approach, a model is firstly pre-trained on the training

data from the existing subjects and then a small amount of

calibration data from the new subject is used to tune the

pre-trained model. Devlaminck [18] provided a multi-subject

approach which can reduce the demand of calibration data

from the new subject. Kang and Choi [19] used variational

inference to learn a shared latent subspace of spatial patterns

across subjects. Morioka [8] developed a model which utilized

the resting-state data instead of task-based data to tune the

model. These methods make it possible for BCI systems to

perform well with the calibration data. However, the calibra-

tion session needs to be repeated every time before using the

BCI systems, which is rather inefficient. Other researchers

focus on domain adaptation approaches [14], which utilize

the extra information extracted from the unlabeled data of the

target subject. Zheng and Lu [13] proposed personalized EEG-

based affective models with conventional transfer learning

approaches. Li et al. [16] further improved the accuracy by

using deep adversarial networks.

In contrast, subject-invariant approach aims at designing a

robust BCI model which can diminish the subject variability

without requiring any calibration data from the new subjects.

Fazli et al. [20] applied quadratic regression to sparse the

ensemble of subject-specific temporal and spatial filter classi-

fiers. Reuderink et al. [21] presented a second-order baselining

procedure to reduce individual difference. Tu and Sun [22]

proposed a subject transfer framework for EEG classification,

which can achieve positive knowledge transfer. Samek et al.

[23] formulated the common spatial pattern algorithm as a

divergence maximization problem and provided a subject-

invariant framework. Although these methods eliminate the

need of calibration, they still suffer from the compromised

accuracy.

B. Domain Generalization

Domain generalization can be addressed in three ways. To

start with, all the training domains are used to find a domain

invariant representation space. Therefore, we can project data

from different domains into the common space and learn

a general model. Muandet et al. [24] proposed a kernel-

based optimization algorithm, Domain-Invariant Component

Analysis (DICA), to learn a transformation for data from

different domains. Focus on cross-domain object recognition,

Ghifary et al. [25] developed a multi-task autoencoder that

attains good generalization performance.

Another intuitive idea is to regulate model weights by

exploiting the information from training domains. Khosla et

al. [26] divided the weights of the classifier into two parts: (1)

visual world weights that are common to all domains, and (2)

bias weights corresponding to each domain. In this way, more

generalized weights and models can be obtained by explicitly
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declaring bias weights. Fang et al. [27] proposed a metric-

based learning algorithm, which has good generalization abil-

ity due to the less biased distance metric.

Finally, better generalization performance can be achieved

by predicting which known domain is the most similar to the

test domain. Xu et al. [28] added a nuclear-norm regularizer

to an exemplar-SVM to calculate the similarity of positive

samples.

In our work, specific solutions to the subject variability

problem in depersonalized vigilance estimation have been

designed based on the first and second ideas of domain

generalization methods mentioned above.

III. METHODS

In this section, we first give a description about the domain

generalization problem and then elaborate the models that we

adopt to deal with the depersonalized vigilance estimation

problem in this paper.

Let X denote the input space, and Y denote the output

space. The set of all joint distributions on X × Y is PXY .

Here, we assume the elements of PXY are observed from a

distribution PPP . Then we can define a domain Di = {Xi, Yi},

where Xi, Yi = {(x1, y1), (x2, y2), ..., (xni
, yni

)} are ni sam-

ples from the joint distribution P i
XY ∈ PXY . Respectively,

the marginal probability distribution P i
X and the conditional

probability distribution P i
Y |X of domain Di can be obtained.

In the domain generalization problem, usually there are

samples S from k different domains D1, D2, ..., Dk. We

assume the marginal distribution varies among different do-

mains, while the conditional distribution remains stable, i.e.,

P i
X �= P j

X , P i
Y |X ≈ P j

Y |X when i �= j. Given the samples S,

our goal is to find a function f : X → Y which can maintain

PY |X despite the changes of PX . Thus, f can generalize well

on test data from any previously unseen domain Dt = {Xt},

where Xt are sampled from the unknown distribution P t
X [12].

The domain generalization problem is depicted in Fig. 1.

Fig. 1. Illustration of the domain generalization problem.

A. Domain-Invariant Component Analysis (DICA)

DICA defines a distance called distributional variance which

measures the similarity of different domains and tries to find a

transformation to a low-dimensional subspace that minimizes

the distributional variance [24]. In a reproducing kernel Hilbert

space (RKHS), distributions can be represented as elements

using the mean map function:

μ : Px → H : P �→

∫

X

k(x, ·)dP (x) =: μP (1)

As mentioned above, given input space X , the set of

distributions can be denoted as P = {P 1, P 2, ..., P k}, where

P is drawn according to a distribution PPP . Based on the set P,

k × k Gram matrix G is defined as the inner product of the

kernel mean maps for P i and P j with entries:

Gij := 〈μP i , μP j 〉H =

∫∫

k(x, z)dP i(x)dP j(z) (2)

where i, j = 1, 2, ..., k.

To measure the divergence between different distributions,

the definition of distributional variance with the Gram matrix

G is formulated as:

VH(P) :=
1

k
tr(Σ) =

1

k
tr(G)−

1

k2

k
∑

i,j=1

Gij (3)

where P denotes a probability distribution on H with

P(μP i) = 1

k
and Σ := G − 111kG − G111k + 111kG111k is the

co-variance operator of P .

Through an orthogonal transform B, DICA finds a domain-

invariant m-dimensional subspace where distributional vari-

ance across different domains can be minimized. Specifically,

let S = {(xi
m, yim)ni

m=1}
k
i=1 be the data samples from k

domains. For brevity, we denote S as {(xm, ym)}nm=1, where

n =
∑k

i=1
ni. In order to estimate the distributional variance

of S , the kernel matrix is defined as

K =

⎡

⎢

⎣

K1,1 · · · K1,k

...
. . .

...

Kk,1 · · · Kk,k

⎤

⎥

⎦
∈ R

n×n (4)

where [Ki,j ]m,n = k(xi
m, xj

n) is the Gram matrix between

domain i and domain j. According to Eq. (3), we can calculate

the coefficient matrix Q, where Qi,j = (k − 1)/(k2n2
i ) if

i = j, else −1/(k2ninj) is in the shape of R
ni×nj . Assume

bm =
∑n

i=1
βi
mφ(xi) = Φxβββm is the m-th basis function

of B, where Φx = [φ(x1), φ(x2), ..., φ(xn)] and βββm is a

coefficient vector of n-dimensional. The kernel matrix K̃ for

S after transformation B is:

K̃ := (bTmΦx)
T bTmΦx = KBBTK (5)

where B = [β1β1β1,β2β2β2, ...,βmβmβm]. Thus, the empirical distributional

variance can be calculated as:

V̂H(BS) = tr(K̃Q) = tr(BTKQKB) (6)

Besides minimizing the distributional variance, DICA also

focus on preserving the functional relationship between input

data X and the corresponding label Y . Suppose Φy =
[ϕ(y1), ..., ϕ(yn)] and L = ΦT

y Φy , the objective function of

DICA is:

max
B∈Rn×m

1

n
tr(BTL(L+ nǫIn)

−1K2B)

tr(BTKQKB +BKB)
(7)
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where ǫ is a kernel regularizer. The unsupervised DICA

(UDICA) is a special case of DICA, where L = 1

n
I and ǫ → 0.

For further details, readers are recommended to refer to [24].

B. Domain Generalization on Domain Adversial Neural Net-

work (DG-DANN)

DANN is a deep domain adaptation model [15], which is

trained by labeled data from the source domain and unlabeled

data from the target domain. Specifically, DANN contain-

s three components, including feature extractor Gf , label

predictor Gy , and domain classifier Gd. For simplicity, we

only consider the case where there is only one layer in each

component.

The feature extractor Gf maps the p-dimensional input

features to a new d-dimensional space by learning a function

Gf : X → R
d. Hence, new features can be extracted

from inputs through Gf with an activation function f and

parameters θf = {Wf , bf} ∈ R
d×p × R

d by calculating:

Gf (x; θf ) = f(Wfx+ bf ) (8)

The label predictor Gy predicts the label of inputs through

function: Gy(Gf (X); θy). The prediction loss of a sample

(xi, yi) is defined as Ly(ŷi, yi) with the prediction ŷi.
In DANN, the domain classifier Gd is a binary classifier:

Gd(Gf (X); θd) since the inputs come from either the source

domain or the target domain in the topic of domain adaptation.

Thus, we can obtain the domain prediction d̂i of a sample xi.

According to [15], the loss of Gd is defined as:

Ld(Gd(Gf (xi)), di) = di log
1

Gd(Gf (xi))

+ (1− di) log
1

1−Gd(Gf (xi))

(9)

with a sample (xi, di), where di is the binary domain label

for sample xi. For brevity, we denote the loss as Ld(d̂i, di).
Assume there are N samples including n labeled source

domain samples and n′ unlabeled target domain samples.

We can formulate the loss function of the three components

together as:

E(θf ,θy, θd) =
1

n

n
∑

i=1

Ly(ŷi, yi)

− λ

(

1

n

n
∑

i=1

Ld(d̂i, di) +
1

n′

N
∑

i=n+1

Ld(d̂i, di)

) (10)

The optimization is organized as:

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d)

(θ̂d) = argmax
θd

E(θ̂f , θ̂y, θd)
(11)

which is integrated by a special-designed layer called Gradient

Reversal Layer (GRL) between Gf and Gd [15]. After the

optimization, Gd becomes a good domain classifier and Gy

should perform well for the features extracted by Gf . Mean-

while, Gf is supposed to find a mapping to the feature space

where task-related knowledge are reserved and most of the

domain-variant information are excluded.

In this paper, we focus on the domain generalization situa-

tion, and extend DANN to domain generalization. Assume we

can sample data from k different known domains, and there are

N samples (xi, yi, di) in total, including nk samples from each

domain Dk. Following the idea of finding a domain-invariant

feature space, we can preserve the feature extractor Gf and

the label predictor Gy , and generalize the domain classifier Gd

as a k-class domain classifier, where the parameters become

θd = {Wd, bd} ∈ R
k×d×R

k. Accordingly, the loss of Gd can

be modified with respect to the correct domain label di as:

Ld(Gd(Gf (xi)), di) = log
1

Gd(Gf (xi))di

(12)

Additionally, the loss function of the Domain Generalization

version of DANN (DG-DANN) is formulated as:

E(θf , θy, θd) =
1

N

N
∑

i=1

Ly(ŷi, yi)− λ
1

N

N
∑

i=1

Ld(d̂i, di) (13)

The architecture of DG-DANN for regression tasks is illus-

trated in Fig. 2. After the optimization, facilitated by the

well-trained domain classifier Gd, the feature extractor Gf is

supposed to achieve the target of finding the domain-invariant

feature space, where the loss function could be minimized.

Fig. 2. The architecture of DG-DANN for regression tasks. Colors and shapes
for each domain in the training set mean different domain shifts and labels.
For the data in the test set, the domain shifts and the labels are unknown.

C. Domain Residual Network (DResNet)

Another intuitive idea for domain generalization is to reg-

ulate model parameters using the information of the training

domains. As mentioned above, each domain Di corresponding

to a joint distribution P i
XY is observed from the distribution PPP ,

which represents the common space. Hence, domain shifts are

biases during the observation. Inspired by [26], we assume that

the bias of a known domain can be modeled with parameters

and the model parameters for common space can be trained
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together with bias parameters in a joint manner. Since the

domain bias parameters are similar to the residual part of the

ResNet, we named this model as Domain Residual Network

(DResNet).

Fig. 3. One layer of feature extractor Gf in DResNet for a specific domain

The proposed DResNet focuses on the feature extractor

Gf as defined in the DG-DANN model. According to [26],

improvement on generalization ability of the model can be

achieved though training a set of parameters θcf in Gf for

the common space PPP by undoing the domain biases. For

each known domain Di, the bias can be explicitly defined

by parameters θδif . θcf and θδif are related by the equation:

θif = θcf + θδif = {W c
f +W δi

f , bcf + bδif } (14)

Consequently, for an input x from domain i, the feature

extractor Gf for DResNet is organized as:

Gf (x; θ
i
f ) = f

(

(W c
fx+ bcf ) + (W δi

f x+ bδif )
)

(15)

As shown in Fig. 3, the feature extractor is divided into two

parts: a shared-weight common part which is same for all

domains and a domain-specific part where the parameters are

unique for each known domain Di.

Fig. 4. The architecture of our proposed DResNet for regression tasks. The
different colors and shapes for each domain in the training set represent the
domain discrepancy and the label for each sample, respectively. For each layer
in the feature extractor, the dark blue component depicts the shared-weight
part, and the other domain-specific part is colored according to the domain.
For the test set, the domain distribution and the labels are unknown.

During the back propagation, for each sample (xi, yi, di),
the gradient only updates the parameters in the common

part and the i-th domain-specific part. We can formulate the

optimization as:

(θ̂if , θ̂y) = arg min
θf ,θy

E(θif , θy, θ̂d)

(θ̂d) = argmax
θd

E(θ̂if , θ̂y, θd)
(16)

When DResNet predicts the labels for an unknown test

domain, it only activate the common part of the Gf and

the label predictor Gy . The whole structure of DResNet is

illustrated in Fig. 4

IV. EXPERIMENTS

A. The SEED-VIG Dataset

SEED-VIG is a public multimodal vigilance estimation

dataset1. Driving experiments were conducted based on an

established simulation system. During the experiment, subjects

were required to drive in a real vehicle placed in the lab.

Monitored by a software, their motions including stepping on

the accelerator, braking and turning the steering wheel are

reflected on a large LCD screen which displays the animation

of simulated road situation.

Twenty-three healthy participants with normal or corrected-

to-normal vision volunteered to participate in the experiment.

In order to make it easier for subjects to get tired during the

simulated driving, all experiments are performed after lunch

or at night. Each subject drove for two hours, during which

both the forehead EEG and EOG signals were recorded using

Neuroscan system with a sampling rate of 1000 Hz. The data

were labeled by the percentage of eye closure (PERCLOS)

recorded by the eye tracking glasses [29], which ranges from

0 (high vigilance level) to 1 (low vigilance level).

B. Preprocessing and Feature Extraction

The EEG data were further downsampled to 125 Hz and

segmented by a 8-second time window without overlapping.

Hence, there are 885 features for each subject. Since EOG and

EEG data were recorded simultaneously thus mixed together,

independent component analysis (ICA) was applied to find the

EEG component from the raw data. The differential entropy

(DE) features [3] were then extracted in every 2 Hz band from

1 Hz to 50 Hz for all of the 4 electrodes set on the forehead.

Therefore, the dimension of EEG features is 100.

As for the EOG features, the raw data was firstly prepro-

cessed by the ICA method to attain the EOG component,

including the vertical EOG (VEO) and the horizontal EOG

(HEO). Then after performing the Mexican hat wavelet trans-

form, we can extract 36 eye movement features including

the rate and amplitude of blink, saccade and fixation with

peak detection. Concatenating the EOG features with the EEG

features, we finally obtained 885 samples with 136 multi-

modal features for each subject. In order to remove the artifacts

as possible, we applied the moving average method to further

smoothen the features with a window size of 30.

1http://bcmi.sjtu.edu.cn/seed/download.html
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C. Evaluation Details

In this paper, the DG methods are evaluated from the

perspectives of both estimation accuracy and generalization

ability. Thus, we adopt two settings for the evaluation. Firstly,

leave-one-subject-out cross validation was applied to compare

the estimation performance of the DG methods with the DA

algorithms. During each validation, we set the data from one

subject as the unknown test domain and used the data from

the other 22 subjects as the known training domains for the

DG methods. Whereas for the DA method, we set one test

subject as the target domain and regarded the other 22 subjects

together as one source domain. The other setting for evaluation

is to randomly select one third of the subjects (8 people) as

the unknown test domains to be estimated by the DG model

trained with the other two thirds of the subjects’ data (15

people). In aim of maintaining the same test granularity as the

first evaluation setting, we randomly selected 23 sets of the test

subjects and measured the performance on each test domain.

By estimating on different test domains using the same well-

trained DG model, we can evaluate the generalization ability

of the DG methods.

We used the linear support vector regression (SVR) algo-

rithm [30] as the baseline method in both settings. For the DG

methods, we evaluated Domain-Invariant Component Analysis

(DICA) [24], Domain Generalization on DANN (DG-DANN)

and Domain Residual Network (DResNet). Specifically, for

the first evaluation setting, we compared the DG methods

with shallow traditional algorithms, e.g., Transfer Compo-

nent Analysis (TCA) [31], Maximum Independence Domain

Adaptation(MIDA) [32], as well as the deep DA models,

such as Domain Adversarial NeuroNetwork (DANN) [15] and

Adversarial Discriminative Domain Adaptation (ADDA) [33].

The estimation accuracy of is evaluated by the Pearson’s

correlation coefficient (PCC) and the root-mean-square-error

(RMSE). Higher PCCs represent higher similarity between

our prediction and the ground truth, and lower RMSEs rep-

resent more accurate predictions. For the dimension reduction

methods, the subspace dimension was selected in the range

of {10, 20, ..., 120}. For the linear SVR, the parameters C
and ǫ were searched from {2n|n ∈ {−10, ..., 10}} and

{10n|n ∈ {−5, ...,−1}, respectively. For the deep models, we

applied Adam optimizer and applied random search strategy

for parameter tuning. The search space for learning rate and

the hyper parameter λ for GRL were set as {2n × 10−4|n ∈
[−10, 10]} and {10n|n ∈ [−5,−1]}.

V. RESULTS AND DISCUSSION

A. Leave-one-subject-out Evaluation

The estimation accuracies of the DG and DA models are

compared using the leave-one-subject-out settings. Table I

presents the average (Avg) and standard deviation (Std) of

PCC and RMSE across different approaches. Domain general-

ization methods yield similar but more stable accuracy perfor-

mance comparing with domain adaptation methods. Specifical-

ly, for deep domain generalization methods, DResNet and DG-

DANN achieve much more stable performance with the lowest

Std value in both PCC and RMSE. The results demonstrate that

the DG-DANN and DResNet are comparable to the deep DA

models in terms of estimation accuracy and outperform DICA

and the shallow DA methods. Besides, DResNet performs

slightly better than DG-DANN, with the average PCC of

0.8440. For shallow approaches, we can observe that DICA

performs better than TCA and MIDA in terms of the PCC

with a lower Std value, which indicates that the DG methods

are more stable than the DA models.

Raw Feature

DICA

DG-DANN

DResNet

Fig. 5. Domain generalization feature visualization.

We give further analysis of the features extracted from the

DG models with t-SNE [34] visualization shown in Fig. 5.

The first column of figures displays the features from the

training set and the test set which are colored according to their

domains. In the second column, we marked all the training

data as blue points and the test data as red points. The last

column shows these features according to their labels. The

four rows represent the features from the original data, DICA,

DG-DANN and DResNet, respectively. The first row describes

the phenomenon of domain shift in the raw data of SEED-

VIG dataset. The other three rows indicate that all the fea-

tures from different domains are mixed evenly after applying

the DG approaches, which verifies that the DG models can

reduce the subject variability and map the biased features to

approximately the same distribution. Thus, the model trained

with the known domains can perform considerably well when

estimating data from the unknown domains. Furthermore,

benefiting from the unified training, the feature extractors of
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TABLE I
RESULTS OF LEAVE-ONE-SUBJECT-OUT EVALUATION

Baseline Domain Adaptation Methods Domain Generalization Methods
SVR TCA MIDA DANN ADDA DICA DG-DANN DResNet

PCC
Avg 0.7606 0.7786 0.7858 0.8402 0.8442 0.7733 0.8320 0.8440
Std 0.2314 0.2152 0.1900 0.1535 0.1336 0.1382 0.1000 0.0935

RMSE
Avg 0.1689 0.1596 0.1840 0.1427 0.1405 0.2007 0.1470 0.1420
Std 0.0673 0.0544 0.0753 0.0588 0.0514 0.0674 0.0444 0.0402

(a) Subject2 (b) Subject14 (c) Subject16

(d) Subject19 (e) Subject22 (f) Legend

Fig. 6. The vigilance prediction of five subjects with different methods.

DG-DANN and DResNet can be trained with both domain and

label informations. Therefore, label prediction is much easier

with features extracted from the deep DG models which can

account for the obvious trends of the label changes in the third

column of DG-DANN and DResNet features in Fig. 5.

The estimation results of five subjects are depicted in Fig. 6.

We present all the predictions of the three DG methods and

compare them with the true label (PERCLOS) and the baseline

model (SVR). The DG methods yield the similar prediction

trend as the true label. Moreover, deep DG models attain

higher accuracy for most of the subjects.

B. Multiple-random-subject-out Evaluation

For the large-scale BCI applications in practice, it is of great

importance for models to generalize well on multiple unknown

subjects. In order to evaluate the generalization ability of the

DG methods, we randomly selected 23 different sets of 8

subjects as the unknown domains, and then gave vigilance

estimation for each subject based on the DG models trained

on the other 15 subjects. It should be noted that the DA

approaches are inefficient for this estimation strategy since

we need to train several different models for each test set as

there are multiple target domains. Table II summarizes the

results of the DG approaches and the baseline SVR model in

the multiple-random-subject-out evaluation. We can see that

the performance of each method declines slightly due to the

decreased size of the training set. Nevertheless, since there

are 15 domains in the training set, the DG methods can

leverage the sufficient domain information to overcome the

subject variability and perform well on the 8-subject test set.

In addition, DG-DANN and DResNet are less influenced and

still outperform other approaches robustly and DResNet gives

the best performance with the average PCC of 0.8386 and

the average RMSE of 0.1569. These results demonstrate that

DG methods are effective when addressing the depersonalized

cross-subject vigilance estimation problem.

TABLE II
EVALUATION RESULTS OF GENERALIZATION PERFORMANCE

Baseline DICA DG-DANN DResNet

PCC
Avg 0.7499 0.7719 0.8294 0.8386

Std 0.1980 0.1841 0.1541 0.1532

RMSE
Avg 0.2068 0.1735 0.1604 0.1569

Std 0.0587 0.0468 0.0782 0.0735
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VI. CONCLUSION

In this paper, we have studied the depersonalized cross-

subject vigilance estimation problem, which aims at effec-

tive regression models for unknown subjects. To reduce the

subject variability, we have introduced the idea of domain

generalization, where models can be trained without any

information from the unknown test subject. We have proposed

two novel deep adversarial DG models and adopted a popular

conventional DG method. Based on two intuitive ideas for

DG, we have extended DANN to DG and have proposed

a novel structure called DResNet. In our methods, subject

variability can be diminished and information from both label

and domain can be utilized to further improve the performance.

Evaluations under two different settings on a public dataset

have indicated that our proposed DG methods are effective

for reducing subject variability on depersonalized cross-subject

vigilance estimation problem.
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