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Abstract. In this paper, we aim to investigate the similarities and dif-
ferences of multimodal signals between Chinese and French on three
emotions recognition task using deep learning. We use videos includ-
ing positive, neutral and negative emotions as stimuli material. Both
Chinese and French subjects wear electrode caps and eye tracking glass
while doing experiments to collect electroencephalography (EEG) and
eye movement data. To deal with the problem of lacking data for train-
ing deep neural networks, conditional Wasserstein generative adversarial
network is adopted to generate EEG and eye movement data. The EEG
and eye movement features are fused by using Deep Canonical Correla-
tion Analysis to analyze the relationship between EEG and eye move-
ment data. Our experimental results show that French has higher classi-
fication accuracy on beta frequency band while Chinese performs better
on gamma frequency band. In addition, EEG signals and eye movement
data of French participants have complementary characteristics in dis-
criminating positive and negative emotions.

Keywords: Emotion recognition · EEG · Eye movement · Deep
learning · Cross-culture · Chinese · French

1 Introduction

Facial expressions, speech and non-verbal vocalizations are often used as input
to recognize different emotions. Recent research found that facial expressions of
emotion are not culturally universal [1]. People from different cultures can reach
an agreement on the most intense emotion in judging facial expressions. However,
culture differences are found when people judge the absolute level of emotional
intensity [2]. Differences of non-verbal emotion cognition between western culture
and remote tribe were also studied [3]. Cross-cultural similarities and differences
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appear in music mood perception as well. Research and the experimental results
showed that listeners from different cultural backgrounds behaved differently
in their selection of mood clusters and agreement ratio in each mood cluster.
The similar result was found in Shuar hunter-horticulturalists from Amazonian
Ecuador and American native English speakers [4]. However, it is widely agreed
that cross-cultural agreement levels are lower than intra-cultural one [5,6].

With the quick development of brain-computer interface (BCI), many
researches start to use neural signals to study the relationship between emotion
and brain activities. EEG signals are proved to be effective in the field of emotion
recognition. Recent researches indicated that there exists a stable neural pattern
of EEG signals for positive, neutral and negative emotions [7]. Researchers also
used EEG to investigate the differences of neural patterns between Chinese and
Germans [8]. Combining EEG modality with other modalities provided an effi-
cient way to recognize human emotions [9].

Eye movements have been widely used in studying attention, perceptions
and emotion. Eye tracking data allow researchers to find users’ areas of interest,
attention track and subconscious behaviors. Therefore, more and more studies
start to focus on the relationship between emotion and the movements of eyes.
It was proved that higher trait emotional intelligence was associated with more
attention to positive emotional stimuli [10]. The increase of gaze to eye region
in children with autism spectrum disorders led to higher emotion recognition
accuracy [11]. Furthermore, the characteristics of eye movements and EEG are
complementary to emotion recognition [12]. Using modality fusion methods can
significantly enhance the accuracy on emotion recognition task [13].

In this paper, we focus on investigating the similarities and differences of EEG
and eye movement signals between Chinese and French on emotion recognition
task using deep learning. The task is to classify positive, neutral and negative
emotions. We evaluate the performance of emotion classification with different
features and different frequency bands. Functional brain connectivity patterns
are adopted to visualize the similarities and differences between Chinese and
French. Since the complementary characteristics of EEG and eye movements
in Chinese subjects have already been proven [12], we focus on the results for
French participants. Multi-modality fusion algorithm is also used to reveal the
relationship between EEG signals and eye movement data.

2 Methods

2.1 Functional Brain Connectivity Patterns

Functional brain connectivity patterns are used to visualize the neural patterns
of Chinese and French participants instead of focusing on single-channel analysis
[14]. Each EEG channel represents one node and the connections between pairs
of channels are the links. To construct the functional brain network, we use spec-
tral coherence to calculate the connectivity indices between two EEG channels
under different frequency bands. Thus, one connectivity matrix can represent
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one sample’s brain network. Then we use critical subnetwork selection to choose
the emotion-related subnetworks.

Critical subnetwork selection can be divided into several steps. Firstly, we
calculate the average matrices for each emotion. The brain connectivity matrix
of subjects under the same culture background are used to calculate the mean
connectivity matrix. Secondly, we sort each mean connectivity matrix based
on the absolute value of the connection weights. Since some weak connections
between electrodes are not relevant to emotion and they may obscure the profile
for the network topology, we discard the connections based on a proportional
threshold. The connectivity matrices of positive, neutral and negative emotions
are processed respectively. The intersection of connections under three emotions
is considered to be less relevant to the specific emotion. Hence, these connections
are removed from brain connectivity matrix in the visualization. The choice of
threshold is based on the performance of classification. The topological feature
strength is extracted from three critical subnetworks of each subject with dif-
ferent thresholds and then fed into a classifier. The threshold who can obtain
the highest accuracy is considered to have remained the most emotion-related
connections.

2.2 Augmentation of EEG and Eye Movement Data

To overcome the problem of lacking training data for deep neural network, we use
Conditional Wasserstein Generative Adversarial Network (CWGAN) to generate
both EEG and eye movement data [15]. CWGAN consists of two components.
The generator G produces realistic-like data Xg by giving real data distribution
Xr and generated data distribution Xg. The objective of generator is to confuse
discriminator D which tries to distinguish whether a sample comes from Xr or
Xg. The target is to solve the minimax problem during the adversarial training
procedure. The formula is defined as:

min
θG

max
θD

L(Xr,Xg) = Exr∼Xr
[log(D(xr))]

+ Exg∼Xg
[log(1 − D(xg))]

(1)

where θg and θd represent the parameters of the generator and discriminator,
respectively.

In CWGAN, the Earth-Mover distance (EMD, also known as Wasserstein-1
distance) is used to replace Jensen-Shannon divergence to calculate the distance
between probability distribution of real data and generated data. Compared
with Jensen-Shannon divergence, EMD is continuous and differentiable almost
everywhere, which ensures the convergence of GAN and avoids the problem of
mode collapse. To make training procedure more stable and convergence faster,
a gradient penalty is added instead of using weight clipping [16].

In order to generate samples for multiple classes, label information is used.
An auxiliary label Yr is fed into both generator and discriminator. In the gener-
ator, Xz is concatenated with Yr. In discriminator, Xr and Xg are concatenated
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with Yr to construct a hidden representation. The final objective function is
defined as:

min
θG

max
θD

L(Xr,Xg, Yr) =

Exr∼Xr,yr∼Yr
[D(xr|yr)] − Exg∼Xg,yr∼Yr

[D(xg|yr)]

− λEx̂∼X̂,yr∼Yr
[||∇x̂|yr

D(x̂|yr)||2 − 1)2]

(2)

where λ is a hyperparameter controlling the trade-off between the original objec-
tive and gradient penalty, and x̂ is defined as:

x̂ = αxr + (1 − α)xg, α ∼ U [0, 1], xr ∼ Xr, xg ∼ Xg (3)

The loss of discriminator is the maximum term, and the loss of generator is
the minimum term. They are optimized simultaneously. The discriminator loss
is updated for critic times in each adversarial training iteration.

2.3 Multi-modality Fusion Approach

To analyze the characteristics of eye movements and EEG data, Deep Canonical
Correlation Analysis (DCCA) is used [13]. For each modality, a neural network
is constructed to realize nonlinear feature transformation which aims to repre-
sent original modality features in another feature space supposed to be related
with emotion. The layer sizes for both modalities are the same. Then Canonical
Correlation Analysis (CCA) is used to calculate the correlation between trans-
formed features of two modalities. The back-propagation algorithm is adopted
to update parameters of network in order to get higher correlation in CCA layer.
The extracted features are fused by using the formula defined as follows:

Ffusion = αM1 + βM2 (4)

where M1 and M2 represent the extracted features for each modality, respec-
tively, and α and β are the parameters to control the weight of each modality.
Since we consider that EEG and eye movement features have an equivalent
importance here, we choose α = β = 0.5.

3 Experiment Setup

3.1 The SEED Dataset

The SEED1 dataset is a public dataset for emotion recognition. Fifteen Chi-
nese healthy subjects participated in the experiments to watch 15 Chinese film
clips. Each subject was invited to participate in 3 sessions of experiments. The
stimuli material contains positive, neutral and negative emotions. During the
experiment, subjects were demanded to watch film clips attentively. 62-channel
EEG signals based on international 10–20 system and eye movement signals were
recorded at the same time.
1 http://bcmi.sjtu.edu.cn/∼seed/index.html.

http://bcmi.sjtu.edu.cn/~seed/index.html
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3.2 Experiment for French Participants

To compare the results of Chinese with those of French, we have to keep con-
sistency in experiment design and data collection. Thus, we choose film clips
as stimuli material as well. Since French participants may not understand the
expressions of emotion in Chinese films, film clips used in the experiments for
French subjects are chosen from a large database of emotion-eliciting films devel-
oped by Schaefer et al. [17]. All the film excerpts were nominated by 50 experts
and evaluated by 364 Belgian French-speaking undergraduates. We add film clips
with highest Positive And Negative Affect Schedule (PANAS) into our stimuli
material. Due to the lack of neutral excerpts, extra neutral excerpts are chosen
from calm landscape films, which are consistent with SEED dataset. Finally, 21
film excerpts are chosen.

Six healthy subjects aged from 22 to 41 participated in the experiments. All
of the subjects come from France and their native language is French. Since all
the subjects are exchange students and professors on the campus, the number of
subjects are limited. Each participant was required to perform the experiments
for two sessions. During experiment, participants were asked to immerse in the
film clips. 62-channel EEG signals based on international 10–20 system and eye
movement signals were recorded simultaneously.

3.3 Feature Extraction and Classification

To keep balance between the number of Chinese subjects and French subjects, we
randomly choose 6 subjects from the SEED dataset. In order to keep consistency
with the number of sessions each French subject participated, two sessions of a
Chinese subject are chosen. We apply the same data preprocessing and feature
extraction methods on Chinese and French subjects.

The EEG data are downsampled to 200 Hz and transformed by a Short-
Term Fourier Transform (STFT) with an 1-s Hamming window. By using a
band-pass filter from 1 to 50 Hz, it allows us to filter out a large part of artifacts.
Power Spectral Density (PSD), Differential Entropy (DE), Rational Asymmetry
(RASM), Differential Asymmetry (DASM), Asymmetry (ASM) and Differential
Causality (DCAU) features are extracted from five frequency bands: δ: 1–3 Hz,
θ: 4–7 Hz, α: 8–13 Hz, β: 14–30 Hz, and γ: 31–50 Hz. The data recorded from
the same film excerpt are labeled as the same label. The features extracted from
EEG usually contain noises which cannot be thoroughly filtered. Therefore, we
use linear dynamic system (LDS) approach to filter out the unrelated features
for emotion recognition.

As the eye movement data contain different parameters, every eye movement
parameter is processed separately. We adopt the same extracted features of eye
movement in the work of Lu et al. [12] since these features were proven to
be effective in emotion recognition. We also apply LDS to filter out unrelated
features for eye movement data. The total number of dimension of eye movement
features is 33. The details of eye movement features are presented in Table 1.

We use an SVM with linear kernel as a classifier. All the results are obtained
by a 5-fold cross validation. The parameter c is searched from 2−10 to 29.
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Table 1. Details of extracted features from Eye Movement

Eye movement parameters Extracted features

Pupil diameter (X and Y) Mean, standard deviation and DE in four bands:
0–0.2 Hz, 0.2–0.4 Hz, 0.4–0.6 Hz, 0.6–1 Hz

Dispersion (X and Y) Mean, standard deviation

Fixation duration (ms) Mean, standard deviation

Blink duration (ms) Mean, standard deviation

Saccade Mean, standard deviation of saccade duration
(ms) and saccade amplitude (◦)

Event statistics Blink frequency, fixation frequency, fixation
duration maximum, fixation dispersion total,
fixation dispersion maximum, saccade frequency,
saccade duration average, saccade amplitude
average, saccade latency average

4 Experiment Results

4.1 Comparison on Features

In this part, we compare the performance of emotion classification on different
features. Figure 1(a) shows the classification accuracy for Chinese and French
subjects.

We can see that the mean accuracy of Chinese reaches 72.93%, which is much
higher than the mean accuracy of French (47.39%). The gap of accuracy between
Chinese and French shows that the emotions of Chinese have been stimulated
effectively while the emotions of French are relatively difficult to stimulate. The
unfamiliar environment may make French subjects feel difficult to relax and
immerse in the films. The standard deviation (SD) of Chinese (5.98) is close
to the SD of French (6.08), indicating that the individual differences exist on
both datasets. We also use two-way analysis of variance to study the statistical
significance of nation and features. The p-values for the nation (0.0000), the
features (0.0000), and the interaction between nation and features (0.3695) indi-
cates that the nation and features affect the accuracy, but there is no evidence
of an interaction effect of the two.

Among different features, DE feature achieves the highest classification accu-
racy on both datasets, 79.37% with Chinese subjects and 49.65% with French
subjects. DE feature gets the lowest SD on Chinese dataset which means DE
feature is a relatively stable feature for emotion recognition for Chinese subjects.

4.2 Comparison on Frequency Bands

We also compare the classification accuracy on five non-overlapping frequency
bands. The results are shown in Fig. 1(b). The mean accuracy of Chinese sub-
jects achieves 72.92% (SD = 7.23) and that of French is 47.38% (SD = 7.52).
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(a) On different features (b) On different frequency bands

Fig. 1. Classification accuracies on different features and bands

By using two-way analysis of variance, the p-values for the nation (0.0000), the
frequency bands (0.0000), and the interaction between nation and frequency
bands (0.2887) indicates that the nation and the frequency bands affect the
accuracy, but there’s no interaction between nation and the frequency bands. For
Chinese, the performance on higher frequency bands, such as beta and gamma,
is better than that of lower frequency bands. The finding is consistent with
the existing work [18]. Total frequency band, which means to concatenate all
frequency bands together, gets the highest accuracy (83.77%) with regards to
Chinese subjects. For French, we find that on beta frequency band the best result
(51.89%) is obtained. Unlike Chinese subjects, gamma frequency band has a rel-
atively poor for French subjects performance (47.86%) compared with that of
Chinese subjects (80.98%).

4.3 Functional Brain Connectivity Patterns

Figure 2 shows the functional brain connectivity patterns of Chinese and French
with three emotions in five frequency bands. There are more connections of Chi-
nese than those of French. It is because that French has a larger number of
intersections shared by three emotions, which have been removed from visual-
ization. Here, we choose 0.2 as threshold, which means 20% of total connections
have been discarded. We get the highest mean accuracy for Chinese (71.24%)
and French (44.25%) when threshold equals to 0.2.

For both Chinese and French, we can observe higher coherence connectivity
of frontal lobes in positive emotion on alpha, beta and gamma frequency bands.
The connectivity patterns on neutral and negative emotions are relatively simi-
lar on beta and gamma frequency bands. For Chinese, we find higher coherence
connectivity on temporal and occipital lobes. For French, the higher coherence
is found especially on left hemisphere. Watching positive film excerpts, the tem-
poral and occipital sites of Chinese subjects show higher coherence while French
subjects show higher coherence at frontal and temporal sites. Watching neu-
tral film excerpts, higher coherence connectivities are located at frontal sites for
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Chinese but at occipital sites for French. For both Chinese and French, higher
coherence is found on lower frequency bands. However, unlike Chinese subjects,
who have a relatively symmetry distribution of connectivities, French are rela-
tively asymmetry and higher coherence connectivities appear in left hemisphere.

Fig. 2. The functional brain connectivity patterns for three emotions in five frequency
bands with coherence as the connectivity index. The text on each node means the name
of electrode. The nodes from top to bottom represent EEG channels from the frontal,
temporal, parietal to the occipital lobes. Here, the maps from first row of each emotion
represent the results of Chinese and those from second row represent the results of
French.
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4.4 Multi-modality Fusion

Considering the lower sample rate of eye tracking glass, an STFT with a 4-
second non-overlapping window is used to compute both EEG and eye movement
features. Because of lack of data, we use CWGAN as data augmentation method.
Since DE feature has the best performance, we use DE on total frequency band
as input to the network. When it comes to eye movement data, all features have
been concatenated to input into the network. Both EEG and eye movements
data have been generated.

Both networks for generator and discriminator have 4 layers. We use grid
search to find the optimized number of nodes for each layer. As a result, the
hidden layers of the generator and discriminator networks have 512 nodes for
EEG data and 64 nodes for eye movement data, respectively. ReLU (Rectified
Linear Unit) is used for all hidden layers. The networks are optimized by Adam
optimizer. We choose learning rate as 10−3. The critic value is set to 5 and λ is
set to 10. The generated data are sampled from a uniform distribution U [−1, 1].
During the training, the discriminator loss quickly converges to a value close to
0, which indicates that the distribution of real data and generated data are very
similar. Therefore, the generated DE data and eye movement data have high
quality.

Table 2. Performance of Data Augmentation

0× dataset 1× dataset 2× dataset 3× dataset 4× dataset

EEG 0.4997 0.5160 0.5155 0.5206 0.5202

Eye 0.6381 0.6603 0.6448 0.6595 0.6504

Table 2 shows the performance of data augmentation. The generated data are
appended to each 5-fold training data and an SVM with linear kernel is used.
There are augmentations of classification accuracy to different extent depending
on the number of generated data appended to the original dataset. Since triple
generated data appended to the real dataset has the highest mean accuracy, we
use the dataset including triple generated data and real data as EEG and eye
movement dataset in the following part of this paper. The generated data are
only used in training set.

DCCA is used to figure out whether the characteristics of eye movements are
complementary with EEG. Each modality is constructed by three full connected
layers. We use random search between 50 and 200 to find the optimal number
of layer nodes. The learning rate is set to 10−3. Batch size is set to 100 and
regulation parameter is set to 10−7. We choose the output dimension of features
for each modality as 20.

The mean accuracy by using EEG data only is 55.35% and the mean accu-
racy by using eye movements only is 60.98%. When we combine two modalities
and project them into another feature space with lower dimension, we get an
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augmentation of classification accuracy to 64.22%. Figure 3 shows the confusion
matrices of classification results. From Fig. 3, we have found that eye movement
and EEG modalities have complementary characteristics. By using EEG fea-
tures solely, it’s very likely to confuse negative emotion with other two emotions
while using eye movements alone shows a better performance. When it comes to
discriminate positive emotions, using EEG features solely shows a better perfor-
mance. After combining two modalities, we find that the negative emotion can
be recognized with higher accuracy (64.71%).

(a) EEG features (b) eye movements (c) Two-modality

Fig. 3. The confusion matrices of classification results by using different features.

5 Conclusions and Future Work

In this paper, we have compared the neural patterns between Chinese and French
on a task of recognizing three emotions (positive, neutral and negative). We have
found that French has higher mean accuracy on beta frequency band while Chi-
nese tends to perform better on gamma frequency band. The functional brain
connectivity patterns indicate the coexistence of similarities and differences of
neural patterns between Chinese and French subjects. The results of classifica-
tion by using DCCA reveal that EEG and eye movement data of French subjects
are complementary in discriminating positive and negative emotions.

As future work, we will recruit more number of subjects to participate in the
experiments and use different multi-modality fusion methods to investigate the
relationship between EEG signals and eye movement data.

Acknowledgements. This work was supported in part by the grants from the
National Key Research and Development Program of China (Grant No. 2017YFB100
2501), the National Natural Science Foundation of China (Grant No. 61673266), and
the Fundamental Research Funds for the Central Universities.

References

1. Jack, R.E., Garrod, O.G.B., Yu, H., Caldara, R., Schyns, P.G.: Facial expressions
of emotion are not culturally universal. Proc. Natl. Acad. Sci. 109(19), 7241–7244
(2012)

2. Ekman, P., et al.: Universals and cultural differences in the judgments of facial
expressions of emotion. J. Pers. Soc. Psychol. 53(4), 712–717 (1987)



680 L. Gan et al.

3. Sauter, D.A., Eisner, F., Ekman, P., Scott, S.K.: Cross-cultural recognition of basic
emotions through nonverbal emotional vocalizations. Proc. Natl. Acad. Sci. 107(6),
2408–2412 (2010)

4. Bryant, G., Barrett, H.C.: Vocal emotion recognition across disparate cultures. J.
Cogn. Culture 8(1–2), 135–148 (2008)

5. Elfenbein, H.A., Ambady, N.: On the universality and cultural specificity of emo-
tion recognition: a meta-analysis. Psychol. Bull. 128(2), 203 (2002)

6. Hutchison, A.N., Gerstein, L.H.: The impact of gender and intercultural experi-
ences on emotion recognition. Revista De Cercetare Si Interventie Sociala 54, 125
(2016)

7. Zheng, W.-L., Zhu, J.-Y., Lu, B.-L.: Identifying stable patterns over time for emo-
tion recognition from EEG. IEEE Trans. Affect. Comput. (2017)

8. Wu, S., Schaefer, M., Zheng, W.-L., Lu, B.-L., Yokoi, H.: Neural patterns between
Chinese and Germans for EEG-based emotion recognition. In: 8th International
IEEE/EMBS Conference on Neural Engineering (NER), pp. 94–97. IEEE, Shang-
hai (2017)

9. Soleymani, M., Asghari-Esfeden, S., Fu, Y., Pantic, M.: Analysis of EEG signals
and facial expressions for continuous emotion detection. IEEE Trans. Affect. Com-
put. 7(1), 17–28 (2016)

10. Lea, R.G., Qualter, P., Davis, S.K., Pérez-González, J.C., Bangee, M.: Trait emo-
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