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Abstract—Emotion recognition based on EEG and eye move-
ment signals has been studied extensively due to the reliability
and stability of signals. The separability of four basic emotions,
happy, sad, disgust and fear, has been systematically studied in
the existing work. However, there is less research on the emotions
of anger and surprise since they are more difficult to be elicited in
lab settings. This paper investigates the discrimination ability of
EEG and eye movement signals for surprise and anger. To this
end, we design a stimulus paradigm that can effectively elicit
surprise and anger. We propose a novel Graph Convolutional
Network with Channel Attention (GCNCA) to classify three
emotions, anger, surprise and neutrality. Experimental results
indicate that: a) the proposed GCNCA model has an excellent
classification accuracy of 86.47% using EEG and 84.22% using
eye movement signals, which are better than other baseline
methods; b) EEG and eye movements have a good ability to
discriminate surprise and anger, while EEG performs better than
eye movements; c) the high-frequency bands of EEG are more
distinguishable on classifying surprise and anger than the low-
frequency bands; d) there are some differences in neural patterns
between surprise and anger, meanwhile critical channels and
channel connections of EEG are found.

Index Terms—EEG, eye movements, surprise, anger, graph
convolutional network

I. INTRODUCTION

Nowadays, the role of emotions in human-computer inter-
actions is becoming more and more important. The emotion
models can be divided into two main types: discrete models
and dimensional models. Ekman et al. [1] proposed one of the
famous discrete emotion models including six basic emotions,
happiness, fear, disgust, anger, surprise, and sadness. Whereas,
a dimensional model defines emotions in a coordinate system
composed of multiple dimensions. In this paper, we mainly
concentrate on the discrete model.

There are many studies on the discrimination ability of EEG
and eye movements on the four of the six basic emotions.
Zheng et al. [2] studied the stable neural patterns of happy,
sad, and neutral emotions. Furthermore, they explored the
discrimination ability of EEG and eye movement signals for
happy, sad, fear, and neutral emotions [3]. After those findings,
Li et al. [4] and Liu et al. [5] investigated the differentiation
ability of EEG and eye movement signals for five emotions
including happy, sad, fear, disgust, and neutral. Nevertheless,
neither the discrimination ability of EEG and eye movement
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signals for surprise and anger nor the neural patterns have been
fully investigated yet in the existing work. Thus, we study EEG
and eye movement signals of surprise, anger, and neutrality in
this paper.

The main contributions of this paper can be summarized as
follows:

1) We conduct experiments to elicit subjects’ surprise and
anger in multiple ways. Additionally, we select neutral
emotion as the anchor to compare with surprise and anger.
EEG and eye movement signals are recorded during the
experiment.

2) We propose a novel Graph Convolutional Network with
Channel Attention (GCNCA) for classification. The GC-
NCA models EEG and eye movement signals as a graph
taking advantage of the relationships among different
channels and the channel attention mechanism automati-
cally learns the importance of the channels.

3) We do classification tasks using the individual band and
total band and explore the critical bands for discriminat-
ing surprise and anger. Furthermore, We study the neural
patterns and find the significant difference between the
three emotions. For eye movements, we investigate the
distributions of some statistical features.

II. EXPERIMENT SETUP

A. Stimuli Material

1) Surprise: For surprise, we choose magic videos as
the stimuli materials. Each video contains several infectious
fragments intercepted from various magic shows. The most
important advantage of this approach is stability. Subjects
can always get surprised while watching these magic videos.
Moreover, watching videos evades the influence of limb move-
ment on EEG signals.

2) Anger: Anger can hardly appear by only watching
videos. To overcome this hurdle, we design and utilize three
electronic games. Before the experiments, subjects are told
that their remuneration is tied to their performance of playing
the game. The purpose of doing this is to make sure that they
play the games seriously for better effects.

The first game is adapted from the traditional Stroop game.
There is a large Chinese character representing color on the
screen, whose font color is random and usually different from
the color it means. Meanwhile, four options which are also978-1-6654-0126-5/21/$31.00 © 2021 IEEE
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Chinese character representing color with random font color
are below the large character. Subjects are asked to choose
the character whose meaning is consistent with the large
character’s font color. We set 150 problems which takes about
25 minutes to complete. The subjects have 5 seconds per
problem. If they run out of time, it will straightly go for the
next one. The higher the accuracy, the more rewards. In order
to make subjects more angry, we deliberately set the following
system bugs:

1) Random mouse click recognition error. The system rec-
ognizes the mouse click area incorrectly for a small
probability.

2) Random mouse malfunction. The mouse randomly does
not respond when the subjects click the option.

3) Random frozen. The system randomly freezes couple
times for about half a minute each.

4) Setting up a fake leader board. We set up a fake leader
board at the upper left corner of the screen. People on the
leader board have extremely high scores that the subjects
are impossible to achieve.

5) Game program crash. At the end of the game, the program
automatically crashes and the subjects are required to
play it again. To limit the gaming time, we only set 20
problems when the subjects replay the game.

The other two games are existing games on the Internet,
named Golfing Over It 1 and Boxman’s Struggle2. These two
games require the players to control objects which are a golf
and a box respectively to climb upwards. We set a goal for
all the subjects. They can get all the remuneration only if
they reach the target position in the game within 25 minutes.
Otherwise, they can only get 30 percent of the remuneration.
Once the time runs out, the game is over. There are many
obstacles in these two games which make it difficult to achieve
the goal. A small mistake may cause the objects falling to the
ground which means all effort is wasted. The subjects are
likely to be angry as the game unfolds.

Besides games, we also select some videos to elicit anger.
These videos reflect injustices in the society and can make
people feel angry to some extent. We find some people still
feel angry when they think of something that made them angry
recently. Inspired by this, we add a section when subjects are
asked to recall annoying things to get angry in the experiment.
Thus, we have diverse angry data from gaming, recalling and
videos.

B. Subjects

Seventeen participants aging from 18 to 30 enroll in our
experiments, including 9 males and 8 females. All have
normal or correct-to-normal vision and normal hearing. We
use questionnaires to understand the basic information of the
participants including age, gender, background, etc. Through
the questionnaire, we select 17 suitable candidates from the
registered people to participate in our experiment. All subjects

1https://www.majorariatto.com/golfingoverit
2https://oneblock.itch.io/boxmans-struggle
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Fig. 1. The procedure of the experiment.
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Fig. 2. The overall architecture of proposed GCNCA model.

are informed of the content of the experiment before start
and sign an informed agreement. This experiment passed
the review of the Ethics Committee of Shanghai Jiao Tong
University.

C. Procedure

All of the subjects perform the experiment 3 times. The
process of the experiment is shown in Figure 1. Each session
of the experiment contains several trials. Each trial consists
of two parts. The first part is video, recall or playing games,
and after that is self-assessment which subjects score their
emotional arousal from 1 to 10 points. Most videos are about
2 to 4 minutes long. The first six trials are alternate playbacks
of surprise and neutral videos. The rest of trials are designed
to elicit anger. The original intention of the design is based
on the observation that people are more prone to continuous
anger. The anger eliciting part contains 5 trials. The first one
is “anger boost” that are some drag racing videos aiming to
stimulate adrenaline secretion for better anger induction later.
EEG and eye movement signals are not recorded for this trial.
Subsequent two trials are anger videos followed by a trial
that requests subjects to recall annoying things for about 2
minutes. The last trial is the game and the total 3 sections
of experiments correspond to the 3 games mentioned above,
respectively.

There is a feedback session at the end of each experiment.
Most importantly, the subjects are asked to find out the period
when they are most angry through the gaming trial. It’s neces-
sary because people are unlikely to remain angry throughout
the game. Also, from each section of the experiment, we will
get 3 surprise data, 3 neutral data and 4 anger data. In order
to keep the balance of the data, we select 3 out of 4 anger
data according to feedback from the subjects.

III. METHODS

A. Preprocessing

Raw EEG data may contain a lot of noise from environment.
We preprocess the EEG signals with Curry 7. We carry out a
baseline correction followed by a band pass filtering between 1
to 50 Hz. To remove the artifacts caused by blinking, we apply
Principle Component Analysis (PCA) and use VEO channel
to detect and remove artifacts.
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TABLE I
EXTRACTED EYE MOVEMENT FEATURES

Eye movement parameters Extracted features

Pupil diameter(X and Y)
Mean, standard deviation, DE in four
bands (0-0.2 Hz, 0.2-0.4Hz, 0.4-0.6

Hz, 0.6-1 Hz)
Fixation duration(ms) Mean, standard deviation, maximum
Saccade duration(ms) Mean, standard deviation

Blink duration(ms) Mean, standard deviation

Event statistics Fixation frequency, Saccade frequency,
Saccade latency, Blink frequency

For eye movement signals, we mainly concentrate on left
pupil diameter, right pupil diameter, fixation duration, saccade
duration and blink duration recorded by Tobii Pro X3120 eye
tracker. The pupil diameter is affected by the intensity of the
light, so we apply PCA to remove the influence of the light
on pupil diameter under the fact that different subjects watch
the same videos in an experiment [3].

B. Feature Extraction

In this paper, we choose differential entropy (DE) of EEG as
features. We first downsample the EEG signals from 1000 Hz
to 200 Hz in order to speed up the data processing procedure.
Then, we extract DE feature in five frequency bands: delta (1-
3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz) and
gamma (31-50 Hz). The Short Time Fourier Transform (STFT)
with a 1-second-time window and no overlapping Hanning
window is used to extract the DE features. Finally, we use a
linear dynamic system algorithm to smooth the features. As for
eye movement signals, Table I shows the features we extracted.
Overall, the eye movement features are 23-dimension.

C. Graph Convolutional Network with Channel Attention

Given a graph G = (V,E), where V denotes the set of
vertices and E denotes the set of edges. We can use an
adjacency matrix A ∈ Rn×n to represent E, where n is the
number of vertices i.e. n = |V |.

Kipf et al. [6] proposed the GCN model as follows

H l+1 = σ(D̂− 1
2 ÂD̂− 1

2H lW l), (1)

where Â = A + I , D̂ii =
∑

j Âij , W l denotes the weight
matrix of layer l, H0 = X , and σ is the non-linear activation
function.

We extend the original GCN and propose the GCNCA
model. The architecture of the proposed GCNCA model is
illustrated in Figure 2. We apply batch normalization after
input and each GCN layer for better and faster convergence.
We choose leaky ReLU as the non-linear activation function.
For the GCN layer, the adjacency matrix is vital as it describes
the topology of the input features. We define the adjacency
matrix A ∈ Rn×n as a symmetric matrix to avoid overfitting,
where n is the number of channels in features. Each entry
Aij indicates the weight between channel i and j and we
set it learnable since the connections between channels are
unknown.

To explore the significance of each channel in the input
features, we propose a novel channel attention method which
can adaptively learn the weights among all the channels. We
use H l ∈ Rn×d as the output of the l-th GCN layer, where
n is the number of channels and d is the dimension of each
channel. The normalized weight matrix W̃ ∈ Rn×d can be
measured through a softmax function as:

W̃ = softmax(WH l +B), (2)

where W ∈ Rn×n, and B ∈ Rn×d. After that, the output of
the channel attention can be calculated as follows:

H̃ l = W̃ ⊙H l, (3)

where H̃ l ∈ Rn×d. The element in W̃ denotes the importance
of its corresponding dimension in H l. The larger the value is,
the more crucial the corresponding dimension will be. W and
B are initialized randomly and updated through training.

After the channel attention, we apply sum pooling, fully-
connected layer followed by a softmax layer to derive the
classification results. The objective loss function we want to
optimize is:

L = −
N∑
i=1

log(p(Yi|Xi, θ)) + λ
∑
Wi∈θ

∥Wi∥22, (4)

which is the cross-entropy loss with weight decay. Here, θ
denotes the parameters of the model and λ is the strength of
L2 regularization of all the weight including the adjacency
matrix A.

For hyperparameter settings, we empirically set the number
of convolutional layers L = 2, batch size of 32. We only tune
the hidden dimension of channels d, learning rate η and the
strength of weight decay λ. We select Adam as the optimizer
to update the parameters of our model.

IV. RESULTS

To evaluate the classification performance of EEG and eye
movement signals for the three emotions, we establish a model
for each experiment of each subject. For each experiment, we
divide the data into three folds and each fold contains one
clip of surprise, anger and neutral data to perform a three-fold
cross-validation.

A. Discrimination Ability of EEG

For EEG, we conduct the classification task on individual
bands (delta, theta, alpha, beta, gamma) as well as total
bands to investigate the critical bands for surprise and anger.
We compare our GCNCA model with several other methods
including support vector machine (SVM), K-nearest neighbor
(KNN), graph convolutional network without attention (GCN)
and hierarchical convolutional neural network (HCNN) [7],
which transforms the EEG features into image-like tensors
and using convolutional neural networks (CNN) to conduct
the classification. Table II shows the average classification
accuracy results.

1) Discrimination of Different Frequency Bands: As shown
in Table II, it’s obvious that high frequency bands alpha, beta
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TABLE II
EEG AND EYE MOVEMENTS CLASSIFICATION ACCURACY(MEAN/STD) % RESULTS

Model EEG eye movementsDelta Theta Alpha Beta Gamma Total
KNN 45.03/19.49 48.11/21.24 54.73/23.16 58.14/23.68 53.37/22.03 57.91/23.21 47.38/31.66
SVM 50.82/20.36 56.40/21.98 61.90/23.79 65.91/21.72 59.62/23.92 68.83/21.97 58.52/25.75
HCNN [7] 59.72/18.68 70.02/17.68 75.03/19.30 77.44/20.52 75.03/19.30 74.86/17.56 -
GCN 72.26/15.11 77.50/15.26 81.25/16.20 82.95/16.62 80.99/15.37 84.51/14.58 81.42/16.48
GCNCA 74.52/15.15 78.04/15.71 84.19/15.39 84.79/14.62 83.04/15.20 86.47/13.87 84.22/14.38

(a) Connectivity (b) International 10/20 system

Fig. 3. Visualization of the adjacency matrix of the GCNCA.

Delta Theta Alpha

Beta Gamma Total

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Visualization of attention weight, obtained by calculating the mean
of attention weight of each subject and normalized.

and gamma outperform low frequency bands. Furthermore,
beta band acquires the best classification accuracy among other
single bands which is consistent with the previous work of
five emotions classification [4]. The total band achieves the
best performance compared with single bands except the KNN
and HCNN, which illustrates that there are complementary
components between different frequency bands.

2) Discrimination of Different Models: Deep methods are
significantly stronger than traditional machine learning meth-
ods such as SVM and KNN in discriminating three emotions.
Compared with HCNN, GCN reaches better classification
accuracy of 84.51% using total band, which demonstrates
that the graph topology can better represent the relationship
between the channels of EEG than simply modeling the EEG
signals like an image according to the spatial relations. This
also indicates that there are complex functional connections
between different brain regions. The highest recognition ac-
curacy is 86.47% acquired by the GCNCA model using total

(a) EEG (b) eye movements

Fig. 5. The confusion matrices of GCNCA using EEG and eye movements.
The horizontal axis is the predicted labels and the vertical axis is the true
labels.

band.
Figure 3 shows the connectivity learned from the GCNCA

model. Figure 3(a) shows the top 10 connections in the adja-
cency matrix using total band. For better visualizaion, those
connections are circled in the same colors in Figure 3(b) which
is the international 10/20 system depicting EEG electrode
layout of 62 channels. It’s clear that the main and strongest
connections are between local brain areas mainly in temporal,
occipital and parietal area, indicating that local inner-channel
connections are essential for discriminating three emotions.
Our GCNCA model achieves the best result in both single
band and total band due to the channel attention module that
takes the importance of different channels into consideration.
We visualize the W̃ in Equation 2 to identify the critical
channels in EEG as depicted in Figure 4. It can be induced
from the figure that there do exist differences in importance
between the channels. In total band, the lateral temporal areas
contribute the most to the emotion classification. Also, the
parietal area is slightly stronger than other regions and the
occipital area is an essential region as well. Note that the
attention weight of total band just looks like what all single
bands overlie with one another.

To further explore the discrimination ability of our model in
different emotions, Figure 5(a) depict the confusion matrices
of GCNCA. It can be seen that EEG can better distinguish
neutral emotion compared with anger and surprise.

B. Discrimination Ability of Eye Movements

For eye movements, we also model the features as a graph
using our GCNCA model since there might be potential
relationships between different eye movement features and the
channel attention mechanism can fully explore the significance
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Fig. 6. Topographic maps of the three emotions in the five bands, obtained
by averaging DE features over all subjects.

of different features to discriminate between surprise and
anger. We compare our GCNCA model with SVM, KNN and
GCN without attention. The results are shown in Table II. It
can be seen from the table that our GCNCA model achieves
the best accuracy of 83.74%, which is higher than GCN due
to the accuracy gain of the channel attention mechanism.
Compared with the same method using EEG, eye movement
signals perform lower accuracy. This demonstrates that EEG
has better discrimination ability for surprise and anger than
eye movements.

Figure 5(b) show the confusion matrices of GCNCA using
eye movements. The proposed GCNCA model achives good
accuracies among the three emotions. However, anger acquires
the lowest accuracy which indicates eye movements are not
good at distinguishing anger compared with EEG while the
discrimination ability for the other two emotions is similar
with EEG.

C. Neural Patterns and Statistics of Eye Movements

We investigate the neural topographic maps of EEG and
some statistics of eye movements in order to further understand
the characteristic of EEG and eye movements for surprise,
neutrality and anger.

Figure 6 presents the topographic maps of three emotions
in five bands, which is obtained by averaging the DE features
of all subjects in five bands. The figure demonstrates that the
energy is at a high level in the lateral temporal area, frontal
area and occipital area for anger while the parietal area is of a
low value on the whole. As for surprise, the lateral temporal
area and frontal area usually has a strong activation in beta and
gamma bands and the parietal area is at a high level relatively
in all bands. Additionally, the energy of the neutral emotion
is higher than surprise in delta, theta and alpha bands.

For eye movements, we study the data distribution of raw
pupil diameter and fixation duration as depicted in Figure
7. It’s obvious that the pupil diameter of neutrality is the
smallest one compared with that of other emotions. Moreover,
surprise emotion has the largest pupil diameter among the

(a) Pupil diameter (b) Fixation duration

Fig. 7. Box plots of two eye movement features. The red lines indicate the
median.

three emotions. For fixation duration, anger emotion has a low
value comparing with surprise and neutrality.

V. CONCLUSION

This paper has demonstrated that EEG and eye movements
have good discrimination ability for surprise and anger, and
EEG performs better than eye movements overall. Experi-
mental results have shown that the proposed GCNCA model
can reveal the relationships between channels and adaptively
learn significance of channels through the channel attention
mechanism. As for different bands, high frequency bands
outperform lower ones. The neural patterns clearly show that
parietal area is activated in surprise while the same region is
at a low level in anger. Moreover, the discrimination ability of
eye movements for anger is not as good as EEG. In conclusion,
the discrimination of surprise, anger and neutrality from EEG
and eye movements do exist.
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