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Abstract— In electroencephalography (EEG)-based affective
brain–computer interfaces (aBCIs), there is a consensus that
EEG features extracted from different frequency bands and
channels have different abilities in emotion expression. Besides,
EEG is so weak and non-stationary that easily causes distribution
discrepancies for EEG data collected at different times; therefore,
it is necessary to explore the affective activation patterns in
cross-session emotion recognition. To address these two problems,
we propose a self-weighted semi-supervised classification (SWSC)
model in this article for joint EEG-based cross-session emotion
recognition and affective activation patterns mining, whose mer-
its include: 1) using both the labeled and unlabeled samples
from different sessions for better capturing data characteristics;
2) introducing a self-weighted variable to learn the importance
of EEG features adaptively and quantitatively; and 3) mining the
activation patterns including the critical EEG frequency bands
and channels automatically based on the learned self-weighted
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variable. Extensive experiments are conducted on the benchmark
SEED_IV emotional dataset and SWSC obtained excellent aver-
age accuracies of 77.40%, 79.55%, and 81.52% in three cross-
session emotion recognition tasks. Moreover, SWSC identifies that
the Gamma frequency band contributes the most and the EEG
channels in prefrontal, left/right temporal, and (central) parietal
lobes are more important for cross-session emotion recognition.

Index Terms— Affective patterns mining, electroencephalogra-
phy (EEG), emotion recognition, feature self-weighting, semi-
supervised classification.

I. INTRODUCTION

EMOTION recognition plays a central role in aBCIs,
which aims at assigning machines the ability of accu-

rately recognizing human emotions. In practical applications,
there are basically four different data modalities to perform
emotion recognition, that is, facial expression, text, speech,
and physiological signals [1]. Though emotion recognition is
easy to realize by the former three types of data sources,
they have two shortcomings. On the one hand, sometimes
it is difficult to recognize the true emotional state because
these data modalities are easy to disguise (e.g., detecting
a smile face does not always indicate happiness because
he/she can disguise an expression). On the other hand, auto-
matic emotion recognition is impractical for the disabled.
Therefore, it is necessary to develop more objective methods
for emotion recognition. Since emotion refers to a state of
mind that occurs spontaneously rather than consciously and
is usually accompanied by physiological changes in central
nervous and periphery, the physiological reactions and the
corresponding signals are difficult to control when emotions
are excited [2]. Therefore, physiological reactions have been
widely used to determine and classify different kinds of
emotions. However, peripheral physiological signals such as
electrocardiography, galvanic skin response, heart rate vari-
ability, and respiration rate usually have slow change rates
and therefore are not accurate enough to characterize the
essence of emotion. With the rapid progresses in weak signal
acquisition and analysis, electroencephalography (EEG) has
attracted increasing attention in diverse fields such as BCIs,
cerebral disorder, and disease diagnosis. It records the electri-
cal activities of neural cells across the human cerebral cortex
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and has been regarded as the most reliable clue for emotion
recognition.

However, two fundamental problems in EEG-based emo-
tion recognition are not sufficiently investigated by exist-
ing studies. First, EEG features are usually extracted from
multiple frequency bands and channels, whose abilities in
emotion expression should be differentiated. Second, due to
the weak and non-stationary properties, data discrepancies
are commonly found in EEG data collected from different
sessions; therefore, it is necessary to explore the stable affec-
tive activation patterns over time. To this end, we propose a
self-weighted semi-supervised classification (SWSC) model to
jointly achieve EEG-based emotion recognition and affective
activation patterns mining. SWSC adaptively measures the
contributions of different EEG features by a newly intro-
duced self-weighted variable. Moreover, based on the coupling
relationship between each feature dimension and each EEG
frequency band (channel), we can perform automatic activa-
tion patterns mining according to the learned self-weighted
variable. That is, more important features corresponding to
more important EEG frequency bands and channels contribute
more in cross-session emotion recognition, which are con-
sidered as the stable affective activation patterns. By con-
ducting extensive experiments on the emotional SEED_IV
dataset, these declared superiorities of SWSC are well
supported.

Compared with the existing studies, this article has the
following contributions.

1) An effective semi-supervised learning model SWSC is
proposed to achieve EEG-based cross-session emotion
recognition by considering one labeled session and the
other unlabeled session. In SWSC, the model variables
are jointly optimized with the emotional states to unla-
beled EEG samples.

2) SWSC obtains improved recognition performance by
employing a self-weighted variable to differentiate the
abilities of EEG features in cross-session emotion
expression. Then, useful features are encouraged by
being adaptively assigned large weights, while less use-
ful ones are suppressed by small weights, leading to
automatic EEG feature selection.

3) SWSC automatically identifies the more important EEG
frequency bands and channels which are considered
as stable affective patterns in cross-session emotion
recognition based on the learned self-weighted variable.
This is more elegant than the trial-and-error method
widely used by existing studies.

The remainder of this article is organized as follows.
Section II briefly reviews the background knowledge on
EEG-based emotion recognition and some related techniques.
In Section III, we provide the SWSC model formulation
and optimization. Experiments are conducted to evaluate the
effectiveness of SWSC in Section IV. Section V concludes the
whole article.

Notations: Throughout the whole article, Greek letters such
as λ, γ , and δ are used to denote the model variables and
parameters. Delta, Theta, Alpha, Beta, and Gamma represent
the five EEG frequency bands.

II. RELATED WORKS

A. EEG-Based Emotion Recognition

Generally, existing studies on EEG-based emotion recog-
nition can be roughly divided into three stages of data pre-
processing, feature extraction, and recognition.

EEG data preprocessing includes sampling, filtering, and
artifact removal, in order to provide high-quality data for sub-
sequent analysis [3]. Usually, EEG features can be extracted
from time, frequency, time-frequency, and spatial domains.
Time-domain features are the most intuitive and the typical
ones include the event-related potentials, statistics, energy,
power, high-order zero-crossing analysis, instability index, and
fractal dimension. Since they cannot reflect the frequency
information, we usually transform EEG data from time domain
to frequency domain and then decompose the multi-rhythm
EEG data into several frequency bands based on which the
features such as power spectral density, event-related synchro-
nization/desynchronization, high-order spectrum, and differen-
tial entropy (DE) [4] can be calculated. To further explore the
time-varying property of frequencies in EEG data, the short-
time Fourier transform, wavelet transform, and Hilbert–Huang
method are normally used for time–frequency transformation.
Due to the multi-channel property of EEG, taking its spatial
information into consideration is also beneficial. For exam-
ple, given frequency-domain features, the spatial-frequency
features can be calculated by a common spatial pattern.
Differential asymmetry and rational asymmetry, respectively,
refer to the difference and ratio of features on the left and
right symmetric electrodes. Brain functional connectivity aims
to build the connection among electrodes to explore the spatial
information [5]. Commonly used feature extraction methods in
EEG-based emotion recognition were reviewed in [6] and [7].

Recently, a lot of machine learning models were proposed
for EEG-based emotion recognition. Zheng [8] proposed a
group sparse canonical correlation analysis for simultaneous
EEG channel selection and emotion recognition. Inspired by
the joint optimization mode, a semi-supervised random vector
functional link network was proposed for emotion classifica-
tion from EEG signals [9]. In [10], a multiple feature fusion
approach was proposed to combine the activation features and
connectivity features for emotion recognition [11]. To model
the inherent dependencies among EEG and peripheral signals,
Restricted Boltzmann machine was employed for multimodal
emotion recognition [12]. In [13], the stacked autoencoder
was used to handle the linear EEG mixing and the Long
Short-Term Memory Recurrent Neural Network was employed
for emotion timing. A dynamical graph convolutional neural
network was proposed to learn the intrinsic relationship among
EEG channels, which facilitates the discriminative EEG fea-
ture extraction [14]. Considering that different brain regions
play different roles in emotion expression, discriminative
spatial–temporal EEG features were learned by deep learning
models with regional-to-global mechanism [15]. Sometimes,
deep neural networks can perform end-to-end emotion recog-
nition, which directly take raw EEG data as input and output
recognition results [16]. Some review studies summarized the
recent advances in EEG-based emotion recognition [7], [17].
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B. Related Techniques

EEG is typically multi-rhythm and multi-channel. There-
fore, features extracted from different frequency bands or
channels should correlate differently to the occurrence of
mental tasks, for example, emotion and fatigue states. In [18],
each EEG feature is weighted by the distance between it and
its cluster centroid, which is a rule-based feature weighting
technique designed for EEG-based sleep stage identification.
To simultaneously search for the optimal feature weights
and model parameters, a nature-inspired immune algorithm
coupled with SVM was proposed for mental tasks classifica-
tion [19]. Instead of discarding unreliable features, Mishuhina
and Jiang [20] and Gaur et al. [21] proposed to use a
short-tailed Gaussian function to weight the common spatial
pattern features for EEG-based motor imagery. Cui et al. [22]
proposed a feature weighted episodic training model to elim-
inate the calibration requirement in EEG-based drowsiness
estimation by assigning different weights to different EEG
channels.

Since feature discrepancies are commonly appeared in EEG
data collected from different sessions [23], [24], it is meaning-
ful to identify which frequency bands and channels the stable
features are mainly from, that is, stable affective activation
patterns. Zheng et al. [25] completed the identification of crit-
ical EEG frequency bands and channels in emotion expression
by a trial-and-error manner; that is, by inputting a learning
model with features extracted from different frequency bands
or channels, the critical ones can be identified based on their
recognition performance. In [26], the weight distribution of
features was obtained by deep belief networks; however, the
identification of critical frequency bands and channels was still
performed manually and the deep neural networks employed
a black-box training mode which has poor interpretation
of obtained results [16]. In [27], supervised learning was
employed to cross-session emotion recognition, which is less
appropriate than semi-supervised paradigm in capturing data
properties of both sessions [28].

Here, we specially set aside one paragraph to review the
rescaled least-square regression (RLSR) model [29], [30]
based on which we will make improvements and propose our
model in Section III. RLSR achieves semi-supervised feature
selection by quantitatively ranking the importance of features.
Mathematically, RLSR introduces a scale factor vector θ

whose j th element ε j measures the importance of the j th fea-
ture and can be adaptively learned from data. By incorporating
such scale factor into the least-square regression, RLSR has
the following objective function:

min
��XT �W + 1bT − Y

��2

2 + γ �W�2
2

s.t. W,b, θ ≥ 0, θT 1 = 1, Yu ≥ 0, Yu1 = 1. (1)

In (1), X = [Xl,Xu] is the combination of both labeled
and unlabeled samples, and � is a diagonal matrix with
its i th diagonal element �ii = (εi)

1/2. Y = [Yl; Yu]
contains labels, respectively, corresponding to labeled and
unlabeled samples, in which Yu are relaxed from binary to
real values in [0, 1]. After describing the model formulation
and optimization of our proposed SWSC model, we will

Fig. 1. Feature self-weighting scheme.

provide detailed comparisons between SWSC and RLSR in
Section III-D.

III. METHODS

A. Problem Definition

Below we define related terminologies in semi-supervised
cross-session emotion recognition from EEG signals. EEG
samples from source session are fully labeled, while the
ones from the target session are unlabeled. We use Xl =
[x1, x2, . . . , xl] ∈ R

d×l to denote the l labeled EEG sam-
ples which are associated with emotional labels Yl =
[y1, y2, . . . , yl]T ∈ R

l×c in one-hot encoding. d is the dimen-
sionality of the EEG sample vector and c is the number of
emotional states. If xi |li=1 is from the j th (1 ≤ j ≤ c) class,
then only the j th element in yi is 1 and all the others are 0 s.
Similarly, we use Xu = [x1, x2, . . . , xu] ∈ R

d×u to represent
the u unlabeled EEG samples, whose labels are defined in
Yu ∈ R

u×c. However, Yu is unknown and to be estimated.
Our task is twofold. One is to estimate the emotional

states of target session EEG samples as accurate as pos-
sible; the other is to learn the importance of EEG fea-
tures, based on which we expect to quantitatively figure
out which EEG frequency bands and channels these more
important features are from. Similar to [25], we informally
name these critical EEG frequency bands (channels) as
stable affective activation patterns in cross-session emotion
recognition.

B. SWSC Model Formulation

Define X = [Xl,Xu] ∈ R
d×n and Y = [Yl; Yu] ∈ R

n×c,
where n = l + u. In pattern recognition, there is a consensus
that different features should have different discriminative
capabilities in expressing the semantic information of samples
(i.e., emotional states). Roughly, roles of different features can
be divided into three groups: discriminative features, redundant
features, and noisy features. Inspired by this common view,
we mathematically introduce a self-weighted variable θ ∈ R

d

such that θ ≥ 0 and θT 1 = 1, to quantitatively measure the
importance of EEG features, as shown in Fig. 1. Therefore,
variable θ is expected to adaptively assign larger weights to
discriminative features but smaller weights to noisy features.
Then, the discriminative capacity of features can be encour-
aged, while the negative influence of noisy features can be
suppressed.
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But how to incorporate θ into an appropriate model and
finish the learning? In this article, the least-square regression-
based semi-supervised classification model is used due to its
simplicity and effectiveness. Then, the objective function of
the proposed SWSC model is formulated as

min
�,V,b,Yu

��XT �V + 1bT − Y
��2

2 + λ�V�2
2 + γR(Y)

s.t. C(Yu), � = diag
�√

θ
�
, θ ≥ 0, θT 1 = 1 (2)

where diag(θ) means reshaping vector (θ)1/2 =
[(ε1)

1/2, (ε2)
1/2, . . . , (εd)

1/2] as a diagonal matrix, λ and
γ are two regularization parameters. Below we discuss the
concrete forms to the regularizer R(Y) and the constraint
C(Yu).

The local invariance idea said that if two EEG samples are
more similar, they should belong to same emotional state with
greater probability. If S = [si j ] ∈ R

n×n is a graph adjacency
matrix to depict the connection between samples, we define
the regularizer R(Y) as

n�
i=1

n�
j=1

�yi − y j�2
2si j = Tr

�
YT LY

�
(3)

where L is the Laplacian matrix corresponding to S. L can
be calculated by D − S, and D is a diagonal matrix whose
i th diagonal element dii is defined by

�n
j=1 si j . For simplicity,

we employ the ‘0-1’ weighting scheme to construct the graph;
specifically, we define

si j =
	

1, if xi ∈ Nk1(x j) or x j ∈ Nk1(xi)

0, otherwise
(4)

where Nk1(xi) denotes the k1 nearest neighbors of xi . In exper-
iments, we set k1 as 10.

On the constraint C(Yu), by investigating the ground-truth
label matrix Yl whose each row has only one non-zero
element to indicate the class assignment, we constrain Yu to
be orthogonal, that is, YT

u Yu = Iu . Moreover, it is better to
enforce the elements in Yu to be non-negative rather than mix-
signed [31]. Under both constraints, it is expected that only
one non-zero element in each row of Yu whose desirable value
is 1, depicting the emotional state of a certain EEG sample.

Based on the above analysis, by denoting W = �V,
we have V = �−1W and then the objective function of SWSC
can be rewritten as

min
��XT W + 1bT − Y

��2

2 + λ��−1W�2
2 + γ tr

�
YT LY

�
s.t. Yu ≥0, YT

u Yu =I, �=diag
�√

θ
�
, θ ≥ 0, θT 1 = 1.

(5)

C. SWSC Model Optimization

There are four variables, �, W, b, and Yu , in the SWSC
objective function (5). Accordingly, we propose to solve it by
the coordinate blocking method, that is, the alternative method.
The detailed updating rule to each variable is derived below.

1) Update b: By setting the derivative of (5) w.r.t. b as zero,
we get the optimal solution to b as

b = 1

n

�
YT 1 − WT X1

�
. (6)

2) Update W: By taking its derivative of (5) with respect
to W and setting it to zero, we have

W = �
XXT + λ�−2�−1

X
�
Y − 1bT

�
. (7)

By substituting b in (7) with (6), we can get the simplified
updating rule to W as

W = �
XHXT + λ�−2�−1

XHY (8)

where H = I − (1/n)11T is the centering matrix.
3) Update �: We find that � is only involved in the second

term of objective (5). The corresponding objective O(�) is
equivalent to

min
θ≥0,θ T 1=1

�
ε−1

1 , ε−1
2 , . . . , ε−1

d

�
⎛
⎜⎜⎜⎝

�w1�2
2

�w2�2
2

· · ·
�wd�2

2

⎞
⎟⎟⎟⎠= min

θ≥0,θ T 1=1

d�
j=1

�w j�2
2

ε j

(9)

where w j is the j th row of W. Its Lagrangian function is

L(θ , α,β) =
d�

j=1

�w j�2
2

ε j
+ α

⎛
⎝ d�

j=1

ε j − 1

⎞
⎠ + βT θ (10)

where α and β are Lagrangian multipliers in scalar and vector
forms, respectively. By taking the derivative of L(θ , α,β) w.r.t.
ε j and setting it to zero, we have

∂L(θ , α,β)
∂ε j

= −�w j�2
2

ε2
j

+ α = 0 (11)

which leads to

ε j =
�

1

α
�w j�2

2

�1
2

. (12)

We can substitute (12) into the normalization constraint
θT 1 = 1 to remove the Lagrangian multiplier α. Then, we get
the updating rule to θ as

ε j = �w j�2�d
v=1 �wv�2

. (13)

4) Update Yu: We first split the Laplacian matrix L into

four blocks after the lth row and column as L =
�

Lll Llu

Lul Luu

�
.

The objective in terms of variable Yu is

min
Yu≥0,YT

u Yu=I

��XT
u W + 1bT − Yu

��2

2

+ γ tr
�
2YT

l Llu Yu + YT
u LuuYu

�
. (14)
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By substituting b in objective (14) with (6) and considering
that Hu = (1/u)(Iu − 11T ) is an idempotent matrix, we have

min
Yu≥0,YT

u Yu=I

��Hu
�
XT

u W − Yu
���2

2

+ γ tr
�
2YT

l Llu Yu + YT
u LuuYu

�
⇔ min

Yu≥0,YT
u Yu=I

tr
�
YT

u (Hu + γLuu)Yu
�

− 2tr
��

WT XuHu − γYT
l Llu

�
Yu

�
� min

Yu≥0,YT
u Yu=I

tr
�
YT

u AYu
� − 2tr(BYu) (15)

where A = Hu + γLuu and B = WT XuHu − γYT
l Llu .

By relaxing the nonnegative orthogonal constraint, we can
rewrite objective (15) as

min
Yu≥0

tr
�
YT

u AYu
� − 2tr(BYu)+ δ

2

��YT
u Yu − I

��2

2 (16)

where δ is a parameter to control the orthogonality. When
δ → ∞, the orthogonality is satisfied. Therefore, in the
following experiments, we set it as a large enough value
(i.e., 106). The Lagrangian function of objective (16) is

min
Yu

tr
�
YT

u AYu
� − 2tr(BYu)+ δ

2

��YT
u Yu − I

��2

2 + tr
�
�YT

u

�
where � ≥ 0 is an Lagrangian multiplier. By taking its
derivative with respect to Yu and setting it to zero, we have

2AYu − 2B + 2δYuYT
u Yu + � = 2δYu . (17)

Based on the Karush–Kuhn–Tucker (KKT) condition � ◦
Yu = 0 (where ◦ is the Hadamard product), we could operate
the variable Yu on both sides of the above equation via
Hadamard product and obtain

(Yu)i j = (Yu)i j
(2δYu + 2B)i j�

2AYu + 2δYuYT
u Yu

�
i j

. (18)

According to the constraint in objective (5), the matrix Y
needs to be normalized, such that (YT

u Yu)ii = 1, i =
1, 2, . . . , c is satisfied.

Based on the above analysis, we summarize the whole
procedure of optimizing the objective function of SWSC
model in Algorithm 1.

Algorithm 1 The Optimization to SWSC Objective (5)
Input: Labeled EEG samples from source session (Xl,Yl) =

{xi , yi}|li=1, unlabeled EEG samples from target session
(subject) Xu = {xi}|ni=l+1, parameters λ and γ ;

Output: The projection matrix W and the estimated emotional
states Yu .

1: Initialize Yu = 1
c 11T ∈ R

u×c and θ = [ 1
d ,

1
d , . . . ,

1
d ] ∈ R

d ;
2: while not converged do
3: Update variable W via rule (8);
4: Update variable θ via rule (13);
5: Update variable Yu via rule (18);
6: end while
7: Calculate θ ∈ R

d where ε j = �w j �2�d
v=1 �wv�2

;
8: Perform the affective activation patterns mining by the

learned self-weighted variable θ .

D. Discussion

Having elaborated the model formulation and optimiza-
tion of our proposed SWSC model, below we discuss the
connections as well as differences between SWSC and
RLSR [29], [30].

1) Connections: Different feature dimensions in a sample
vector have different contributions in characterizing the sample
semantic meaning (i.e., label information). Therefore, different
features should have different abilities in recognition tasks.
Both SWSC and RLSR aim to adaptively learn feature weights
from data within the semi-supervised framework. Technically,
our SWSC model is inspired by RLSR and follows the
strategy of introducing a scale factor vector to measure the
importance of different feature dimensions. After obtaining
the importance values, all features can naturally be ranked
and feature selection is completed.

2) Differences: There are multiple differences between
these two models.

1) The most significant difference is that RLSR is a general
machine learning model for semi-supervised feature
selection, while our SWSC model is specially designed
for cross-session EEG-based emotion recognition and
affective activation patterns mining. Chen et al. [29]
and [30] cared only about the recognition performance
based on the selected features. They did not (and essen-
tially had no way to) analyze the underlying meaning
of the top ranked features from their used datasets.
In this work, we not only expect to improve the emotion
recognition performance by adaptively weighting EEG
features, but also want to explore the critical EEG
frequency bands and channels which generate more
powerful features in cross-session emotion expression.
This is because each EEG feature can be back traced
to a specific frequency band and channel. Therefore,
SWSC additionally provides cognitive significance in
EEG-based emotion recognition.

2) The objective functions of RLSR and SWSC are dif-
ferent. In SWSC, we introduce a graph regularizer on
variable Yu to let it conform to the local invariance
property, which leads to a new optimization procedure to
variable Yu . In RLSR, Yu can be obtained by calculating
the Euclidean distance defined on a simplex constraint.
In SWSC, it is solved by using the Lagrangian multiplier
method together with KKT condition.

3) The constraints defined on Yu are different. In RLSR,
the combined constraint Yu ≥ 0, Yu1 = 1 tries to
learn a fuzzy indicator matrix [32]. That is, the non-zero
elements in each row of Yu act as the memberships of a
certain sample to different classes. Differently, in current
work, we want to uniquely determine the emotional state
of each EEG sample by the non-negative and orthogonal
constraints.

IV. EXPERIMENTAL STUDIES

A. Dataset and Experimental Setup

The benchmark SEED_IV emotional dataset http://bcmi.
sjtu.edu.cn/~seed/seed-iv.html [33] was used in this article
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TABLE I

CROSS-SESSION EMOTION RECOGNITION ACCURACIES (%) OF DIFFERENT MODELS

since it is suitable for cross-session emotion recognition
research. It is a video-evoked dataset. Seventy-two video clips
were carefully chosen to elicit four different types of emotional
states, that is, sad, fear, happy, and neutral. Each video clip
lasts about 2 min. Fifteen subjects were recruited for EEG
data collection and for each subject, the EEG data collection
experiment was conducted at three different times, correspond-
ing to three sessions. Therefore, there are totally 45 sessions
corresponding to the 15 subjects, that is, each subject has three
sessions. In each session, there are 24 trials corresponding to
the 24 video clips. In each trial, there are three stages, that
is, hint of start, video playing, and self-assessment. EEG data
was recorded by the ESI NeuroScan system with a 62-channel
electrode cap according to the international 10–20 system
placement. The sampling rate is 1000 Hz.

After artifact removal and down-sampling, features were
extracted from five frequency bands, Delta (1–4 Hz), Theta
(4–8 Hz), Alpha (8–14 Hz), Beta (14–31 Hz), and Gamma
(32–50 Hz). SEED_IV provides us with multiple features
such as the power spectra density (PSD) and DE. In the
following experiments, we use the DE feature smoothed by
the linear dynamic systems because it has shown excellent
performance in many existing studies. By concatenating
the 62 points of each of the five frequency bands, the final
dimensionality of EEG samples is 310. Each session has
approximately 830 samples since the time durations of video
clips are slightly different.

To evaluate the effectiveness of SWSC, we compare it with
several state-of-the-art semi-supervised classification models
including the semi-supervised support vector machine (semi-
SVM), Gaussian Field and Harmonic Functions (GFHF) [34],
RLSR [29], [30], and semi-supervised Linear Square Regres-
sion (semiLSR) which is a degenerated version of RLSR by

discarding the self-weighted variable. As a baseline method,
we also included the supervised SVM in comparison by using
the labeled samples from the source session as training and
the unlabeled samples from the target session as test. In both
SVMs, linear kernel was used. The related parameters (C in
SVMs, λ in LSRs, and λ and γ in SWSC) were searched from
{2−10, 2−9, . . . , 210}. The graph adjacency matrix in SWSC
was built by using the “0–1” weighting scheme and the
neighborhood size was set as 10.

B. Emotion Recognition Results and Analysis

In this article, we only consider the following three cross-
session tasks in chronological order, “session 1 → session 2”
(i.e., samples from session 1 are labeled and samples from
session 2 are unlabeled), “session 1 → session 3” and “ses-
sion 2 → session 3.” Table I presents the recognition results
of these six algorithms where the best value in each case
is highlighted in boldface. From these results, we have the
following findings.

1) Obviously, the performance of semi-supervised mod-
els is better than that of the supervised model. Con-
cretely, SVM obtained the average accuracies of 59.81%,
59.50%, and 67.77% in the three cross-session recog-
nition tasks. Even the worst semi-supervised model,
GFHF, in our experiments, it achieved the average
accuracies of 63.21%, 63.27%, and 70.05% in the three
tasks which, respectively, made 3.40%, 3.77%, and
2.28% improvements in comparison with SVM. This
benefits from involving the unlabeled EEG samples in
learning process and then semi-supervised models can
better characterize the underlying data properties.

2) By comparing the results of semiLSR and RLSR,
the efficacy of feature self-weighting has been fully
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Fig. 2. Recognition accuracy (%) of SWSC in terms of parameters (λ, γ )
on subject 1. (a) s1: session 1 → session 2. (b) s1: session 1 → session 3.

depicted. To be specific, RLSR obtained the average
accuracies of 69.76%, 72.73%, and 75.13% in the three
tasks, which improves the performance of semiLSR
by 1.94%, 1.68%, and 0.35%, respectively. Based on
these obtained results, we can conclude that efficiently
exploring the different contributions of EEG features
in cross-session emotion expression is beneficial for
improving the recognition performance.

3) By comparing the results of RLSR and SWSC, it is
obvious that SWSC achieved better performance than
RLSR in 44 out of the whole 45 cases. Besides, the
results generally show the effectiveness of the graph reg-
ularizer in preserving the data local invariance. In Fig. 2,
it shows the recognition performance of SWSC in terms
of different combinations of parameters λ and γ on
subject 1, which, respectively, control the row sparsity
of the scaled projection matrix and the importance of
graph regularizer. We observe that SWSC prefers a
moderate value λ and a relatively large value γ ; specif-
ically, the best recognition accuracies corresponding to
the two cross-session tasks, 79.21% and 87.35%, are,
respectively, obtained when (λ, γ )s are at (2−3, 26) and
(25, 27). Similar trends can be found on the remaining
subjects.

Confusion matrices shown in Fig. 3 provide us with new
insights into the recognition results. That is, we can know:
1) what is the average recognition rate of each emotional
state; 2) how many EEG samples from one emotional state are
misclassified as the other states; and 3) how much performance
improvement SWSC obtained on each of the four emotional
states in comparison with the other models. For example, the
average recognition rate of RLSR to sad is 73.07%, while it
is 79.01% by SWSC. By checking the confusion matrix of
SWSC, it is observed that 80.58% of the happy samples were
correctly recognized, while 6.75%, 3.31%, and 9.36% of them
were, respectively, misclassified as sad, fear, and neutral. From
our results, we find that SWSC obtained the best recognition
rate to the neutral state but the worst rate to the fear state.

To investigate the statistical difference between SWSC and
the other models, we conducted the paired Students’ t-test
on their recognition results. Here, the hypothesis is “the
emotion recognition accuracies obtained by SWSC is better
than those obtained by the other model.” Each test was run
on two accuracy sequences corresponding to the 15 emotion
recognition cases in each of the three cross-session settings

Fig. 3. Recognition results (%) represented by confusion matrices. (a) SVM.
(b) GFHF. (c) semiSVM. (d) semiLSR. (e) RLSR. (f) SWSC.

TABLE II

STATISTICAL TEST BETWEEN SWSC AND EACH OF THE OTHER MODELS

by our SWSC model and the given model. The results of the
statistical tests are reported in Table II. We find that all the
elements in this table are �s, meaning that the hypothesis
is correct (true) with probability 0.95. For example, in the
“session 1 → session 2” task, the decision “77.40 (SWSC) >
69.76 (RLSR)” (see Table I) is correct with probability 0.95.
In summary, the conclusion that “SWSC achieves higher
recognition accuracy than the other compared models” is well
supported by the results in Table II.

Besides the t-test, the Nemenyi test is employed to further
rank the performance of these six models in all these 45 cross-
session emotion recognition cases [35]. Based on the results
in Table I, we calculated the average ranks of these six models
[rSVM, rGFHF, rsemiSVM, rsemiLSR, rRLSR, rSWSC] as [4.98, 4.09,
4.18, 3.33, 3.06, 1.32]. In the case of tied ranks, the involved
models are enforced to share the average rank. For example,
in the “session 1 → session 2” task on subject 15, the six
models, respectively, obtained accuracies of [88.82%, 91.35%,
88.94%, 98.56%, 98.56%, 98.56%] and accordingly their ranks
are [6, 4, 5, 2, 2, 2]. The critical distance (CD) value in
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Fig. 4. Nemenyi test for all the used models on EEG-based emotion
recognition. The CD is 1.124.

Nemenyi test can be calculated by

CD = qα

�
k(k + 1)

6N
(19)

where k = 6 is the number of models in comparison, and
N = 45 is the number of all recognition cases. If the signifi-
cance level α is set as 0.05 by default, we have qα = 2.850 and
then CD = 1.124 [35]. Based on the obtained ranks of all
the compared models and the CD value, we draw the test
results in Fig. 4. If there exist overlaps between two vertical
lines, we declare that the corresponding two models have no
significant difference in performance. Otherwise, there exists
significant difference. For example, since rSWSC = 1.32 and
rRLSR = 3.06, the distance between them is 1.74 which is
greater than the CD value 1.124. Therefore, we say that SWSC
is significantly better than RLSR based on our obtained results.
Similar conclusions can be obtained between SWSC and the
remaining other models.

C. Feature Selection

Since the self-weighted variable θ ranks the importance
of different EEG features, it is undoubtedly competent for
feature selection. Therefore, we evaluated its feature selection
capability by comparing it with two supervised (mRMR [36]
and �2,1-norms [37]) and two semi-supervised (RLSR [29]
and PRPC [38]) feature selection models. Linear SVM (with
regularization parameter C = 1) was used as classifier on the
newly formed dataset by selected EEG features. The related
parameters in respective models were set as suggested by the
original articles. We, respectively, selected 10, 20, 50, 100,
and 200 features by different models and the best results
in terms of these numbers of selected features are reported
in Tables III–V, where the best results are highlighted in
bold face. Each number in the brackets corresponds to the
dimensionality when the respective model achieved the best
performance.

These results reveal some interesting points.
1) SWSC generally achieved the best accuracies in most

cases (i.e., 32 out of the total 45 cases), indicating the
superiority of the self-weighted variable θ in feature
selection.

TABLE III

FEATURE SELECTION RESULTS OF THE SESSION1->SESSION2 TASK

TABLE IV

FEATURE SELECTION RESULTS OF THE SESSION1->SESSION3 TASK

TABLE V

FEATURE SELECTION RESULTS OF THE SESSION2->SESSION3 TASK

2) The best results are not always achieved when
the number of selected features is 200, which
explicitly demonstrates the necessity of exploring the
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Fig. 5. Correspondence between θ and the EEG frequency bands and
channels in SEED_IV.

discriminative abilities of different EEG features in
emotion recognition.

For example, the best accuracy of SWSC in the “session 1 →
session 2” task on subject 1, 97.36%, is obtained when the
number of selected features is 100. From our point of view,
the superiority of SWSC is originated from three aspects
which include involving unlabeled samples into the learning
process for better modeling data properties, jointly estimating
the emotional states of unlabeled EEG samples with the other
model variables and incorporating the graph regularizer to
constrain the regularity of model variables.

D. Affective Activation Patterns Mining

After SWSC was fit by EEG data, we obtain the learned
self-weighted variable θ . Before performing the affective
activation patterns mining, we establish the correspondence
between θ and the EEG frequency bands (channels). In Fig. 5,
we show the correspondence of SEED_IV which has five
frequency bands and 62 channels. It is important to point out
that such correspondence can be generalized to any number of
EEG frequency bands and channels on condition that spectra
features are used. Supposing that we have p frequency bands
and q channels, the importance of the i th (1 ≤ i ≤ p)
frequency band can be calculated as

ω(i) = ε(i−1)∗q+1 + ε(i−1)∗q+2 + · · · + εi∗q . (20)

Similarly, the importance of the j th (1 ≤ j ≤ q) channel
can be measured by

ψ( j) = ε j + ε j+q + · · · + ε j+(p−1)∗q . (21)

From the data-driven perspective, if a certain EEG feature
has a greater discriminative ability in cross-session emotion
recognition, it should be assigned a larger weight by SWSC.
In Fig. 6(a), we show the learned self-weighted variable θ

on subject 1, which is the average of the three cross-session
tasks. It is the gamma frequency band which contributes the

Fig. 6. Importance of different EEG frequency bands by SWSC. (a) Subject 1.
(b) Average result.

most in recognizing the emotional states of subject 1. The
importance of different frequency bands can be calculated
according to rule (20) by setting p = 5 and q = 62. To remove
the individual differences, we provide the average importance
measure of each frequency band over all the 15 subjects in
Fig. 6(b), which also indicates that the gamma frequency band
is the most important one in EEG-based cross-session emotion
recognition. This finding coincides with some existing stud-
ies [25], [26], [39]. However, in these studies, the conclusion
was achieved by a trial-and-error manner, which basically
tested each of all the frequency bands and then considered
the one as the most important frequency band if it achieved
the best recognition accuracy. By comparison, SWSC is more
flexible and adaptive, which completely learned the feature
importance from data.

Besides the frequency bands, important EEG channels cor-
responding to critical brain regions can also be identified
by rule (21). In Fig. 7(a), we provide the topographical
show of the average importance of all the 62 channels over
these 45 cases obtained by SWSC. Generally, we conclude that
there are four different brain regions, the prefrontal, left/right
temporal and (central) parietal lobes, which might be more
closely correlated with the video-evoked emotion expression.
This finding is also consistent with some existing studies [25],
[26], [33], [40]. However, they empirically selected a few EEG
channels (e.g., FT7, T7, TP7, FT8, T8, and TP8 were selected
in [33]). Though these selected EEG channels achieved com-
parable performance as with all channels, there is no strong
reason to explain its rationality. In Fig. 7(b), we show the
top 10 channels selected by SWSC, most of which are located
in the prefrontal and left/right temporal lobes. Therefore,
we declare that SWSC offers an underlying explanation of
the aforementioned studies in channel selection from the data-
driven perspective.

Having described both model formulations and experiments
of SWSC, now we discuss on the connections as well as
differences between the current work and the GFIL [27].
The main connection between them is the utilization of
self-weighted variable in measuring feature importance and
frequency band (channel) analysis. There are at least three
differences between them. First, the learning paradigms are
different. GFIL is a supervised model, while SWSC is a semi-
supervised one which is more appropriate for cross-session
emotion recognition from EEG. Second, the detailed model
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Fig. 7. Importance of different EEG channels based on SWSC. (a) Average
result. (b) Top ten channels.

objectives as well as optimization methods are different. Third,
SWSC is superior to GFIL in recognition performance. Specif-
ically, SWSC improves the accuracies by 2.07%, 4.53%, and
2.35% in the three cross-session recognition tasks. Besides,
the channels in (central) parietal lobes are considered to be
more important by the SWSC results.

V. CONCLUSION

In this article, we proposed an SWSC model to jointly
complete EEG-based cross-session emotion recognition and
affective activation patterns mining. SWSC was formulated by
incorporating a self-weighted variable into a semi-supervised
classification model in order to quantitatively and adaptively
measure the abilities of different EEG features in cross-session
emotion expression. Experimental results demonstrated that
this auto-weighting scheme can effectively enhance the emo-
tion recognition performance. Besides, based on the correspon-
dence between EEG features and frequency bands (channels),
the affective activation patterns were automatically exploited
by the learned self-weighted variable. Based on our results,
the gamma band is the most important frequency band; the
prefrontal, left/right temporal, and (central) parietal lobes are
correlated more to emotion expression.
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