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Abstract

Standard neural machine translation (NMT) is
on the assumption of document-level context
independent. Most existing document-level
NMT methods only focus on briefly introduc-
ing document-level information but fail to con-
cern about selecting the most related part in-
side document context. The capacity of mem-
ory network for detecting the most relevant
part of the current sentence from the mem-
ory provides a natural solution for the require-
ment of modeling document-level context by
document-level NMT. In this work, we pro-
pose a Transformer NMT system with associ-
ated memory network (AMN) to both capture
the document-level context and select the most
salient part related to the concerned transla-
tion from the memory. Experiments on several
tasks show that the proposed method signif-
icantly improves the NMT performance over
strong Transformer baselines and other related
studies.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014,
Cho et al., 2014; Bahdanau et al., 2015; Vaswani
et al., 2017) established on the encoder-decoder
framework, where the encoder takes a source sen-
tence as input and encodes it into a fixed-length
embedding vector and the decoder generates the
translation sentence according to the encoder em-
bedding, has achieved advanced translation per-
formance in recent years. So far, most mod-
els take a standard assumption to translate every
sentence independently, ignoring the document-
level contextual clues during translation. How-

ever, document-level information can improve
the translation performance from multiple as-
pects: consistency, disambiguation, and coherence
(Kuang et al., 2018). If translating every sen-
tence is independent of document-level context, it
will be difficult to keep every sentence translations
across the entire text consistent with each other.
Moreover, the document-level context can also as-
sist the model to disambiguate words with multi-
ple senses. At last, the global context helps trans-
late in a coherent way.

There have been few recent attempts to intro-
duce the document-level information into the ex-
isting standard NMT models. Jean et al. (2017)
model the context from the surrounding text in ad-
dition to the source sentence, and Tiedemann and
Scherrer (2017) extend the source sentence and
translation units with the contextual segments to
improve the translation. Wang et al. (2017) use
a hierarchical Recurrent Neural Network (RNN)
to import the information of previous sentences.
Miculicich et al. (2018) propose a multi-head hi-
erarchical attention machine translation model to
capture the word-level and sentence-level infor-
mation. The cache-based model raised by Kuang
et al. (2018) uses the dynamic cache and topic
cache to capture the connection from neighboring
sentences. In addition, Wang et al. (2017), Kuang
and Xiong (2018) and Voita et al. (2018) all add
the contextual information to the NMT model by
applying the gating mechanism proposed by Tu
et al. (2017) to dynamically control the auxil-
iary global context information at each decoding
step. However, most of the existing document-
level NMt methods have to inconveniently prepare



the contextual input or model the global context in
advance.

Inspired by the observation that human and
document-level machine translation model always
refer to the context of the source sentence dur-
ing the translation, like query in their memory,
we propose to utilize the document-level sentences
associated with the source sentences to help pre-
dict the target sentence. To reach such a goal,
we adopt a Memory Network component(Weston
et al., 2015; Sukhbaatar et al., 2015; Guan et al.,
2019) which provides a natural solution for the re-
quirement of modeling document-level context in
document-level NMT. In fact, Maruf and Haffari
(2017) have already presented a document-level
NMT model which projects the document contexts
into the tiny dense hidden state space for RNN
model using memory networks and updates word
by word, and their model is effective in exploiting
both source and target document context.

Differing from any previous work, this pa-
per presents a Transformer NMT model with
document-level Memory Network enhancement
(Weston et al., 2015; Sukhbaatar et al., 2015)
which concludes contextual clues into the encoder
of the source sentence by the Memory Network.
Not like the work of Maruf and Haffari (2017)’s
which memorizes the whole document informa-
tion into a tiny dense hidden state, the memory
in our work calculates the associated document-
level contextualized information in the memory
with the current source sentence using attention
mechanism. In this way, our proposed model is
able to focus on the most relevant part of the con-
cerned translation from the memory which exactly
encodes the concerned document-level context.

The empirical results indicate that our pro-
posed method significantly improves the BLEU
score compared with a strong Transformer base-
line and performs better than other related models
for document-level machine translation on multi-
ple language pairs with multiple domains.

2 Related Work

The existing work about NMT on document-level
can be divided into two parts: one is how to obtain
the document-level information in NMT, and the
other is how to integrate the document-level infor-
mation.

2.1 Mining Document-level Information

Concatenation Tiedemann and Scherrer (2017)
propose to simply extend the context during the
NMT model training in different ways: (1) extend-
ing the source sentence which includes the con-
text from the previous sentences in the source lan-
guage, and (2) extending translation units which
increase the segments to be translated.

Document RNN Wang et al. (2017) propose
a cross-sentence context-aware RNN approach to
produce a global context representation called
Document RNN. Given a source sentence in the
document to be translated and its /N previous sen-
tences, they can obtain all sentence-level represen-
tations after processing each sentence. The last
hidden state represents the summary of the whole
sentence as it stores order-sensitive information.
Then the summary of the global context is repre-
sented by the last hidden state over the sequence
of the above sentence-level representations.

Specific Vocabulary Bias Michel and Neubig
(2018) propose a simple yet parameter-efficient
adaption method that only requires adapting the
bias of output softmax to each particular use of the
NMT system and allows the model to better reflect
personal linguistic variations through translation.

2.2 Integrating Document-level Information

Adding Auxiliary Context Wang et al. (2017)
add the representation of cross-sentence context
into the equation of the probability of the next
word directly and jointly update the decoding state
by the previous predicted word and the source-side
context vector.

Gating Auxiliary Context Tu et al. (2017) in-
troduce a context gate to automatically control the
ratios of source and context representations con-
tributions to the generation of target words. Wang
et al. (2017) also introduce this mechanism in their
work to dynamically control the information flow-
ing from the global text at each decoding step.

Inter-sentence Gate Model Kuang and Xiong
(2018) propose an inter-sentence gate model,
which is based on the attention-based NMT and
uses the same encoder to encode two adjacent
sentences and controls the amount of information
flowing from the preceding sentence to the transla-
tion of the current sentence with an inter-sentence
gate. This gate framework assigns element-wise
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Figure 1: (a) Transformer architecture. (b) Multi-Head attention.

weights to the input signals which are calculated
by the context vectors of two adjacent sentences,
target word representation and the decoder hidden
state.

Cache-based Neural Model Tu et al. (2018)
propose to augment NMT models with an external
cache to exploit translation history. At each de-
coding step, the probability distribution over gen-
erated words is updated online depending on the
translation history retrieved from the cache with
a query of the current attention vector, which as-
sists NMT models to dynamically adapt over time.
The cache-based neural model proposed by Kuang
et al. (2018) consists of two components: topic
cache and dynamic cache. When the decoder
shifts to a new test document, the topic cache is
emptied and filled with target topical words for the
new test document. The dynamic cache is continu-
ously expanded with newly generated target words
from the best translation hypothesis of previous
sentences. The final word prediction probability
for the target word is calculated by a gate mech-
anism which combines the prediction probability
from the cache-based neural model and the origi-
nal NMT decoder.

Hierarchical Attention Networks Miculicich
et al. (2018) propose a Hierarchical Attention Net-
works (HAN) NMT model to capture the context
in a structured and dynamic pattern. For each pre-
dicted word, it uses word-level and sentence-level
abstractions and selectively focuses on different
words and sentences.

Context-Aware Transformer Voita et al.
(2018) introduce the context information into the
Transformer (Vaswani et al., 2017) and leave the
Transformer’s decoder intact while processing
the context information on the encoder side. The
model calculates the gate from the source sen-
tence attention and the context sentence attention,
then exploits their gated sum as the encoder
output. Zhang et al. (2018) also extend the Trans-
former with a new context encoder to represent
document-level context while incorporating it
into both the original encoder and decoder by
multi-head attention.

3 Background

3.1 Neural Machine Translation

Given a source sentence X = {x1,...,Z;, ..., TS}
in the document to be translated and a target sen-
tence y = {y1, ..., Yi, ..., yr}, NMT model com-
putes the probability of translation from the source
sentence to the target sentence word by word:

T
Pylx) =[] Pwilyrici.%), (D

=1

where %1.,—1 1S a substring containing words
Y1, ---,Yi—1. Generally, with an RNN, the proba-
bility of generating the ¢-th word y; is modeled as:

P(yily1:i—1,x) = softmax(g(yi—1,8i-1, ¢i)),
2
where ¢g(-) is a nonlinear function that outputs the
probability of previously generated word y;, and
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Figure 2: The framework of our model.

c; is the ¢-th source representation. Then ¢-th de-
coding hidden state s; is computed as

si = f(Si—1,Yi—1,Ci). 3)

For NMT models with an encoder-decoder
framework, the encoder maps an input sequence of
symbol representations x to a sequence of continu-
ous representations z = {z1, ..., 2, ..., zs }. Then,
the decoder generates the corresponding target se-
quence of symbols y one element at a time.

3.2 Transformer Architecture

Only based on the attention mechanism, Vaswani
et al. (2017) propose a network architecture called
Transformer for NMT, which uses stacked self-
attention and point-wise, fully connected layers
for both encoder and decoder.

As illustrated in Figure 1 (a), the The encoder
is composed of a stack of IV (usually equals to
6 identical layers and each layer has two sub-
layers: (1) multi-head self-attention mechanism,
and (2) a simple, position-wise fully connected
feed-forward network.

Multi-head attention demonstrated in the Fig-
ure 1 (b) in the Transformer allows the model to
jointly process information from different repre-
sentation spaces at different positions. It linearly
projects the queries (), keys K, and values V' h
times with different, learned linear projections to
dy, di, and d,, dimensions respectively, then the
attention function is performed in parallel, gener-
ating d,-dimensional output values, and yielding
the final results by concatenating and once again
projecting them. The core of multi-head attention

is Scaled Dot-Product Attention and calculated as:

QK"
Vi

The second sub-layer is a feed-forward net-
work, which contains two linear transformations
with a ReL.U activation in between.

Similar to the encoder, the decoder is also com-
posed of a stack of IV identical layers but it in-
serts a third sub-layer, which performs multi-head
attention over the output of the encoder stack.
The Transformer also employs residual connec-
tions around each of the sub-layers, followed by
layer normalization. Thus, the Transformer is
more parallelizable and faster for translating than
earlier RNN methods.

Attention(Q, K, V') = softmax( W.o (4)

3.3 Memory Network

Memory networks (Weston et al., 2015) utilize
the external memories as inference components
based on long-range dependencies, which can be
categorized into a sort of lazy machine learning
(Aha, 2013). Using the similar memorizing mech-
anism, memory-based learning methods have been
also applied in multiple traditional models (Daele-
mans, 1999; Fix and Hodges Jr, 1951; Skousen,
1989, 2013; Lebowitz, 1983; Nivre et al., 2004).
A memory network introduced by Weston et al.
(2015) is a set of vectors M = {my,...mg}
and the memory cell my is potentially relevant to
a discrete object (for example, a word) xi. The
memory is equipped with a read and optionally a
write operation. Given a query vector q, the out-
put vector produced by reading from the memory



is 2K | pimy, where p; = softmax(q”- M) scores
the match between the query vector q and the -th
memory cell m,.

4 Model

4.1 Framework

Our NMT model consists of two compo-
nents: Contextual Associated Memory Network
(CAMN) and a Transformer model. For the
CAMN component, the core part is a neural con-
troller, which acts as a “processor” to read mem-
ory from the contextual storage “RAM” according
to the input before sending this memory to other
components. The controller calculates the cor-
relation between the input and memory data i.e.
“memory addressing”.

4.2 Encoders

Our model requires two encoders, the context en-
coder for CAMN and the source encoder for trans-
lation from input sentence representation.

Inspired by Wang et al. (2017) which intro-
duces the Document RNN to summarize the cross-
sentence context information, we use an RNN on
the context sentence to generate the context rep-
resentation, and the hidden state at each time step
can represent the relation from the first word to the
current word. The source encoder is composed of
a stack of NV layers, as the same as the source en-
coder in the original Transformer (Vaswani et al.,
2017).

4.3 Contextual Associated Memory Network

The proposed contextual associated memory net-
work consists of three parts, context selection,
inter-sentence attention, and context gating.

Context Selection

We aim to utilize the context sentences and their
representations to assist our model to predict the
target sentences. For the sake of fairness, we can
treat all sentences in the document as our source.
However, it is impossible to attend all the sen-
tences in training dataset because of the extremely
high computing and memorizing cost. Accord-
ing to Voita et al. (2018), whose model gets the
best performance when using a context encoder
for the previous sentence, we use the previous sen-
tence of the source sentence x as the context sen-
tence c. Then, at each training step, we compose
all the context sentences of the source sentences

in the batch with size m as the context sentences
am

{c;} j=1-

Inter-Sentence Attention

This part aims to attain the inter-sentence atten-
tion matrix, which can be also regarded as the core
memory part of the CAMN. The input sentence z
and the context sentences in the memory {c;}72,
first go through a multi-head attention layer to en-
code the contextualized information to each word
representation:

x' = MultiHead(x, x, x), 5)

c; = MultiHead(h;, h;, hy) j € {1,2,...,m},
(6)
where h; is the RNN output of the context sen-
tence c; and the hidden state hy, ; at time k is

hij = f(hi—14,¢ckj), (N

where f(-) is an activation function, and ¢, ; is the
k-th word in the context sentence c;.

The lists of new word representations are de-
noted as follows:

/ / / /
x ={z7,..., 2}, ..., Tg} )

and
/ / / /
Cj :{Cl,j’""Ck’,j7"'7CKj,j} (9)

Each word representation is as a vector z € RY,
where d is the size of hidden state in MultiHead
function.

Then, for each context sentence representation
cJ/-, we apply the multi-head attention by treating
the input sentence representation x’ as the query
sequence, on them and get the attention matrix
M

M* =x'®cf. (10)

: T
Every element M, (i,k) = z - c?w can be re-

garded as an indicator of similarity between the
i-th word in input sentence representation x’ and
the k-th word in memory sentence representation
c’.

Finally, we perform a softmax operation on ev-
ery column in M;** to normalize the value so that
it can be considered as the probability from in-
put sentence representation x’ to memory sentence

s /.
representation c;:

;i j = softmax([M;* (i, 1), ..., [M]* (i, K;)]),
1D



Mj = [0417j,...,04i7j,a5'7j]. (12)

We treat the probability vector ; ; as a set of
weights to sum all the representations in c;- and
get the memory-sentence-specified argument em-
bedding a; ;:

K;
— .o — A
Qij = Q- Cj = Zawck,j' (13)
k=1

Because the context sentences are different, the
overall contributions of these word representations
should be different as well. We let the model itself
learn how to make use of these contextual word
representations.

Following the attention combination mecha-
nism (Libovicky and Helcl, 2017), we use a
weighted average strategy to combine these at-
tention representations from different memory
sources. We calculate the mean value of every
raw similarity matrix M;** to indicate the similar-
ity between input sentence x and context sentence
c;, and we use the softmax function to normalize
them to get a probability vector 5 indicating the
similarity of input sentence x towards all the asso-
ciated sentences {c;}" ;:

B = softmax([g(M{*"), ..., g(M")])

Their gated sum H; is
H; = 9;i® Hi,source + (1 - gi) & Hi,contexta (17)

where ¢ is the logistic sigmoid function, ® is the
point-wise multiplication and W, is trained by the
model. As illustrated in Figure 2, the output of
the gate H; is integrated into the encoder-decoder
attention part at decoding step.

Multiple Context Attention

For multiple context sentences in the memory
(mg1) , we have two ways to integrate the mem-
ory information. One way is concatenate multi-
ple context attentionwhich concatenate the mul-
tiple context sentences into one context sequence
with the break symbol ‘####° (Wang et al. 2017)
to identify the sentence boundary.

c = {c1, ‘HHHE co, “HHHE . HHHE o ).
(18)
The other way is parallel multiple context atten-
tion which calculates the weighted sum among the
attentions between the each context sentence and

the current sentence by softmax function as shown
in Eq. (13) .

5 Experimental Setup

Table 1: Data statistics of sentences.

=[B1, .y By, - -Bon] (14) TED Talks Subtitles News
o ’ Zh-En EssEn  EsEn  EsEn
where g(-) represents the mean function. Then, ~ Training 209,941 180,853 48,301,352 238,872
we use the probability vector 8 as weight to sum Tuning 887 887 1,000 2,000
all the contextual attention embedding a; ; for the Test 5,473 4,706 1,000 14,522
final contextual attention embedding a; of the i-th
word x; in input sentence x: 51 Data

a; = Zﬁjai,j- (15)
=1

Context Gating

We annotate the ¢-th source attention embedding
x} and i-th contextual attention embedding a; af-
ter the feed-forward operation as H; source and
H; context- Then we use a context gate (Tu et al.,
2017) to integrate the source and context atten-
tions and control the flow from the source side and
the context side. The gate g; is calculated by

g; = U(Wg [Hi,sourcea Hi,conte:vt} + bg) (16)

The proposed document-level NMT model will be
evaluated on two language pairs, i.e., Chinese-to-
English (Zh-En) and Spanish-to-English (Es-En)
on three domains: talks, subtitles, and news.

TED Talks Zh-En TED talk documents are the
parts of the IWSLT2015 Evaluation Campaign
Machine Translation task”. We use dev2010 as the
development set and combine the #5s:2010-2013 as

'In this paper, due to the lack of the computational re-
source, we experiment only with the concatenate multiple
context attention until now, for the experiment on parallel
multiple context attention, we leave for the next version.

https://wit3.fbk.eu/mt.php?release=
2015-01
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Table 2: BLEU scores on the different datasets. The marks “{” after scores indicate that the proposed methods
were significantly better than the baseline Transformer at significance level p-value<0.05 (Collins et al., 2005).
The scores in bold indicate the best ones on the same dataset.

TED Talks Subtitles News
Models Zh-En  Es-En Es-En Es-En
RNNSearch* 16.09  36.55 39.90 22.94
Transformer 17.76  39.03 39.96 23.71
Context-aware Transformer (Voita et al., 2018) 18.24  38.74 40.19 23.76
Transformer with HAN (Miculicich et al., 2018) 17.79  37.24 36.23 22.76
Our model 18.657 39.191 40.707 24.387
Table 3: Ablation study on these datasets.
TED Talks Subtitles News
Models Zh-En Es-En Es-En Es-En
Contextual Associated Memory Network 18.65 39.19 40.70 24.38
- w/o RNN Context 18.44 38.46 40.10 22.87
- w/o Inter-sentence Attention 18.36  38.74 40.38 23.96
- w/o RNN Context & Inter-sentence Attention 17.92  38.46 39.96 22.09

the test set. The Es-En corpus is also a subset of
the IWSLT2014. We use the dev2010 for develop-
ment set and test2010-2012 as the test set.

Subtitles The Es-En corpus is a subset of Open-
Subtitles20183 (Lison and Tiedemann, 2016)*.
We randomly select 1,000 continuous sentences
for each development set and test set.

News The Es-En News-Commentariesl1 cor-
pus® has document-level delimitation. We evalu-
ate on the WMT sets (Bojar et al., 2013): new-
stest2008 for development, and newstest2009-
2013 for testing.

Table 1 lists the statistics of all the concerned
datasets.

5.2 Data preprocessing

The English and Spanish datasets are tokenized by
tokenizer.perl and truecased by truecase.perl pro-
vided by MOSES®, a statistical machine transla-
tion system proposed by Koehn et al. (2007). The
Chinese corpus is tokenized by Jieba Chinese text
segmentation’. Words in sentences are segmented

*http://www.opensubtitles.org/
*nttp://opus.nlpl.eu/
OpenSubtitles2018.php
Shttp://opus.nlpl.eu/
News—Commentaryll.php
*https://github.com/moses—smt/
mosesdecoder
"nttps://github.com/fxsjy/jieba

into subwords by Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016) with 32k BPE operations.

5.3 Model Configuration

We use the Transformer proposed by Vaswani
et al. (2017) as our baseline and implement our
work using the THUMT, an open-source toolkit
for NMT developed by the Natural Language
Processing Group at Tsinghua University (Zhang
et al., 2017)%. We follow the configuration of the
Transformer “base model” described in the origi-
nal paper (Vaswani et al., 2017). Both encoder and
decoder consist of 6 hidden layers each, and we
choose the previous sentence as the context sen-
tence in the memory network. All hidden states
have 512 dimensions, 8 heads for multi-head at-
tention and the training batch contains about 6,520
source tokens. Finally, we evaluate the perfor-
mance of the model by BLEU score (Papineni
et al., 2002) using multi-bleu.perl on the tokenized
text.

6 Results

6.1 Translation Performance

Table 2 demonstrates the BLEU scores for dif-
ferent models on multiple corpora. The baseline
is a re-implemented attention-based NMT sys-
tem RNNSearch* (Hinton et al., 2012) and Trans-
former (Vaswani et al., 2017) using THUMT Kkit.

8https://github.com/thumt /THUMT
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Table 4: Results on TED Talks (Zh-En) dataset with different context sentence size N and context selection

Context selection N=1 N=2 N=3 N=4 N=5
Previous N sentence(s) 18.65 1846 18.14 18.03 15.53
Next N sentence(s) 18.57 18.45 17.69 1743 15.14
Random N context sentence(s) 18.38 18.37 18.11 17.42 15.88

Table 5: Example of the translation result. The context sentences are three previous sentences before the source
sentence and words in deeper blue from context indicate more heuristic clues for better translation. Salient contex-

tual words have been provided with English translation.

last fall

B OEAFE KR BB B WOy fiv] E

AN HitE #k %

Context sentences last week

® LR £ 5 2B K& e w e,
he
=& i 2 7 AR AA &

AR .

lyd

[

asked asked

O — A Bl
Wodi o sETC .

because of
[A] ﬁ\j Diginotar

answer
Source sentence fll g ol 25 2 E .

Reference sentence and his answer was yes .
Transformer model his answer is yes .

HAN model his answer was yes .
Our model and his answer was yes .

We also employ the Context-aware model pro-
posed by Voita et al. (2018) on these datasets.

The results in Table 2 demonstrate that our
proposed model significantly outperforms all the
comparing models, especially, our model is sig-
nificantly better than the baseline Transformer at
significance level p-value<0.05. Our proposed
model outperforms the RNNSearch* baseline by
2.56 BLEU point on the TED Talks (Zh-En)
dataset, 2.64 BLEU point on the TED Talks (Es-
En) dataset, 0.80 BLEU point on the OpenSubti-
tles (Es-En) dataset and 1.44 BLEU point on the
WMT dataset (Es-En).

Furthermore, our proposed model achieves the
gains of 0.89 BLEU point, 0.16 BLEU point, 0.74
BLEU point, and 0.44 BLEU point on these four
datasets individually over the Transformer base-
line. Compared with the Context-aware Trans-
former proposed by Voita et al. (2018), our pro-
posed approach also raises the average 0.49 BLEU
score on these different datasets. Moreover, the
average increase of BLEU score over the Trans-
former with HAN proposed by Miculicich et al.
(2018) is 2.23 point.

The results of HAN are reported by its authors.

6.2 Ablation Experiments

We investigate the impact of different components
of our model by removing one or more of them.

o If we do not employ the RNN operation on the
context encoder, the multi-head attention works
directly on the context embedding.

e If the model is trained without the inter-
sentence attention module of the CAMN, we se-
lect the context sentence randomly from the train-
ing set, and the context attention is generated by
the hidden states of the context embedding after
RNN.

o If we remove the RNN operation and the inter-
sentence attention, the context attention is pro-
duced by the word embedding of randomly se-
lected context sentence and the context encoder
with a stack of N multi-head attention and feed-
forward layers is as the same as the source en-
coder.

As shown in Table 3, all of the components
greatly contribute to the performance of our pro-
posed model. If we remove any step in Con-
text Encoder, the performance drops dramatically.
Such results indicate that all features introduced
by our CAMN enhanced model play an important
and complementary role in our model.



6.3 Effect of Contextual Information

¢ Different definition of context sentence The
context sentence in our work is the previous sen-
tence of the current sentence. We investigate the
effect of the different context sentence definition
on the TED Talks (Zh-En) dataset. Like the work
of (Voita et al., 2018), we use the context encoder
for the previous sentence, next sentence and the
random selected context sentence form the docu-
ment.

¢ Different context size We also compare the
effect with the different context size N on the TED
Talks (Zh-En) dataset.

As shown in the Table 4, the model use the pre-
vious sentence as the context encoder could get
the best performance on the TED Talks (Zh-En)
dataset. Moreover, more contextual information
by concatenate multiple context attention does not
appear beneficial and the BLEU score does not get
better with longer context sentence.

6.4 Translation Quality

Table 5 shows an example from the TED Talks
(Zh-En)'°, on which the translation our model is
compared to those of other methods. The trans-
lation of HAN model is downloaded from Mi-
culicich et al. (2018)’s GitHub!!. This exam-
ple shows that our proposed model is capable of
recognizing the tense and even discourse relation
from document-level context.

7 Conclusion and Future Work

We propose a memory network enhancement over
Transformer based NMT which provides a nat-
ural solution for the requirement of modeling
document-level context. Experiments show that
our model performs better on the datasets of multi-
ple domains and language pairs and has the ability
to capture salient document-level contextual clues
and select the most relevant part related to the in-
put sequence from the memory.

In our future work, we consider introducing the
discourse information to enhance our model. But
it will bring a lot of noise, and the internal struc-
ture may be particularly complex. Therefore, it is
necessary to effectively abstract its key feature in-
formation. The discourse information will provide

0This example is extracted from line 4,123 of TED Talks
(Zh-En).

"https://github.com/idiap/HAN_NMT/
tree/master/test_out

the heuristic features that will improve the perfor-
mance during the training and decoding.
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