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Abstract— Vigilance decrement in driving tasks has been
reported to be a major factor in fatal accidents and could
severely endanger public transportation safety. However, efficient
approaches for estimating vigilance in real driving environment
are still lacking. In this paper, we propose a novel approach
for implementing continuous vigilance estimation using forehead
electrooculograms (EOGs) acquired by wearable dry electrodes
in both simulated and real driving environments. To improve the
feasibility of this approach for real-world applications, a forehead
EOG-based electrode placement with only four electrodes is
designed. Flexible dry electrodes and an acquisition board are
integrated as a wearable device for recording EOGs. Twenty and
ten subjects participated in the simulated and real-world driving
environment experiments, respectively. Accurate eye movement
parameters from eye-tracking glasses are extracted to calculate
the PERCLOS index for vigilance annotation. This is because
the vigilance state is a temporally dynamic process, and a con-
tinuous conditional random field and a continuous conditional
neural field are introduced to construct more accurate vigilance
estimation models. To evaluate the efficiency of our system,
systematic experiments are performed in real scenarios under
various illumination and weather conditions following laboratory
simulations as preliminary studies. The experimental results
demonstrate that the wearable dry electrode prototype, which
has a relatively comfortable forehead setup, can efficiently cap-
ture vigilance dynamics. The best mean correlation coefficients
achieved by our proposed approach are 71.18% and 66.20%
in laboratory simulations and real-world driving environments,
respectively. The cross-environment experiments are performed
to evaluate the simulated-to-real generalization and a best mean
correlation coefficient of 53.96% is achieved.

Index Terms— Vigilance estimation, drowsy driving, forehead
EOG, eye tracking glasses, dry electrode, wearable device,
real-world driving environment.
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I. INTRODUCTION

V IGILANCE decrement or attention lapse has long been
recognized as the critical factor responsible for thousands

of deaths and injuries each year in the public traffic commu-
nity. Driving tasks, particularly truck driving and high-speed
trains, require sustained high vigilance. However, efficient
techniques for quantifying driver vigilance levels are still lack-
ing, which leads to the inability to provide active feedback for
enhancing traffic safety. The National Highway Traffic Safety
Administration (NHTSA), an agency of the US Department
of Transportation, held a forum called “Asleep at the Wheel:
A Nation of Drowsy Drivers” to discuss how to address the
problem of drowsy driving [1]. Various questionnaires and
performance tasks have been proposed and validated in the
literature [2]–[5].

Although considerable progress has been achieved in vari-
ous areas over the past decades, accurately estimating driver
vigilance in real-world driving environments is still difficult.
The main reason for this difficulty is that vigilance states are
intrinsic mental states that involve temporal evolution rather
than a time point. It is difficult to evaluate mental states with-
out using an intrusive stimulus or behavior probe [6]. Tradi-
tional techniques for vigilance estimation involve periodically
interrupting subjects during the experiments [3]. Moreover,
real-world applications require continuous vigilance estima-
tion with high temporal resolution [7]. Vigilance decrement
is typically accompanied by both external behaviors, such
as head nodding, yawning, and eye closure, and internal
physiological changes. Various approaches based on these
cues have been developed [8]–[10]. Dong and colleagues
presented a review of different driver inattention monitoring
systems [11]. Among these various modalities, physiological
signals have been found to be relevant for different vigilance
levels. However, how to identify reliable and valid biomarkers
remains a challenge within the research community [1].

The electroencephalography (EEG) modality is one of the
most popular signals used for vigilance estimation because
of its advantages of high temporal resolution and noninvasive
low-cost properties [12]–[18]. Martel et al. [19] observed that
increased activity in the alpha frequency range (8-14 Hz)
emerged for vigilance decrement and proposed predicting
attention lapses in a convert setting up to 10 s in advance.
Lin and colleagues integrated lapse monitoring methods and
a warning system with a feedback assessment to form a
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closed-loop system using EEG power spectra [20]. Different
vigilance stages are defined with respect to EEG activities.
Posterior alpha oscillations are primarily observed after eye
closure, referred to as “idling rhythm” [21]. The phenomenon
where the alpha peak frequency exhibits a slight decrease is
observed during the transition to drowsiness [22]. All these
findings provide fundamental mechanisms and support for
EEG-based vigilance estimation.

Although EEG recordings directly measure brain activ-
ities, electrooculogram (EOG)-based approaches are easier
to implement and ultimately more feasible for large-scale
implementations [23] since EOG has a considerably higher
signal-to-noise ratio. EOG signals can capture various eye
movement parameters, such as blink, saccade, and fixa-
tion. Various EOG-based vigilance estimation approaches
have been proposed and evaluated in the literature [24]–[28].
Spontaneous eyelid closures (SECs), which refer to peri-
ods when the eyelids are closed or almost completely
closed with less response to external stimuli, have been
found to be an efficient marker for vigilance estimation.
Wang et al. [6] applied SECs as a nonintrusive vigilance esti-
mation. Damousis and Tzovaras [29] presented a fuzzy fusion
method with eyelid activity indicators for accident prediction.
Zhang et al. [30] proposed measuring cognitive load in a
virtual reality-based driving system using multimodal infor-
mation fusion of eye gaze, EEG, and peripheral physiology
data for adolescents with autism spectrum disorder. In our
previous study, we demonstrated that EEG and EOG contain
complementary information and can be combined to construct
a more robust model [31].

A key obstacle to implementing these approaches is how
to design long-term, reliable, low-cost, wearable devices for
recording bio-signals. The signal quality of the traditional
wet electrodes degrades as the electrolyte gel dehydrates over
time, and it has a high time cost and is not convenient for
setups. Several types of dry flexible electrodes have been
proposed due to their low cost, biocompatibility and easy
deformation to achieve a desired shape. Polydimethylsiloxane
(PDMS) [32]–[34] is a non-conductive silicone-based elas-
tomer, and it has the advantages of flexibility and easy micro-
molding for rapid prototyping of microdevices and systems.
Carbon nanotubes (CNTs) [35] are an excellent filler for
electrically conducting composites because CNTs have a high
aspect ratio (length-to-radius ratio), high conductivity and easy
percolation at lower concentrations than spherical conductive
fillers. With recent advances in flexible dry electrodes and
integrated circuit design, mostly driven by sensor networks,
the implementation of these sensors appears to be increasingly
more promising [36]–[41]. Lin and colleagues developed a
wireless and wearable EEG system with five dry electrodes
on the frontal areas for evaluating driver vigilance [42], [43].
Mullen et al. [44] designed an EEG headset with adjustable
tensioning of the flexible dry electrodes contacting the scalp
for cognitive monitoring.

The previous designs of dry electrodes were gener-
ally fabricated using a conductive polymer [33]–[35] or
metal [45], [46]. The conductive polymers are typically not
soft enough to adapt to the shrinkage on the surface of

skin, and the conductivity is considerably lower than that of
metals [34]. Meanwhile, the metal electrode has a consider-
ably lower impedance than the polymer electrode, but the rigid
electrode has the disadvantage of leading to discomfort or even
pain [46]. In this study, the textile surface of the conductive
fabric enables the electrode to be pasted onto the surface of
skin with little clearance. The textile can compensate for the
shrinkage on skin and lead to a lower contact impedance.
Furthermore, sweat can infiltrate into the conductive fabric
and keep the surface of the skin moist, which leads to a
reduction in the electrode-skin contact impedance and enables
the electrode to record EOG signals similar to wet electrodes.

The majority of these previous studies were performed
in laboratory settings [47], [48]. To the best of our knowl-
edge, there are few studies of vigilance estimation that
have been performed in real-world driving environments due
to various complex challenges that are encountered out-
doors. Papadelis et al. [24] designed an on-board electrophys-
iological system for monitoring sleepiness and showed that
eye-blinking statistics are sensitive to the driver’s sleepiness.
Healey and Picard [49] presented a method for detecting stress
using physiological data during real-world driving scenarios.
In a recent study Wang et al. [50] utilized two electrodes on
the placements O1 and O2 to record EEGs of professional
bus drivers during an approximately 252 km long driving
route. Increasingly more innovative methodologies are being
developed to fill research gaps between laboratory settings
and real-world environments by using advanced wearable
techniques.

In this paper, we design a wearable prototype device that
integrates flexible dry electrodes and an acquisition board for
recording forehead EOG signals. To capture the vigilance
dynamics, we introduce two temporal dependency models,
continuous conditional random field and continuous condi-
tional neural field, to construct vigilance estimation models.
To evaluate the efficiency of our system, systematic exper-
iments are performed not only in laboratory simulations but
also in real-world scenarios under different weather conditions.
The dataset (SEED-EOG) used in this study will be freely
available to the academic community as a subset of SEED
(SJTU Emotion EEG Dataset).1

II. SYSTEM ARCHITECTURE

Figure 1 shows the flowchart and structure of our proposed
system, which includes several parts: flexible dry electrodes,
EOG acquisition board, feature extraction for forehead EOG,
regression models, and vigilance annotations. The experi-
mental setups for both laboratory simulations and real-world
environments are also illustrated in Figure 1.

A. Flexible Dry Electrode

In this study, a novel dry fabric-based electrode was pro-
posed for forehead EOG recording on bare skin. The dry
fabric-based electrode was designed to be fabricated using a
piece of conductive fabric. The conductive fabric is commonly
used to produce protective gear for gravida.

1http://bcmi.sjtu.edu.cn/~seed/
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Fig. 1. The flowchart and structure of our proposed system. The subjects are asked to drive a car in the laboratory simulations and to sit in the front passenger
seat beside the drivers in the real-world environments (A, B). The simulated driving experiments are performed in a real vehicle without the unnecessary
engine. The driving scenes are synchronously updated according to the subjects’ operations. The real-world driving experiments are performed under various
weather conditions. The forehead EOGs and eye movements are simultaneously recorded using our designed wearable EOG-recording prototype and SMI
eye-tracking glasses, respectively (C, D). Regression models using CCRF and CCNF are trained for continuous vigilance estimation (E, F).

Fig. 2. Design of the dry fabric-based electrode.

Figure 2 shows the design of the dry fabric-based electrode.
In contrast to many previous designs of soft dry electrodes
produced using conductive polymers or metals, the conductive
soft material used in this study is a type of fabric woven
using silver-coated nylon line. Conductive fabric has a con-
siderably higher impedance conductivity rate (conductivity of
approximately 0.07 Ohm/square, similar to that of metals) than
conductive polymer materials, and moreover, it can be substan-
tially softer than rubber-based conductive polymer materials or
metal-based materials.

To fabricate the electrode used in this study, the fabric was
cut into pieces that were 17 mm long and 10 mm wide. The
conductive fabric pieces were then pasted onto the surfaces of
wet wipes. The lead lines were then welded onto the conduc-
tive fabric pieces. During welding, the wet wipes can prevent
the conductive fabric from burnout. After welding, the contact

Fig. 3. Contact impedance of dry conductive fabric electrodes on forehead.

of the conductive fabric and lead line was reinforced using
electrical tape. The connections between the lead wire and the
conductive fabric can be processed into metal button shapes
for long-term usage. In this way, the connections are strong
enough and feasible for electrode replacement.

To evaluate the performance of the conductive fabric elec-
trodes, the contact impedance of the dry conductive fabric
electrode was measured using an electrochemical workstation
(660C, Chiinstru-ments Ltd., China). Figure 3 shows the con-
tact impedance at different frequencies. Due to the infiltration
of sweat and the larger contact square than traditional wet
electrodes, the contact impedance of the dry conductive fabric
electrodes is similar to that of wet electrodes [51]–[54].

We performed experiments for measuring forehead EEG
alpha rhythm to evaluate the performance of the dry conductive
fabric electrodes. The alpha rhythm of EEG components is
dominant during eye closure period [24], [31], which is an
efficient approach to evaluating the quality of EEG data.
Figure 4(a) shows the forehead EEG signals recorded on
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Fig. 4. EEG signals recorded on the site F P1 during an eye closure period
with the dry conductive fabric electrodes: (a) EEG signals recorded with eyes
closed and (b) PSD of the recorded EEG signals.

Fig. 5. The raw signals recorded simultaneously with the commercial wet
electrode (red) and the dry fabric electrode (blue) on the forehead site F P1.

the site F P1 during an eye closure period using the dry
fabric electrodes, and Figure 4(b) shows its corresponding
power spectral density. A peak corresponding to alpha rhythm
can be observed between 8 and 11 Hz in Figure 4(b). The
results of the alpha rhythm test demonstrate and verify that
the electrodes can even be used for recording EEG signals,
which guarantees the quality of the forehead EOGs recorded
in this study.

Because EOGs have much higher signal-to-noise ratio in
comparison with EEGs, EOG signals can be well recorded by
the designed dry electrodes. Figure 5 shows the raw signals
recorded simultaneously by using the dry fabric electrode

TABLE I

SUMMARY OF MAIN COMPONENTS AND TECHNICAL PARAMETERS
OF THE PROPOSED FOREHEAD EOG ACQUISITION SYSTEM

and the commercial wet electrode on the site F P1 with the
Neuroscan recording system. We can see that the quality of
the dry electrode is comparable with that of wet electrode.
Although there are more noises and fluctuations in signals
recorded by the dry fabric electrode, the signals can well
capture the characteristic waves of eye movements, e.g., blink
and saccade.

B. EOG Acquisition Board

The EOG acquisition board was a custom board designed
by our group, as shown in Figure 6, and it incorporated one
TI ADS1298 analog front end for recording EOGs, a Nordic
nRF51822 microcontroller and a Bluetooth module (BC6140,
classical Bluetooth) for wireless transmission of the data to
a PC or any mobile device. A gain of 12 was used on the
ADS1298 differential amplifiers. The built-in 24-bit ADC had
a resolution of approximately 0.4 uV. The board was battery
powered, and the battery can be recharged using a micro-USB
interface. Our acquisition board was capable of simultaneously
recording 8-channel EOG signals (4 channels are used in
this study, as shown in Figure 1C) and was approximately
4.5 × 6.5 cm in size. The sampling frequency was set to
250 Hz.

To measure the electrode-scalp impedance for each indi-
vidual electrode, we used the “lead-off” detection feature
of the TI ADS1298. A 24 nA sinusoidal AC current at a
known frequency of 30.5 Hz was injected for each electrode
(more details about this AC lead-off detection technique can
be found in [55]). If any electrode was detected as having
lead-off status, a blue LED on the board would illuminate.
In this way, a low-impedance conductive path between drivers
and our acquisition board can be guaranteed, and accurate
measurement of the EOG signals can be achieved.

The developed EOG acquisition board contained four
sewing holes around the board, which allowed the entire board
to be sewn onto a light-weight elastic headband for real-life
applications. The entire prototype and system diagram are
shown in Figures 6 and 7, respectively. More technical details
are summarized in Table I.
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Fig. 6. The EOG acquisition board designed by our group and its paired tablet user interface.

Fig. 7. System diagram and signal flow of the designed EOG acquisition board.

C. Feature Extraction for Forehead EOG

Compared with the conventional EOG setups, which mount
the electrodes around the eyes, we proposed placing all
the electrodes on the forehead, as shown in Figure 1C,
in our previous studies [28], [31], [56]. This design has been
demonstrated to reduce discomfort in real-world applications
and to be efficient for wearable vigilance estimation. The
signals of the vertical two electrodes are used for extracting
vertical EOG (VEO) using independent component analysis
(ICA) [57], whereas those of the horizontal two electrodes
are subtracted for extracting horizontal EOG (HEO). Detailed
comparisons of conventional EOG and forehead EOG can be
found in [31]. After preprocessing the raw forehead signals,
VEO and HEO were obtained for extracting the details of eye
movements, such as blink, saccade, and fixation.

To detect blinks and saccades, the wavelet transform method
was used since it is sensitive to singularities. We computed the
continuous wavelet coefficients at a scale of 8 using a Mexican
hat wavelet defined by

ψ(t) = 2√
3σπ

1
4

(1 − t2

σ 2 )e
−t2

2σ2 , (1)

where σ is the standard deviation. The peak detection algo-
rithm on the wavelet coefficients was used to detect blinks and
saccades from the forehead VEO and HEO, respectively.

We applied thresholds on the continuous wavelet coeffi-
cients of the forehead VEO and HEO to detect positive and
negative peaks and encode them into sequences. For this
purpose, a positive peak was encoded as ‘1’, and a negative
peak was encoded as ‘0’. In continuous wavelet coefficients,

positive and negative peaks denote that there are high ampli-
tude changes in the raw signals. If the amplitude increases,
there are two successive negative and positive peaks ‘01’ and if
the value decreases, two successive positive and negative peaks
‘10’ are observed. A saccade (amplitude increases or decreases
in HEO) is characterized by a sequence of two successive pos-
itive and negative peaks in the coefficients. A blink (amplitude
increases and then decreases in VEO) contains three successive
large peaks, namely, negative, positive, and negative, and the
time between two negative peaks should be smaller than the
minimum time. Therefore, segments with ‘01’ or ‘10’ were
recognized as saccade candidates, and segments with ‘010’
were recognized as blink candidates.

Moreover, there are some other constraints, such as slope,
correlation, and maximal segment length, for guaranteeing a
precise detection of blinks and saccades. After detecting blinks
and saccades, we computed the statistical parameters, such
as the mean, maximum, variance, and derivative of different
eye movements with an 8 s non-overlapping window as the
forehead EOG features. We extracted a total of 36 forehead
EOG features from the detected blinks, saccades, and fixations,
as shown in Table II. For more details regarding the extrac-
tion of forehead EOG features, please refer to our previous
study [31].

D. Regression Models

Vigilance states are the human intrinsic mental states that
involve temporal evolutions. Therefore, the samples of previ-
ous and current states have meaningful relations, and these
interactions should not be discarded. Conventional regression
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TABLE II

THE DETAILS OF THE EXTRACTED 36 EOG FEATURES

models such as support vector regression (SVR) do not explic-
itly model the temporal dependency. In this paper, we applied
two temporal dependency models, namely, continuous condi-
tional neural field (CCNF) and continuous conditional random
field (CCRF), to capture the vigilance dynamics [31] and
compared their performance with those of the conventional
SVR model and the dynamic model using the Linear Dynamic
System (LDS) algorithm.

CCNF and CCRF are extensions of conditional random
field (CRF) [58] for continuous variable modeling. These
models can incorporate temporal or spatial information
and have shown promising performance in various
applications [59], [60]. CCNF combines the nonlinearity
of conditional neural fields [61] and the continuous
output of CCRF. Compared with CCRF, CCNF can have
multi-dimensional features as inputs.

The probability distribution of CCNF for a particular
sequence is defined as follows:

P(y|x) = ex p(�)∫ ∞
−∞ ex p(�)dy

, (2)

where
∫ ∞
−∞ ex p(�)dy is the normalization function,

x = {x1, x2, · · · , xn} is a set of input observations,
y = {y1, y2, · · · , yn} is a set of output variables, and n is the
length of the sequence.

There are two types of features defined in these models:
vertex features fk and edge features gk . The potential function
� is defined as follows:

� =
∑

i

K1∑
k=1

αk fk(yi , xi , θ k)+
∑
i, j

K2∑
k=1

βk gk(yi , y j ), (3)

where αk > 0, βk > 0, the vertex features fk denote the
mapping from xi to yi with a one-layer neural network, and
θk is the weight vector for the neuron k.

The vertex features of CCNF are defined as

fk(yi , xi , θk) = −(yi − h(θk, xi ))
2, and (4)

h(θ , xi ) = 1

1 + e−θT xi
, (5)

where the optimal number of vertex features K1 is tuned
through cross-validation. In our experiments, we evaluated
K1 = {10, 20, 30}.

The edge features gk denote the similarities between obser-
vations yi and y j , which are defined as

gk(yi , y j ) = −1

2
S(k)i, j (yi − y j )

2, (6)

where the similarity measure S(k) controls the existence of the
connections between two vertices.

In the experiments, K2 was set to 1, and S(k) was set to
1 when two nodes i and j are neighbors; otherwise, S(k) was
0. The formulas for CCRF are the same as those for CCNF,
except for the definition of vertex features. The vertex features
of CCRF are defined as

fk(yi , xi,k) = −(yi − xi,k)
2. (7)

The training of parameters in CCRF and CCNF is based
on the conditional log-likelihood P(y|x) as a multivariate
Gaussian. For more details regarding the learning and infer-
ence of CCRF and CCNF, please refer to [60]. The outputs
of support vector regression are used to train CCRF, and the
original multi-dimensional features are used to train CCNF.

E. Vigilance Annotation

The key challenge in vigilance estimation is how to
automatically label the recorded data, provided that a
supervised machine learning framework is used. This chal-
lenge is extremely difficult because the ground truth of the
intrinsic vigilance states cannot be obtained directly, partic-
ularly in real-world scenarios. Various vigilance annotation
methods have been proposed in the literature, such as lane
departure [43] and local error rates [16]. However, these meth-
ods involve an intrusive stimulus or behavioral probe, which
periodically interrupts subjects and disrupts the spontaneous
vigilance fluctuation that we aim to observe [6]. Moreover,
these methods are not appropriate for real-world driving tasks
considering safety issues since they contain dual tasks that
introduce distractions. Therefore, an efficient nonintrusive
cognitive monitoring approach is attractive for our objectives.

Spontaneous eyelid closures (SECs) have been found to
be an efficient proxy for vigilance state. Based on SECs,
PERCLOS, which refers to the percentage of eye closure,
is one of the popular vigilance indices used in various
studies [11], [62], [63]. However, traditional approaches uti-
lize facial videos to detect eye states and calculate the scores,
which are dramatically degraded with changing illumina-
tion and heavy occlusions. In our previous study [31], [64],
we proposed an alternative approach to vigilance annotation by
using eye-tracking glasses. Calculating the PERCLOS index
for vigilance annotation from eye-tracking glasses permits
nonintrusive cognitive monitoring, which is feasible for both
the simulated and real driving environments that we focus on
in this study.

Through eye-tracking glasses, we can obtain accurate eye
movement parameters, such as blink, saccade, and fixation.
The captured pupil images are shown in Figure 1D. The eye-
tracking-based PERCLOS index can be calculated from the
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percentage of the durations of blinks and ‘CLOS’ over a
specified time interval as follows:

PERCLOS = blink + C L OS

interval
, and (8)

interval = blink + f i xation + saccade + C L OS, (9)

where ‘CLOS’ denotes the duration of the eye closures. This
approach allows vigilance annotation to be conducted in a
very natural way without excessive interference. Therefore,
we can observe the vigilance fluctuation of subjects without
interruptions.

III. EXPERIMENTAL SETUP

A. Laboratory Driving Simulations

We developed a simulated driving system in the laboratory,
which included a large LCD screen showing highway scenes.
The simulated driving environment was programmed with
OGRE3D graphics rendering engine and OpenAL 3D audio
API. The scenarios include a four-lane highway, various cars,
buses, traffic signs, buildings, and tunnels. The subjects were
asked to sit inside a real vehicle without the engine and
drive the vehicle in the simulated environment shown on the
front screen. The subjects could control the vehicle in the
virtual driving environment using a Logitech steering wheel
controller that consists of a steering wheel and a gas pedal. The
scenes were simultaneously updated as feedback to enhance
the engagement and reality. The simulated driving scenes are
shown in Figure 1A.

There were a total of twenty subjects (mean age: 22.6, STD:
2.52, 2 females) that participated in our laboratory simulated
driving experiments. Among these subjects, fourteen subjects
(mean age: 21.5, STD: 1.0, 1 female) only participated in
the simulated driving experiments and the other six subjects
participated in both the simulated and real-world driving
experiments for comparisons. All of the subjects had normal
or corrected-to-normal vision. Caffeine, tobacco, and alcohol
were prohibited prior to participating in the experiments.
To ensure that all subjects could proficiently perform the
experiments, a preliminary test was performed at the beginning
of the experiments.

To collect the data of low vigilance states, we designed two
setups for the experiments. The road in the simulation software
is primarily straight and monotonous to more easily induce
fatigue in the subjects. The experiments were performed in
the early afternoon (approximately 13:30) after lunch and at
nightfall (approximately 19:00) after dinner according to the
circadian rhythm of sleepiness [65]. The duration of the entire
experiment was approximately 2 hours.

The forehead EOG signals were recorded using the wearable
dry prototype device while the subjects participated in the
experiments. Eye movements were simultaneously recorded
using SMI ETG eye-tracking glasses,2 and the facial video
was recorded by a camera mounted in front of the subjects.

2http://eyetracking-glasses.com/

B. Real-World Driving Experiments

Ten healthy subjects (mean age: 24.2, STD: 2.7, 1 female)
participated in the real-world driving experiments. In order
to compare the simulated and real-world driving experiments,
six of the ten subjects also participated in the laboratory
driving simulations. To ensure safety when the subjects were
drowsy, the subjects were asked to sit in the front passenger
seat beside the drivers during the experiments. The driving
route was inside Shanghai Jiao Tong University, Minhang
Campus, in Shanghai, China. The route was planned to take
subjects through situations where different vigilance levels
were likely to occur. The route contained crowded areas with
many pedestrians and sparse areas with monotonous stretches.
At the beginning of the experiment, both drivers and subjects
were shown a map of the driving route to keep the drives
consistent. Instructions explaining the complete experimental
procedure were given to each subject. The experiments were
performed in electric vehicles. One lap of the route was
approximately 5.5 km. The driving speed limit was kept at
approximately 30 km/h, and the duration of the driving was
approximately 1.5 hours with several laps.

When driving on the road, the forehead EOGs, eye move-
ments, and facial videos were simultaneously recorded. During
the experiments, an observer accompanied the drivers in the
car to monitor the signal recording. The observer sat in the rear
seat behind the subjects to avoid interfering with the drivers
and the subjects. All of the experiments were performed in
the early afternoon (approximately 13:30) after lunch and at
nightfall (approximately 19:00) after dinner, similar to the
laboratory simulated experiments. Figure 8 shows the sample
frames recorded from the scene camera.

The real-world driving experiments were performed under
various illumination and weather conditions, including sunny,
cloudy, windy, rainy and night time. The weather and illumi-
nation conditions of the ten experiments were rainy, windy,
cloudy, rainy, sunny, sunny, cloudy, cloudy, sunny, and night
time, respectively. As shown, for some extreme conditions, it is
very difficult to detect vigilance levels from facial videos for
traditional image-based methods due to the severe illumination
changes [11]. Conversely, the quality of EOG is not sensitive
to these factors. Note that this is a very important advantage
of the EOG-based vigilance estimation approach over the
traditional facial video-based methods.

C. Evaluation Details

For the continuous regression problems, we used the root
mean square error (RMSE) and correlation coefficient (COR)
as the evaluation metrics. RMSE is the squared error between
the prediction and the ground truth, and it is defined as follows:

RM SE(Y, Ŷ ) =
√√√√ 1

N

N∑
i=1

(yi − ŷi )2, (10)

where Y = (y1, y2, . . . , yN )
T is the ground truth and

Ŷ = (ŷ1, ŷ2, . . . , ŷN )
T is the prediction. COR provides an

evaluation of the linear relationship between the prediction
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Fig. 8. The sample frames recorded from the scene camera of eye-tracking glasses as the first perspective. The real-world driving experiments were performed
under various illumination and weather conditions, including sunny, cloudy, windy, rainy and night time.

and the ground truth, which reflects the consistency of their
trends. Pearson’s correlation coefficient is defined as follows:

C O R(Y, Ŷ ) =
∑N

i=1(yi − ȳ)(ŷi − ¯̂y)√∑N
i=1(yi − ȳ)2

∑N
i=1(ŷi − ¯̂y)2

, (11)

where ȳ and ¯̂y are the means of Y and Ŷ , respectively.
There are about 885 and 675 samples for each simulated and

real driving experiments, respectively. For evaluation, we split
the entire data from one experiment into five successive ses-
sions and performed 5-fold cross validation. We concatenated
the predictions and ground truth of the five sessions and
calculated the RMSE and COR as the evaluation metrics.
In general, the more accurate the model is, the higher the
COR is and the lower the RMSE is.

For parameter tuning of the regression models, we uti-
lized support vector regression (SVR) with radial basis func-
tion (RBF) kernel as a basic regression model. The optimal
values of the parameters c and g were tuned using grid
search. The CCRF and CCNF regularization hyper-parameters
for αk and βk were chosen based on a grid search in 10[0,1,2]
and 10[−3,−2,−1,0] using the training set, respectively.

In order to compare the performance of the temporal
dependency models, CCRF and CCNF, with other dynamic
models, linear dynamic system (LDS) [66], [67] approach is
adopted with the outputs of SVR as inputs (called SVR-LDS).
LDS aims to find the mapping between observed variables and
hidden variables. And the parameters can be optimized using
the Expectation Maximization (EM) algorithm based on the
observed variables.

IV. EXPERIMENTAL RESULTS

A. Laboratory Driving Simulations

In this section, we present the experimental results of the
simulated driving experiments in the laboratory. First, we

evaluated the performances of CCRF and CCNF with vary-
ing sequence length n. The sequence length determines the
strength of modeling temporal dependency. A longer sequence
length makes inference based on larger time windows with
large-scale information. However, it might reduce the repre-
sentational capacity for the vigilance fluctuations. There is a
trade-off between exploration and exploitation.

Figure 9 shows the performances of CCRF and CCNF
with varying sequence length n for the first 14 subjects.
From the experimental results, the performance of CCRF is
relatively stable, while that of CCNF is slightly degraded
with a larger sequence length. The best sequence lengths of
CCRF and CCNF are nine and four, where CCRF and CCNF
achieve the best mean performance of 0.7104±0.1491 and
0.7118±0.1134 for COR, respectively, and their mean
RMSEs are 0.1515±0.0552 and 0.1523±0.0604, respectively.
We observe that although the predictions of CCNF obtain
higher correlation with the ground truth, they have larger mean
square errors than those of CCRF. Moreover, we find that if
vigilance estimation with high temporal resolution in some
situations is vital, CCRF and CCNF with a much smaller
sequence length (2) can achieve slightly lower performances
of 0.6770/0.6943 and 0.1632/0.1576 for COR and RMSE,
respectively.

Figure 10 shows the detailed performances of different
models for the twenty individual subjects. The mean COR
values of the baseline method SVR, SVR-LDS, CCRF, and
CCNF are 0.6679±0.1717, 0.6776±0.1718, 0.7179±0.1588,
and 0.7215±0.1596, respectively and the corresponding
mean RMSE values are 0.1845±0.0762, 0.1806±0.0746,
0.1647±0.0684, and 0.1619±0.0787, respectively. The per-
formance of SVR-LDS is lightly better than SVR. The tem-
poral dependency models (CCRF and CCNF) perform better
than the conventional methods of SVR and SVR-LDS in
terms of the mean COR and RMSE. These results indi-
cate that incorporating temporal dependency information into
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Fig. 9. The performances of CCRF and CCNF with varying sequence length
in the simulated driving experiments.

vigilance estimation is efficient. These findings are consis-
tent with previous studies of modeling temporal and spa-
tial dependencies when analyzing time series data in the
literature [59]–[61], [68].

To verify whether the predictions from our proposed
approaches are consistent with the subjects’ true behaviors and
cognitive states, the continuous vigilance estimation of one
experiment (Subject 6) is shown in Figure 11. The snapshots
in Figure 11 show the eye states corresponding to different
vigilance levels, which are captured using eye-tracking glasses.
We can observe that our proposed system that combines the
wearable dry EOG prototype and the temporal dependency
models can moderately predict the continuous vigilance levels
and their trends.

B. Real-World Driving Experiments

In this section, we extend the evaluations of our designed
vigilance estimation system to the real-world driving tasks.
Figure 12 shows the performances of CCRF and CCNF with
varying sequence length n. As shown, in the real scenarios,
CCNF performs better than CCRF with a higher COR and

Fig. 10. The detailed performances of different models: SVR, SVR-LDS,
CCRF, and CCNF for individual subjects in the simulated driving experiments.
The last six subjects are corresponding to Subjects 1, 3, 5, 6, 7, and 9 in the
real-world driving experiments.

Fig. 11. The continuous vigilance estimation of different methods in one
experiment (Subject 6) in the simulated driving experiments. As shown,
the predictions from our proposed system are almost consistent with the true
subjects’ vigilance states.

lower RMSE. The sequence length n does not considerably
influence their performances. CCRF and CCNF achieve their
peak performances with sequence lengths of 7 and 9, respec-
tively. We compare the performances of different models
individually in Figure 13. The mean CORs of SVR, SVR-LDS,
CCRF, and CCNF are 0.5784±0.1882, 0.5870±0.1855,
0.6133±0.1779, and 0.6620±0.2688, respectively, while
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Fig. 12. The performances of CCRF and CCNF with varying sequence length
in the real-world driving experiments.

their mean RMSEs are 0.1890±0.0953, 0.1858±0.0933,
0.1630±0.0594, and 0.1307±0.0486, respectively. The con-
clusion that the temporal dependency models perform better
than the baseline method SVR is validated in the real-world
tasks. Figure 14 presents the predictions of different models
and the ground truth of vigilance fluctuations.

Compared with the performance of the laboratory simulated
driving, the performance of our system in real-world driving
environments decreases approximately 0.0498 for COR and
0.0216 for RMSE. Considering the challenges of complex
outdoor environments, including extreme weather such as
rainy and cloudy conditions, our wearable system can still per-
form well with slightly decreased performance. These results
demonstrate that our proposed vigilance estimation system
with wearable dry forehead EOG and temporal dependency
models is efficient in both simulated and real-world driving
environments.

In order to compare the performance between different envi-
ronments, Six of the ten subjects (Subjects 1, 3, 5, 6, 7, and 9)
in the real-world driving experiments also participated in the
laboratory driving experiments. Table III shows the perfor-
mance comparison of the same subjects in different scenarios.

Fig. 13. The detailed performances of different models, SVR, CCRF, and
CCNF, for individual subjects in the real-world driving experiments.

Fig. 14. The continuous vigilance estimation of different methods in one
experiment (Subject 9) in the real-world driving experiments.

Similarly, the temporal dependency models CCRF and CCNF
achieve better performance than the baseline approaches.
In terms of the mean COR evaluations, the performance
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of our system are better in simulated driving environments
with an improvement of about 0.12. But there are also some
exceptions, e.g., Subjects 1, 3, and 9 obtain better results
in the real-world driving experiments. Moreover, the mean
RMSEs are larger (about 0.04) in the simulated experiments,
although some subjects (e.g., Subjects 5, 6, and 9) have
different results. The RMSE of Subject 3 is much larger
than those of the others in the simulated driving experiments,
which highly degrades the overall performance. It is difficult
to compare the performance of the system between each pair
of experiments, even for the same subjects. Because there
are many environment factors that can highly influence the
prediction performance. In general, the performance in the
controlled laboratory simulated scenarios is better than that
in the real-world environments.

C. Cross-Environment Experiments: From Simulated to
Real-World Scenarios

Compared with the real-world scenarios, it is much easier
to collect and annotate the data in the controlled laboratory
simulations. An intuitive and straightforward approach is to
train models on the simulated data and make inference on the
data in the real-world applications. In this Section, we will
perform the cross-environment experiments and evaluate the
simulated-to-real generalization of our system. The labeled
data in the simulated driving experiments are used as the
training data and the performance of different models are
evaluated on the data of the real-world driving experiments.

The experimental results of cross-environment experiments
are shown in Table IV. The best mean COR and RMSE
are achieved using CCNF with the values of 0.5396 and
0.2262, respectively. In comparison with the results (COR
with 0.6620 and RMSE with 0.1307) in the real-world driving
experiments, our proposed system have a degraded perfor-
mance of 0.1224 for COR and 0.0955 for RMSE. Even with
the large variations between the simulated and real-world
environments, the system can still detect the vigilance dynam-
ics moderately in the real-world driving task with a limited
number of labeled data in the simulated environment for
training.

There exist many discrepancies between simulations and the
real world, which make knowledge transfer from simulations
to real-world applications challenging. These discrepancies
called the reality gap form the barrier to using the simulated
data on models training in the real world. These factors cause
significant differences between the data distributions of the
simulations and the real world, which dramatically degrade the
prediction performance. It is difficult to develop robust systems
in real-world applications with only simulation data. Various
approaches have been proposed to bridge the reality gap, e.g.,
domain adaptation [69] and domain randomization [70].

V. DISCUSSION

In our previous study [31], we constructed vigilance
estimation models with forehead EOGs recorded with the
traditional wet electrodes using a commercial Neuroscan sys-
tem, which represents the gold standard. The mean COR

and RMSE of our previous wet-electrode-based approach are
0.7773±0.1745 and 0.1188±0.0391, respectively. Compared
with our previous study, we design a wearable dry EOG
prototype that is feasible for real-world scenarios with a
moderate decrease in prediction performance to some extent.

Although considerable progress in vigilance estimation has
been achieved over the past decades, few studies have been
performed in real-world scenarios [24], [49], [50], and most
studies are performed in controlled laboratory environments.
A small number of studies in real-world environments are
mostly based on facial videos due to easy setups at the
cost of degraded performance. There is a large gap between
simulations and real conditions. In this study, we perform
both simulated and real-world experiments for our designed
system to fill this gap. The experimental results demonstrate
the efficiency of our system in real-world applications.

Considering safety issues, we actually analyze the data of
subjects sitting in the front passenger seat rather than drivers
in real driving environments. Since the operations are different
for drivers and passengers, the performance of the system for
real drivers requires further investigation. Note that although
we have evaluated the performance of our system in real-world
driving environments, the real-time online performance has not
been tested, which should be evaluated in the near future.

One of the limitations for constructing robust vigilance
estimation models is the high cost of collecting a large
amount of physiological data. By leveraging the feasibility
and wearability of our vigilance estimation prototype, we are
able to collect a large amount of related data, and these
large datasets can actively help generalize our computational
models and novel prototype designs as feedback. Through
these progressive procedures, we can pave the way for robust
vigilance estimation in complex real environments. Therefore,
it is very important to implement such wearable systems and
test them on board vehicles.

To reduce the calibration time and improve the generaliza-
tion performance of vigilance estimation models, an intuitive
approach is to adaptively recycle the previously recorded
data. However, there are individual differences in neurophys-
iological signals across subjects and sessions. The perfor-
mance of vigilance estimation models may be dramatically
degraded. To address this problem, one efficient approach is
to perform subject transfer and session transfer using transfer
learning techniques, which aim to reduce the differences
of feature distributions between source domains and target
domains [71]–[75].

Another similar problem is about the reality gap between
simulated and real-world environments. There are many differ-
ent characteristics of simulated and real scenarios. Real driving
environments contain many more problems (e.g., device setups
and artifacts) compared with laboratory simulations. In real-
world experiments, there is usually much more noise caused
by vehicle engine and vibration when recording EOG signals.
However, it is very time consuming and expensive to collect a
large number of high quality data in real-world environments.
Therefore, an intuitive and straightforward way to dealing with
this problem is to train models with data from simulations
and make inference on real-world data in a cross-environment
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TABLE III

PERFORMANCE COMPARISONS OF THE SAME SUBJECTS 1, 3, 5, 6, 7, AND 9 IN THE LABORATORY DRIVING
SIMULATIONS AND THE REAL-WORLD DRIVING EXPERIMENTS

TABLE IV

PERFORMANCE OF CROSS-ENVIRONMENT EXPERIMENTS. THE MODELS ARE TRAINED WITH THE DATA IN THE SIMULATED

DRIVING ENVIRONMENT AND EVALUATED WITH THE DATA IN THE REAL-WORLD DRIVING ENVIRONMENT

way. However, the performance of the overall systems might
be dramatically degraded due to the reality gap. To address
this problem, transfer learning should be further investigated
for knowledge transfer from simulations to the real world and
generalizing the models to real-world applications.

Compared with the EEG-based vigilance estimation
approaches, EOG-based methods are much easier to imple-
ment with feasibility and wearability in real sceneries with
the advantages of high amplitudes of EOGs and good place-
ments of electrode mounting. The limitation of EOG-based
vigilance estimation is that it requires a larger time window
for extracting sufficient information since most eye movements
such as blink and saccade are based on second scales. For
example, the time window for EOG feature extraction is 8 s.
In contrast, EEG signals have high temporal resolution, and
they are able to capture the vigilance dynamics. In the study
of Davidson et al. [7], they developed an EEG-based lapse
detection system on the temporal scale of 4 s.

VI. CONCLUSIONS AND FUTURE WORK

For dealing with the problem of vigilance estimation in real
driving environments, we have proposed both wearable device

implementations for easy signal acquisition and efficient algo-
rithms for precise data modeling in this study. The designed
wearable device has integrated only four flexible dry electrodes
and a low-cost acquisition board for real-world forehead EOG
recordings in comparison with the existing devices. To capture
vigilance dynamics, two temporal dependency models, CCRF
and CCNF, have been introduced. We have performed the
systematical evaluations of our designed system in real-world
driving environment under various weather conditions and val-
idated its efficiency for continuous vigilance estimation. This
study has provided an efficient approach to real-time vigilance
estimation in real-world applications and the sceneries can
be extended from driving tasks to various tasks that require
sustained attention.

Although we have considered the weather and illumination
factors and evaluated the performance under these conditions,
the detailed influence of these factors in our proposed system
needs systematical evaluations and further investigations with
more experiments in the future. Moreover, due to the reality
gap and the high cost of data collections in real scenarios,
how to transfer knowledge from simulations to reality and
generalize computational models to real-world applications are
still open questions.
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