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Abstract— In this paper, we investigate human decision
confidence during image interpretation in an object detection
task using electroencephalography (EEG) signals. We develop
an EEG dataset acquired from 14 subjects. Five popular
EEG features, differential entropy (DE), power spectral density
(PSD), differential asymmetry (DASM), rational asymmetry
(RASM) and asymmetry (ASM), and two classifiers, a sup-
port vector machine (SVM) and a deep neural network with
shortcut connections (DNNS), are adopted to measure decision
confidence in the object detection task. The classification results
indicate that the DE feature with the DNNS model achieves
the best accuracy of 47.36% and F1-score of 43.5% for five
decision confidence levels. For the extreme confidence levels,
the recognition accuracy reaches 83.98%, with an average F1-
score of 80.93%. We also found that the delta band performs
better than the other four bands and that the prefrontal area
and parietal area might be sensitive brain regions that represent
decision confidence in object detection tasks.

I. INTRODUCTION

With the rapid development of artificial intelligence, es-
pecially powerful deep learning techniques, many tasks can
be done automatically by computers without human partici-
pation. However, there are some critical and complex tasks
that still need to be performed by professionals, such as
detecting objects in remote sensing images (RSIs). Recently,
deep convolutional neural networks (CNNs) have made great
strides in detection tasks for specific objects [1]. However,
the objects in RSIs usually occupy a very small portion of
the overall image and are often ignored by deep CNN models
because of their large receptive field and deep structure.
Moreover, object detection in optical RSIs often suffers
from several increasingly difficult challenges, including, but
not restricted to, large variations in the visual appearance
of objects caused by differences in viewpoints, occlusion,
background clutter, illumination, and shadow. Usually, the
resolution of remote sensing images is very low. Therefore,
interpreters are still needed in this field to identify the objects
in remote sensing images.

Indeed, many researchers have employed electroen-
cephalography (EEG) signals to assist in classification and
object detection, obtaining good results [2]. The judgment

Rui Li, Le-Dian Liu and Bao-Liang Lu are with the Center for Brain-Like
Computing and Machine Intelligence, Department of Computer Science and
Engineering, the Key Laboratory of Shanghai Education Commission for
Intelligent Interaction and Cognitive Engineering, the Brain Science and
Technology Research Center, Qing Yuan Research Institute, Shanghai Jiao
Tong University, 800 Dong Chuan Rd., Shanghai 200240, China, and the
Center for Brain-Machine Interface and Neuromodulation, RuiJin Hospital,
Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd.,
Shanghai 200020, China.

∗ Corresponding author (bllu@sjtu.edu.cn)

made by the interpreter is very important, and any mis-
take may cause serious consequences. Unfortunately, full-
confidence, error-free decision-making is impossible for a
human being in a real-world environment. Moreover, peo-
ple may lie to themselves and pretend that they are very
confident in their decisions. Hence, the development of an
efficient approach to objectively measuring human decision
confidence during image interpretation in object detection
tasks would be very meaningful and of great importance to
tasks that require human participation.

The small number of existing studies on decision confi-
dence are mainly from the fields of cognitive science and
neuroscience. Studies based on functional magnetic reso-
nance imaging (fMRI) [3], [4], [5] show that some brain
regions may be sensitive to decision confidence, including
the anterior cingulate cortex, prefrontal cortex, superior pari-
etal lobule, posterior parietal cortex and ventral striatum. In
addition, there are several studies interpreting neural mech-
anisms of human decision confidence with EEG and event-
related potentials (ERPs) [6], [7]. These works demonstrate
that it is possible to use EEG signals to infer human decision
confidence.

In this paper, we investigate the capability of EEG signals
to measure decision confidence in tasks of object detection.
We design a decision confidence experimental paradigm
that closely simulates real-world situations, where subjects
can detect multiple targets in RSIs. We record 62-channel
EEG data of subjects during their decision-making process.
Moreover, two pattern classifiers, a support vector machine
(SVM) and a deep neural network with shortcut connec-
tions (DNNS), are applied to classify the level of decision
confidence using five popular features extracted from EEG
data. The experimental results indicate that our approach is
capable of measuring decision confidence in object detection
tasks.

II. EXPERIMENTAL DESIGN

To collect EEG data from subjects at different decision
confidence levels while performing an object detection task,
we designed a decision confidence experimental paradigm
for the object detection task. In the experiment, subjects first
completed an object detection task wherein they must find
specified target objects in optical remote sensing images.
Then, the subjects were asked to report their subjective
confidence levels in each decision. All of the subjects were
instructed to sit comfortably and refrain from body move-
ment to avoid muscle artifacts caused by overt movements.



A. Stimuli

The experimental materials were obtained from two
geospatial object detection datasets, NWPU VHR-10 [8] and
DOTA [9], which contain two categories of objects, i.e., air-
craft and ships. To obtain the EEG data at different decision
confidence levels, the images were downsampled to different
degrees. The two categories of objects are separately divided
into three difficulty grades: easy, medium and difficult. There
are 12 images in each grade; thus, the total number of images
is 72, and each image contains 1 to 15 targets.

B. Participants

Fourteen subjects (7 males and 7 females) aged between
18 and 24 years participated in the experiment. This re-
search was approved by the Scientific and Technical Ethics
Committee of the Bio-X Institute at Shanghai Jiao Tong
University, and subjects provided informed consent before
participation. All of the subjects were native Chinese students
and had normal or corrected-to-normal vision. Before the
formal experiment began, subjects were instructed to become
familiar with the experimental procedure and precautions.

C. Procedure

In our experiment, the subjects needed to identify all the
aircraft or ships they could see in the images with a mouse
click and score the confidence of their decisions across 72
trials. The images were presented randomly, one image per
trial.

Each trial in our proposed decision confidence experiment
consisted of the following three steps: 1) First, an image
containing one kind of target object is presented on the
screen, and then the subjects determine all the objects in
the images with a mouse click on the object. Each click on
a target causes a red circle to appear on the target and is
considered one decision, so each trial can contain several
decisions. As shown in Fig. 1, the red circles represent
the objects identified by the subject with a mouse click,
indicating that the subject made 4 decisions in this trial. 2)
After all of the objects in an image that the subjects can
see are selected according to their subjective judgments, the
subjects need to click the end button at the bottom of the
screen to move to the next stage. 3) All of the clicks made
by the subject were replayed, and a 5-point confidence scale
is displayed on the screen. The 5-point decision confidence
scale includes certainly wrong: 1; probably wrong: 2; not
sure: 3; probably correct: 4; and certainly correct: 5. All of
the subjects needed to recall the confidence they had when
they made their previous decisions and score their confidence
in each decision one by one.

The protocol of the decision confidence experiment pro-
posed in this paper is illustrated in Fig. 1. During the
experiment, participants were asked to wear a 62-channel
electrode cap. The EEG data were recorded using an ESI
NeuroScan system at a sampling rate of 1000 Hz according
to the international 10-20 system. The impedance of each
electrode was limited to less than 5 kΩ. All of the subjects
were asked to perform the experiment seriously.
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Fig. 1. The protocol of the object detection decision confidence experiment.

III. METHODOLOGY
A. Data Preprocessing

To explore the relationship between the subjects’ EEG
data and their confidence in the decision-making process in
the object detection task, only a portion of the EEG data,
the EEG segment acquired from the start to the end of a
decision-making process, namely, the decision segment, was
chosen for analysis in this study. As illustrated in Fig. 2, each
trial contains several decision segments for data analysis, and
each segment corresponds to one confidence level.
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the first object
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the (k-1)-th object

Identity 
the k-th object
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Fig. 2. The decision segment chosen for analysis in one trial. Each decision
segment corresponds to one mouse click and is considered one decision.

We applied a bandpass filter between 0.3 and 50 Hz to
each channel to filter the noise in the recording. After pre-
processing, we extracted the EEG segments in the decision-
making process, as shown in Fig. 2. We divided the EEG
data into equal-sized epochs measuring 1 second in length.
Then, the features were extracted from each epoch of EEG
data.

B. Feature Extraction

Five kinds of EEG features were adopted in this paper,
power spectral density (PSD), differential entropy (DE), dif-
ferential asymmetry (DASM), rational asymmetry (RASM)
and asymmetry (ASM), which have been shown to be highly
effective in the field of affective brain-computer interfaces
[10], [11]. Short-term Fourier transform (STFT) with a
Hanning window of 1 s was used to compute the EEG
features in five frequency bands: delta (1-4 Hz), theta (4-
8 Hz), alpha (8-14 Hz), beta (14-31 Hz) and gamma (31-50
Hz). Furthermore, to filter rapid fluctuations, we utilized the
linear dynamic system (LDS) method for feature smoothing
[12]. The total numbers of dimensions for the PSD, DE,
DASM, RASM, and ASM features are 310, 310, 135, 135,
and 270, respectively.

C. Classification

In this paper, we compared the performance of two pattern
classifiers: a support vector machine (SVM) and a deep



neural network with shortcut connections (DNNS) [13] for
measuring decision confidence levels based on EEG data.
The classifiers were trained for each subject with stratified
five-fold cross-validation, and the levels of confidence (1-5)
were used as classification labels, which means that for each
subject, four-fifths of the features of each class were used as
the training set and one-fifth as the test set.

For the SVM classifier, we employed the RBF kernel,
and the parameter C was searched within the range of
2[−5:10] to determine the optimal value. We also constructed
a deep neural network with shortcut connections. We utilized
the shortcut connections to retain the information from the
previous layers and avoid losing the information from the
original EEG features. The network consists of two residual
blocks and one output layer. Each residual block contains
two linear layers, two batch normalization layers, two ReLU
functions and one shortcut connection. The size of the layers
ranges from 50 to 700, and the learning rate is set to 0.0001.
Before inputting the EEG features into the classifiers, the
values of the features were normalized between 0 and 1.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the classi-

fiers in recognizing five levels of decision confidence in the
object detection task. We trained the classifiers using the five
features. The mean accuracies and F1-scores of the SVM and
DNNS with different features in the five frequency bands are
represented in Table I.

We can see that the DNNS performs better than the SVM
in most cases, and the model trained with the DE feature
performs best, as it achieves the best classification accuracy
of 47.36% and F1-score of 43.5% with DNNS for the total
frequency range. For different single frequency bands, the
results demonstrate that the performance of the delta band
is better than that of the other four bands. The accuracy of
the delta band with the DNNS is 42.77%, with an F1-score
of 38.09%. Fig. 3 shows the confusion matrices of the two
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Fig. 3. Confusion matrix of the two classifiers for the five decision
confidence levels with the DE feature. The rows represent the target class,
and the columns represent the predicted class.

classifiers. From the figure, we can see that DNNS performs
better than the SVM, and a moderate level of decision
confidence (2,3,4) can be measured with high recognition
accuracy, while the extreme levels of decision confidence (1
and 5) are easier to detect. The moderate decision confidence

levels 2, 3 and 4 are easily confused with both of these
classifiers. They are unable to classify moderate levels of
decision confidence very well in this object detection task.
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Fig. 4. The performance (%) of 14 subjects for the DE feature with the
DNNS model in recognizing extreme levels of confidence.

We further analyzed the differences between extreme
confidence levels 1 and 5. Fig. 4 illustrates the accuracies
and F1-scores of the DNNS for the two confidence levels
with the DE feature, which is a binary classification problem.
The performance of the DNNS in this binary classification
problem achieves an average accuracy/standard deviation
of 83.98%/4.97% with an F1-score/standard deviation of
80.93%/4.12%.
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Fig. 5. The average neural patterns of all subjects for different decision
confidence levels. The columns denote the five frequency bands, and the
rows denote the five decision confidence levels.

To investigate the neural patterns underlying decision con-
fidence in the object detection task, we depict the topographic
maps for the five levels of decision confidence across the five
frequency bands in Fig. 5, which is obtained by averaging the
DE features from all subjects in each channel. As shown in
Fig. 5, the energy in the prefrontal area in the delta and theta



TABLE I
THE MEAN ACCURACIES AND F1-SCORES (%) OF THE SVM AND DNNS CLASSIFIERS IN DIFFERENT FREQUENCY BANDS WITH FIVE FEATURES.

Feature Classifier
Delta Theta Alpha Beta Gamma Total

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1

PSD
SVM 30.82 26.73 30.31 25.71 30.78 25.37 31.82 26.49 32.01 25.19 34.75 29.75

DNNS 40.48 35.7 38.42 33.33 38.9 34.5 39.66 34.24 40.29 32.76 43.88 38.82

DE
SVM 36.18 30.87 32.73 27.99 32.25 27.42 36.45 31.71 34.87 29.35 40.86 35.64

DNNS 42.77 38.09 40.77 35.12 40.46 35.81 41.62 37.51 41.1 36.7 47.36 43.5

RASM
SVM 31.24 25.19 29.84 24.5 30.35 24.77 33.26 28.6 30.8 26.04 36.94 32.65

DNNS 38.84 32.63 36.91 30.71 38.51 32.79 40.82 35.45 40.44 35.95 45.16 41.02

DASM
SVM 29.83 24.39 29.62 24.27 30.13 25.17 32.68 28.18 31.68 27.61 37.76 33.85

DNNS 37.99 32.66 38.01 31.51 39.16 32.8 41.09 35.95 41.79 37.34 46.07 41.55

ASM
SVM 31.09 25.41 29.83 24.67 30.4 24.85 32.94 28.46 31.57 27.34 37.4 33.3

DNNS 39.3 33.55 37.01 31.65 38.78 33.31 41.96 36.8 40.88 36.49 46.14 41.27

bands increases as the decision confidence level decreases,
while in the delta band, we can also see that as the decision
confidence level increases, the energy in the parietal cortex
also increases. For the gamma band, the neural patterns show
more activation in the prefrontal and parietal areas at higher
levels of decision confidence.

V. CONCLUSIONS

We applied two classifiers, the DNNS and the SVM, to
evaluate the performance of different popular EEG features,
frequency bands and pattern classification methods in mea-
suring the levels of decision confidence in an object detection
task. From the experimental results, we found that the DNNS
with the DE feature outperformed all other approaches. For
the five different decision confidence levels, the best average
recognition accuracy reached 47.36%, and the F1-score was
43.5%. Furthermore, we investigated the distinctions between
the extreme decision confidence levels, and an average of
83.98% was achieved, with an average F1-score of 80.93%.
The delta band had the best performance among all five
frequency bands, and the topographic maps suggested that
the prefrontal area and parietal cortex may be the sensitive
brain areas of decision confidence in this object detection
task.
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