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Abstract. The combination of eye movements and electroencephalog-
raphy (EEQG) signals, representing the external subconscious behaviors
and internal physiological responses, respectively, has been proved to
be a dependable approach with high interpretability. However, EEG is
unfeasible to be put into practical applications due to the inconvenience
of data acquisition and inter-subject variability. To take advantage of
EEG without being restricted by its limitations, we propose a cross-
subject and cross-modal (CSCM) model with a specially designed struc-
ture called gradient reversal layer to bridge the modality differences and
eliminate the subject variation, so that the CSCM model only requires
eye movements and avoids using EEG in real applications. We verify
our proposed model on two classic public emotion recognition datasets,
SEED and SEED-IV. The competitive performance not only illustrates
the efficacy of CSCM model but also sheds light on possible solutions to
dealing with cross-subject variations and cross-modal differences simul-
taneously which help make effective emotion recognition practicable.

Keywords: Cross subject + Cross modality - EEG - Eye movements -
Multimodal emotion recognition * Transfer learning

© Springer Nature Switzerland AG 2021
T. Mantoro et al. (Eds.): ICONIP 2021, CCIS 1517, pp. 203-211, 2021.
https://doi.org/10.1007/978-3-030-92310-5_24


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92310-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-92310-5_24

204 J.-M. Zhang et al.

1 Introduction

Emotional intelligence (EI) has become the spotlight in artificial intelligence
since it is a promising way to perfect user experience in human-computer inter-
faces. EI contains three phases, namely emotion recognition, emotion under-
standing, and emotion regulation, among which the first step is the most critical
[1] for its huge potential to be applied in broad scenarios such as entertainment,
smart gadgets, education, and even medical treatment.

Researchers have dived into various modalities to seek an effective way to
measure emotions. It has been proved that the combination of eye movements
and EEG signals, representing the external subconscious behaviors and internal
physiological responses, respectively, is a more dependable approach with high
interpretability [12]. However, although this complementary collocation delivers
decent performance, it is unfeasible to put it into real-life practice due to the
restrictions of EEG in both extrinsic and intrinsic sides. The extrinsic obstacles
are unavoidably caused by the equipment like injecting conductive gel, which
leads to high cost and operational difficulty when using in daily life. Compara-
tively, the intrinsic limitation is related to the property of physiological signals.
EEG data is highly subject-dependent and susceptible to the structural and
functional differences between subjects [7], which brings great challenges to the
construction of practical EEG-involved affective models.

To overcome the impediments raised by EEG, scholars have attempted to
find solutions from diverse aspects, such as cross-modal transfer. Palazzo et
al. [6] combined GAN with RNN to generate corresponding images from EEG
signals recorded when subjects were watching images. Our previous work has
verified the complementary characteristics of EEG and eye movements [5], sup-
porting that eye movement analysis can be an accessible, simple, and effective
method to study the brain mechanism behind cognition. As for subject depen-
dency, transfer learning provides a practical solution to diminish the variability
of data distribution between individuals. Zheng et al. [11] first applied several
basic domain adaptation (DA) methods to EEG-based emotion recognition task,
including transfer component analysis (TCA) [8], etc. Furthermore, combining
DA with deep networks is an alternative way. Ganin et al. [3] proposed the
domain-adversarial neural network (DANN) to extract the shared representa-
tions between the source domain and the target domain. Li et al. [4] first applied
deep adaptation network (DAN) to EEG-based cross-subject emotion recogni-
tion. To reduce the huge demand of the target domain data in the test stage,
Zhao et al. [9] proposed a plug-and-play domain adaptation (PPDA) method
and achieved a trade-off between performances and user experience by using
only a few target data to calibrate the model.

However, all these models are either cross-subject or cross-modal. The CSCM
model that we propose eliminates the structural variability between individuals
while learning the shared features of EEG and eye movements so that the latter
can be an alternative modality to their combination. As a consequence, the test
phase only requires data from the single eye movement modality with no need for
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data from the new subject in advance. In this way, we guarantee the model with
both maximum generalization ability and good feasibility in real applications.
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Fig. 1. The framework of our proposed CSCM model. The whole structure contains
the training phase and the test phase. The training phase has a main chain in blue and
two subchains to bridge the modality differences and eliminate the subject variation,
respectively. The test phase only requires eye movement signals as input to predict
emotions.

2 Methods

2.1 Overview

To make emotion recognition more generalizable and practicable, we propose a
cross-subject and cross-modal model called CSCM model that gets over the inter-
subject variability and modal restrictions caused by EEG signals. The framework
of CSCM model is depicted in Fig. 1. The whole process can be divided into the
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training phase and the test phase. In the training phase, both eye movements
and EEG signals from source subjects are required as input. There is a main
chain together with two subchains aiming to bridge modality differences and
eliminate subject variation, respectively. In the main chain, dimension transfor-
mation layers are applied first to both types of signals separately to unify the
dimensions. Then they are fed to a shallow feature extractor where the first sub-
chain stretches out. A gradient reversal layer [3] connects the modality domain
classifier in the subchain to the shallow feature extractor in order to generate
domain-invariant features. The deep feature extractor follows the shallow one
with the second subchain to make subject domains indistinguishable. An emo-
tion classifier ends the training phase at last. For the test phase, our model only
demands eye movement signals from the target subject.

2.2 Training Phase

Dimension Transformation. We use X~ € RP to annotate EEG feature
vectors, where p is the feature dimension. Each dimension represents information
from a specific channel of a frequency band. Similarly, X% € R? stands for
eye movement feature vectors with dimension ¢. Since p is much larger than ¢
due to the information sufficiency of EEG, we conduct dimension transforma-
tion via a specific layer separately first to unify the feature dimensions so that
XEeece, Xgye € R” where r is the dimension of mapped features.

Modality Reduction. After dimension transformation, we feed the mapped
features to the shallow feature extractor F, with parameters 6, where s rep-
resents shallow. It is connected to the modality domain classifier C,,q via a
specially designed layer called Gradient Reversal Layer (GRL) L,,q, where md
represents a modality domain. In the forward propagation, L,,q functions in
the typical way but in the backpropagation period it takes the gradient from
Cq and multiplies by a certain negative number before passing back to Ej, i.e.
reversing the sign of the gradient. Optimization process is integrated as follows:
s, 0y) = arg;niGIlE(Hs, Oy, 0ma)

(
A R (1)
(Orma) = argmaxE (0, 60y, 0rma),

md

>

where y stands for a label, i.e. a modality of EEG or eye movements. By this
ingenious gradient reversal mechanism, features from EEG and eye movement
modalities are gradually indistinguishable until C,,; cannot tell them apart.
Thus, modality-invariant features have been extracted out.

Inter-subject Variability Elimination. Since subject differences are deter-
mined by more factors and vary a lot, it is harder to minimize this variability
than those between modalities. Hence, deep features are generated by FE,, where
d means deep, from the output of E,. We adopt the same structure with L,,4 to
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build L4 where sd is a subject domain linking E; to the subject domain classifier
Cq4. Different from L,,4, Lq tries to obtain subject-invariant features guided by
the reversed gradient. Features after this step are expected to no longer contain
modal or subject information. The prediction given by the emotion classifier C,
is based on both modality-invariant and subject-invariant features.

Learning Loss. In the training phase, EEG data and eye movement data from
source subjects are utilized to train the model to minimize the following loss:

L= 0456’6 + ﬁ‘CLmd + ’Y‘CLS(N (2)

where a, § and 7 are trade-offs that control the synergy of the three loss terms.
We minimize the cross-entropy loss of the emotion classifier as:

Lo, == yilogii, (3)

where ¢; is the prediction of C., and y; is the ground truth label for the input
;. Cng and Cyy also use cross-entropy as the loss.

2.3 Test Phase

Since two pre-trained feature extractors E; and E4 have learned the knowledge
from EEG signals and subject-invariant components, the whole model does not
need any calibration by the new data and only needs the eye movement signals
of the new subject as input in this phase.

3 Experiments

3.1 Datasets and Protocols

We verify the performance of our model on two public datasets, SEED [13] and
SEED-IV! [10]. For SEED, we take data from 9 subjects who have multimodal
signals while all 15 subjects in SEED-IV are qualified to be tested. Each subject
participated in the experiments three times to watch videos that evenly cover
every emotion in each experiment on different days. The EEG signals and the
eye movement signals were recorded with a 62-channel electrode cap together in
ESI Neuroscan system and SMI wearable eye-tracking glasses, respectively.

The recorded EEG signals are downsampled 200 Hz and then processed with
a bandpass filter of 0-75 Hz and baseline correction as well. After the prepro-
cessing, different entropy (DE) [2] features are extracted with non-overlapping
1-second and 4-second time windows for SEED and SEED-IV, respectively, in
the five frequency bands (6: 1-3 Hz, 0: 4-7 Hz, a: 8-13 Hz, 5: 14-30 Hz, and ~:
31-50 Hz) from every sample. The eye movement signals are extracted by SMI
BeGaze software, including pupil diameter, dispersion, etc. [5]

! The SEED and SEED-IV are available at https://bcmi.sjtu.edu.cn/home/seed/ind
ex.html.
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Table 1. Results of different methods running on SEED and SEED-IV.

Methods Training modalities | Test modality | SEED SEED-IV
Avg. Std. Avg. Std.

SVM EYE EYE 0.5223 | 0.0724 | 0.5231 | 0.1088
SVM EEG EEG 0.5690 | 0.0594 | 0.5567 | 0.0899
MLP EYE EYE 0.6646 | 0.0762 | 0.5508 | 0.0951
MLP EEG & EYE EYE 0.6837 | 0.0975 |0.6110 | 0.1243
CSCM-SM | EYE EYE 0.7030 | 0.1316 | 0.6836 | 0.0590
CSCM EEG & EYE EYE 0.7618 | 0.0761 | 0.7222 | 0.1123

3.2 Experimental Results

We select two popular methods, namely support vector machine (SVM) and mul-
tilayer perceptron (MLP), to make comparisons. The average accuracies (avg.)
and standard deviations (std.) are reported in Table 1. Results for each subject
of each method on SEED and SEED-IV are depicted in Fig. 2.

Comparison Under Single Modality. To examine the performance of CSCM
model, we first compare models all trained and tested with a single modality.
Since our motivation is to avoid using EEG in the test stage, here we mainly
focus on the eye movement modality. It is necessary to mention that CSCM-SM
model on line 5 refers to a transformed model of CSCM model that does not have
the modality domain classifier, allowing it to be trained with a single modality
(SM) in the cross-subject emotion recognition task.

SVM-EYE MLP-EEG&EYE SVM-EYE MLP-EEG&EYE

1.0 SVM-EEG CSCM-SM 1.04 SVM-EEG CSCM-SM
MLP-EYE I CSCM : MLP-EYE N CSCM
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Fig. 2. The accuracies for each subject of each method and the averages on SEED (a)
and SEED-IV (b).

Line 1, 3, and 5 display the results of training and testing with only the eye
movement modality. We tested on data from 1 subject and used all remained
data as training sets for each dataset. SVM is taken as the baseline. For three-
class emotion recognition on SEED, CSCM model slightly outperforms MLP
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by 4%, and these performances are drastically higher than the baseline ranging
from 14% to 18% as shown above. For SEED-IV when the number of emotion
categories increases, CSCM model surpasses both SVM and MLP for at least
13% with a quite decent standard deviation around 0.06, which demonstrates
that our proposed method is solid and has great potential to perform better
when complicated emotional states are involved.

Previous studies have confirmed that EEG signals contain much more useful
information than eye movement signals [5,10]. In other words, for the same
method to be working on a single modality, the EEG modality is supposed to
have better performance than the eye movement modality which has been proved
by the comparison between the first two lines in Table 1. However, our model
with eye movement modality acts much better than SVM with EEG modality
as presented in line 2. This surprising fact convinces us that the utilization of
information in CSCM model is of high efficiency.

Verification of Two GRL Layers. We corroborate the effect of the two spe-
cially designed GRL separately as follows. The first GRL L,,q4 is set to minimize
the modality differences. However, whether it really employs the knowledge from
EEG remains a question. Therefore, we compare the standard CSCM model with
CSCM-SM model. Specifically, these two differ from modalities used in the train-
ing phase that CSCM model takes both while the other only uses eye movement
modality. The comparable results are listed on the last two lines in Table 1. The
CSCM model shows great superiority over CSCM-SM model, especially in three-
label classification about 6% with outstanding stability, proving that L,,q works
well in helping capture useful information from EEG and further provides a solid
foundation for disposing of EEG in real applications.

The second GRL Ly, aims to reduce the subject discrepancies. For line 1,
3, and 5 in Table 1, all can be regarded as cross-subject methods with different
implementation ways as mentioned in the previous subsection above. The better
results on both datasets indicate that using L.4 to diminish subject variation
is more reliable and effective than the traditional ways. This evidence supports
the idea that CSCM model provides a new solution to tackle subject variability.

Comparison with Multimodal Models. Few existing models are cross-
modal and cross-subject at the same time in the emotion recognition task. In
order to examine our model, we adapt a classic model MLP to the same task as
our baseline, i.e. training with multimodalities and testing with only eye move-
ment signals. Particularly, in order to be consistent with CSCM model, we also
transform the dimensions of EEG and eye movement features at first. Com-
pared with MLP, it is evident that our model fits the properties of data well
from the significantly higher accuracies and less standard deviations, especially
on SEED-IV. Our proposed CSCM model affords researchers a novel idea to real-
ize cross-subject and cross-modal simultaneously with respectable performances
and more state-of-the-art methods need to be further explored in the future.
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4 Conclusions

In this paper, we have devised a novel multimodal learning model, CSCM model,
to make emotion recognition as practicable as possible beyond lab environment
by applying cross-subject and cross-modal techniques simultaneously. It suc-
cessfully outperforms baselines and is substantiated from both sides individually
according to the comprehensive experiment results. Besides the effective model
itself, this pioneering thought sheds light on further attempts at making affective
computing systems more practicable and bringing tangible benefits to daily life.
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