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ABSTRACT
Multimodal emotion recognition has long been a popular topic in
affective computing since it significantly enhances the performance
compared with that of a single modality. Among all, the combina-
tion of electroencephalography (EEG) and eye movement signals
is one of the most attractive practices due to their complemen-
tarity and objectivity. However, the high cost and inconvenience
of EEG signal acquisition severely hamper the popularization of
multimodal emotion recognition in practical scenarios, while eye
movement signals are much easier to acquire. To increase the feasi-
bility and the generalization ability of emotion decoding without
compromising the performance, we propose a generative adversar-
ial network-based framework. In our model, a single modality of
eye movements is used as input and it is capable of mapping the in-
formation onto multimodal features. Experimental results on SEED
series datasets with different emotion categories demonstrate that
our model with multimodal features generated by the single eye
movement modality maintains competitive accuracies compared to
those with multimodality input and drastically outperforms those
single-modal emotion classifiers. This illustrates that the model has
the potential to reduce the dependence on multimodalities without
sacrificing performance which makes emotion recognition more
applicable and practicable.
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1 INTRODUCTION
Emotions penetrate our life everywhere and every day and play
an important role in the way we think and behave. Accordingly,
the emotion intelligence is gradually attracting more attention,
especially with the prospects of deep learning. It can be divided
into three stages: emotion recognition, emotion understanding, and
emotion regulation, offering enormous potential to be used in broad
scenarios such as medical diagnosis and treatment, interpersonal
relationship improvement, and user experience optimization of
general artificial intelligence applications. As the primary step and
a salient milestone [4], emotion recognition maintains wide pop-
ularity among researchers. Many studies have attempted to find
effective modalities to measure emotions, taking facial expression
[5, 12, 29], eye movements [22], EEG signals [2, 28], and speech
[7, 10] as examples. However, the performances of those individual
modalities remain at inadequate levels that cannot be generalized
because emotions are complex psychophysiological processes asso-
ciated with both internal and external activities.

These unsatisfactory findings urge scholars to explore new ways
to model the characteristics of emotions. Inspired by the different
aspects of information provided by different modalities, some pio-
neers started to integrate multiple modalities to determine whether
the complementary information can help recognize emotions better,
and many works indeed have shown that multimodal fusion emo-
tion recognition methods would achieve better performances than
those based on a single modality. Among all groups, the combina-
tion of EEG signals, reflecting internal physiological responses, and
eye movements, representing external subconscious behaviors, has
been proven to be a promising approach with high interpretability
[22]. Zheng et al. first adopted a multimodal emotion recognition
framework by combining these two modalities in three-class emo-
tion recognition (happy, sad and neutral). The impressive experi-
mental results show that the feature-level fusion strategy works
well [26]. Liu et al. dramatically advanced the state-of-the-art per-
formance of this task by extracting high-level fusion features with a
deep neural network model called bimodal deep autoencoder [15].

Although multimodal fusion can achieve better results in emo-
tion recognition, involving more modalities means that there are
more possible restrictions in real applications. For example, the
process of collecting EEG signals is very complicated. In addition to
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several inevitable preparations, such as wearing electrode caps and
injecting conductive gel, we have to guarantee that the acquisition
environment is quiet and without disturbance, since the signals are
very subtle and sensitive to interference, thus impeding their use
in practical scenarios. Comparatively, other physiological signals
are much easier to collect. For instance, eye movement signals can
be gathered with small pieces of glasses [16]. Nevertheless, consid-
ering the irreplaceability of EEG among all modalities, it is urgent
to figure out how to make use of the EEG modality without being
constrained by its limitations.

Two solutions stand out from other methods. One is cross-modal
transfer using signals from one modality as an input and predicting
when being given the other modality [20], and the other is multi-
modal feature generation based on a single modality. Researchers in
the computer vision field innovatively proposed the idea of match-
ing the image features with trained EEG features and therefore use
the EEG-based classifier to automatically categorize objects [24].
Jiang et al. [11] was the first to apply their ideas in the emotion
recognition task. Deep regression neural networks are used to find
the regressive connection between the bimodal high-level repre-
sentations and eye movement features. However, the relationship
might not be linear, and this model does not fit the characteristics
of the modalities used. Besides, they only examined on one dataset,
which is insufficient to judge the performance.

Based on these previous attempts, we decide to map the fea-
tures from a single modality into high-dimensional multimodal
features. In this way, signals from multimodalities are not required
as input, while the multimodal knowledge has been encoded into
the model in the training stage and assists in emotion recognition.
To extract the relationship between eye movement features and
multimodal features, we adopt the bimodal deep autoencoder [18]
to get this information. Distinguished from Jiang et al. [11], using
eye movement features as control conditions, a compact yet effec-
tive model originating from the conditional generative adversarial
networks (CGANs) can generate the corresponding multimodal
features by adversarial learning for each emotion class. We conduct
experiments on three SEED series datasets with different numbers
of emotion classes (3, 4, and 5) to examine the generalization abil-
ity of our model. Extensive experimental results demonstrate that
the generative representations achieve competitive performance
compared with those using multimodal input, leaving room for
reducing modality dependence which makes the technique more
practicable.

2 RELATEDWORK
Multiple physiological modalities have been utilized by researchers
to classify emotions. In the literature, there are a surprising number
of studies using eye movement signals to perform this task because
it not only can observe the users’ states naturally and efficiently
[3, 22] but also is easy to wear. Lu’s comprehensive experimen-
tal results prove that pupil diameter, dispersion, fixation duration,
saccade duration, saccade amplitude, and nine event statistics are
distinguishable for emotions, which could be used as efficient fea-
tures for emotion recognition [16]. However, even the recognition
accuracy provided by the state-of-the-art model is not ideal enough
to be used in applications. Meanwhile, another group of researchers

focusing on EEG signals were surprised by their potentials in emo-
tion recognition [13, 23]. Alarcao et al. [1] conducted a detailed
survey about EEG-based emotion recognition, including stimuli,
feature extraction, and classifiers. Considering that emotions are
complex psycho-physiological phenomena in nature, scientists turn
to build more robust emotion recognition models based on mul-
timodalities that may contain complementary information. The
combination of eye movements and EEG has been gaining much at-
tention as a good representative for external behavior activities and
internal physiological changes [16, 22, 26]. Zheng et al. [26] inno-
vatively combined them and examined on both feature-level fusion
and decision-level fusion. The improvement on performances of this
groundbreaking work inspired Lu et al. [16] to testify their relation-
ships and utilize the advantages of it with various modality fusion
strategies in emotion recognition. Besides, Liu et al. attempted to
use multimodal deep learning techniques to model this task [15].
These studies have suggested that modality fusion seems to be a
reliable approach since it significantly enhances the performance
compared with a single modality.

Although this complementary collocation achieves satisfying
performance, it is unfeasible to put it into large-scale applications
due to the inconvenience of data acquisition and inter-subject vari-
ability of EEG signals. To overcome this issue, cross-modal transfer
learning has a growing body of literature that can be categorized
into two threads. One is figuring out the relationship between EEG
and another modality, conducting a one-to-one mapping to avoid
using EEG in the test stage. The other is to perform joint learning
on multimodalities and data generation in training and then use
one single modality for testing. Both ways have been supported
with successful cases from natural language processing, computer
vision, etc. For example, Scott et al. [20] developed a novel deep
GANs architecture to effectively bridge the semantic relationship
between text and graphs through transforming visual concepts
from characters to pixels. Palazzo et al. [19] attempted to generate
corresponding images from EEG signals by combining an LSTM
recurrent neural network with conditional GANs. At the same time,
Spampinato et al. [24] conducted an RNN-based method to learn
visual stimuli-evoked EEG data and used a CNN-based approach
to regress images into the learned EEG representation, thus en-
abling automated visual classification in a brain-based visual object
manifold. Jiang et al. [11] pioneeringly tested those methods in
the emotion recognition field but in a regressive way, which is
not suitable for EEG and leaves room for others to explore more
methods. Besides, to the best of our knowledge, there is limited
work to address the problems of one-to-more cross-modal transfer
in the field of emotion recognition. In the following sections, we
will present our proposed method to tackle the fore-mentioned
problems.

3 METHODS
3.1 Overview
Our goal is to increase the practicability of the system by utilizing
features from a single modality to obtain predictions as accurate as
those produced using multimodalities with the help of synthetic
multimodal high-dimensional features.
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Figure 1: The framework of our system. The training stage
can be divided into two parts as multimodal feature extrac-
tion and multimodal feature generation. In the test phase,
only eye movement signals are needed. The shaded 𝑮 and 𝑪
indicate that they have been trained. Best viewed in color.

Three categories of features are involved in the whole process,
including single-modal features from eye movements, real multi-
modal features from both EEG and eye movements, and generated
multimodal features. As shown in Figure 1, the training process can
be divided into two phases. Training stage I focuses on multimodal
feature fusion to extract real multimodal features with a bimodal
deep autoencoder. In training stage II, we adopt conditional genera-
tive adversarial networks to generate synthetic multimodal features
with single eye movement features. With respect to the test stage,
only the eye movement modality is needed as input. The whole
process is illustrated in Algorithm 1.

3.2 Training Stage I: Multimodal Feature
Extraction

The quality of real multimodal features is of great importance in
the whole process. Multimodal feature generation is fundamentally
a question of high-dimensional data generation. In general, the
features can be engineered by extracting high-dimensional emotion
information from eye movement signals and corresponding EEG
signals. Specifically, for each sampling point 𝑖 , we align the eye
movement signal 𝑿𝐸𝑌𝐸𝑖 ∈ R𝑛 , where 𝑛 represents the dimension
of the eye movement feature, with the corresponding EEG signal
𝑿𝐸𝐸𝐺𝑖 ∈ R𝑚 , where𝑚 represents the dimension of the EEG feature.

We choose one of the classic modality fusion methods to extract
the high-dimensional multimodal emotion representations from
both EEG and eye movement features, namely the bimodal deep

autoencoder [18] shown in training stage I in Figure 1 marked with
the red lines. There are two steps in the procedure of the bimodal
deep autoencoder. The first is encoding, containing two encoders,
𝑬𝐸𝐸𝐺 for encoding EEG features and 𝑬𝐸𝑌𝐸 for eye movements. The
nature of the encoder is the restricted Boltzmann machine (RBM)
[21]. We then train an RBM over the pretrained layers for each
modality to model the relationships between them as high-level
multimodal representations (𝑟 ). The second step is decoding. As a
process symmetrical to encoding, this step reconstructs the original
input representations with 𝑫𝐸𝐸𝐺 and 𝑫𝐸𝑌𝐸 .

For the emotion classifier, we apply a multilayer perceptron
(MLP) as the classifier 𝑪 , which is a feed-forward network. The
classifier is trained in the training stage and takes different kinds of
features as input. We train the model by minimizing the following
loss:

L = Lrecon + Lc (1)
where the reconstruction loss Lrecon is calculated by the mean
squared error:

Lrecon =
1
𝑘

𝑿 − 𝑿 ′2
2 , (2)

where 𝑘 is the number of features and ∥·∥22 is the squared 𝐿2-norm.
For the cross-entropy lossL𝑐 of the emotion classifier 𝑪 , the related
formula is as follows:

Lc = −
∑
𝑖

𝑦𝑖 log𝑦𝑖 (3)

where 𝑦𝑖 is the ground truth emotion label for input 𝑥𝑖 .
Although there are many multimodal encoders to use, our intu-

ition to choose the bimodal deep autoencoder is that the success
of the high-dimensional feature decoding process demonstrates
that the extracted representations are of high quality and mutually
separable in feature space and are qualified to be used to construct
a preferable emotion recognition system. Note that in this stage,
features from multimodalities are needed.

3.3 Training Stage II: Multimodal Feature
Generation

Inspired by the broad usage and good performance of generative
adversarial networks (GANs) in data augmentation, we select GANs
as our basic framework for multimodal feature generation. In the
standard GAN structure, a generator 𝑮 is constructed to produce
realistic-like data distribution 𝑝𝐺 with mapping function 𝑮 (𝑧),
where 𝑧 is noise sampled from a noise distribution 𝑝𝑧 (𝑧). Besides,
a discriminator 𝑫 is built to play a minimax game against 𝑮 by
distinguishing whether the given sample is in real distribution 𝑝𝑟
or generated distribution 𝑝𝐺 . The generator-discriminator minimax
game for continuous data can be formulated as follows:

min
𝐺

max
𝐷

L(𝑫, 𝑮) = E𝑟∼𝑝𝑑 (𝑟 ) [𝑙𝑜𝑔(𝑫 (𝑟 ))]+

E𝑧∼𝑝𝑧 (𝑧) [𝑙𝑜𝑔(1 − 𝑫 (𝑮 (𝑧)))]
(4)

We can see that the standard GAN framework requires the gener-
ated data to be differentiable so that the gradient can backpropagate
from 𝑫 to 𝑮 to update the parameters. This constraint impedes the
application of standard GANs to continuous data, i.e., multimodal
data. In multimodal data generation tasks, different multimodal
data are often associated with the same category, which represents
a discrete many-to-one mapping.
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Algorithm 1: CGAN-based multimodal feature generation
algorithm
Input:

EEG data 𝑿𝐸𝐸𝐺 .
Eye movement data 𝑿𝐸𝑌𝐸 .
Divide the training and test sets according to

cross-validation.
Output: Recognition accuracy of test data.
Training Stage I :

1 Initialize encoders 𝑬𝐸𝐸𝐺 and 𝑬𝐸𝑌𝐸 , decoders 𝑫𝐸𝐸𝐺 and
𝑫𝐸𝑌𝐸 , and emotion classifier 𝑪 .

2 for j=1:n do
3 Optimize 𝑬𝐸𝐸𝐺 , 𝑬𝐸𝑌𝐸 , 𝑫𝐸𝐸𝐺 , 𝑫𝐸𝑌𝐸 , and 𝑪 by

minimizing Equation (1).
4 end
5 return multimodal features 𝑟 and trained emotion
classifier 𝑪 .

Training Stage II :
6 Initialize the generator 𝑮 and discriminator 𝑫 .
7 for j=1:n do
8 Concatenate random noise and eye movement

features in the training set.
9 Optimize 𝑮 and 𝑫 by minimizing Equation (5).

10 end
11 return trained 𝑮 .
Test Phase :
12 Concatenate random noise and eye movement features in
the test set.

13 Generate the multimodal feature using trained 𝑮 .
14 Use the trained classifier 𝑪 for emotion recognition.
15 return predicted emotion label.

This problem can be solved by the conditional probabilistic gen-
erative model, where the input is combined with a conditioning
variable and generates a conditional predictive distribution. The
structure of conditional generative adversarial networks (CGANs)
[17] is depicted in Figure 1. The eye movement features are taken
as conditions to guide the generator to produce the correspond-
ing multimodal features from noise. The discrimination results of
𝑫 are used to construct the predefined loss function to guide the
training of 𝑮 to guarantee that 𝑮 can produce realistic and eligible
multimodal features. More details of our model are described in the
following subsections.

3.3.1 Generator. We employ a fully connected deep neural net-
work (FC-DNN) as our generative model. The FC-DNN generator is
composed of multiple fully connected regression layers with 𝑡𝑎𝑛ℎ

or 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation functions. Other variants of DNNmay also be
used as the generative model, but a typical FC-DNN can efficiently
map the input embedding representation to high-dimensional hid-
den features, i.e., multimodal emotion features. It is notable that the
existing vanishing gradient problem [9] deteriorates the training
performance of the generator. This means that during the initial
training stage or when 𝑫 is well learned, 𝑫 can always reject the
generated multimodal features with high confidence so that the
gradient guiding 𝑮 training will approach zero, and the updates of
the generator nearly stop. To solve this problem, we improve the
FC-DNN model by replacing the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function with
the 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈 activation function for the head layers.

As shown in Figure 1, to impose the conditional constraint, we
feed the eye movement features 𝑿𝐸𝑌𝐸 into our FC-DNN generator
after concatenation with input noise. The motivation behind this
operation is to help 𝑮 generate multimodal features conditioned
based on emotional states. Note that the explicit emotion category
is unknown during the real-time emotion classification phase. How-
ever, eye movement features capture the emotion information and
can be treated as an encoded emotion class label.

3.3.2 Discriminator. The discriminator needs to be a determination
function 𝑫 (𝑥) to generate a single scalar to represent the probabil-
ity, where 𝑥 comes from 𝑝𝑟 rather than 𝑝𝐺 . We also choose FC-DNN
as our discriminator. The concatenation of eye movement features
constraint 𝑿𝐸𝑌𝐸 with multimodal features 𝑟 or 𝑟𝐺 as the input is
then fed into the discriminator to output the probability that the
multimodal feature comes from the real distribution.

Given the generator 𝑮 and discriminator 𝑫 with the additional
conditional constraint of eye movement features, the objectives of
our optimization problem based on the original GAN framework
can be rewritten from Equation 4 to Equation 5 as:

min
𝐺𝜃

max
𝐷𝜙

L(𝑫𝜙 , 𝑮𝜃 ) =

E(𝑟,𝑿𝐸𝑌𝐸 )∼𝑝𝑑 (𝑟 ) [𝑙𝑜𝑔(𝑫𝜙 (𝑟,𝑿𝐸𝑌𝐸 ))]+
E𝑟𝐺∼𝐺𝜃 (. |𝑿𝐸𝑌𝐸 ) [𝑙𝑜𝑔(1 − 𝑫𝜙 (𝑟𝐺 ,𝑿𝐸𝑌𝐸 ))],

(5)

where 𝜃 and 𝜙 denote the parameters of the generator and discrimi-
nator, respectively, and𝑿𝐸𝑌𝐸 is the eye movement constraint. Here,
we sample the input noise from the Gaussian noise distribution.
The maximum term of L(𝑫𝜙 , 𝑮𝜃 ) (losses of discriminator) and the
minimum term of L(𝑫𝜙 , 𝑮𝜃 ) (losses of generator) are optimized
in an alternating procedure.

Table 1: Comparisons of datasets employed. Except for the variables mentioned in this table, other conditions among all three
datasets are the same.

Dataset Subjects # Emotions Emotions # videos / experiment

SEED[28] 15 (7M8F, mean: 23.27, std: 2.37) 3 happy, sad, neutral 15
SEED-IV[27] 15 (7M8F, mean: 23.08, std: 2.05) 4 happy, sad, neutral, fear 24
SEED-V[14] 20 (9M11F, mean: 22.15, std: 1.85) 5 happy, sad, neutral, fear, disgust 15

Session 9: Emotional and Social Signals in Multimedia MM ’21, October 20–24, 2021, Virtual Event, China

1060



3.4 Test Stage: Emotion Classification
As presented in Figure 1, the test data flows according to the blue
lines. Using single-modal eye movement features, the trained 𝑮 can
generate corresponding generated multimodal features 𝑟𝐺 and pass
them to the trained emotion classifier 𝑪 to predict the emotion.

4 EXPERIMENTS
4.1 Datasets
To comprehensively verify the performance of our model, we test it
on a series of public affective EEG datasets for emotion recognition,
including SEED, SEED-IV, and SEED-V. The differences among the
three datasets are listed in Table 1. In each dataset, several rigor-
ously screened Chinese movie clips are used to elicit the desired
target emotion among corresponding emotion categories. Approx-
imately 15 subjects participated in the experiments three times
on different days, with video clips evenly covering each emotion
in each experiment. During the experiment, subjects are encour-
aged to immerse themselves in the video to arouse corresponding
emotions. The 62-channel EEG signals and the eye movement sig-
nals are recorded with the international 10-20 system using the
ESI Neuroscan system and SMI′s wearable eye-tracking glasses,
respectively, during movie watching.

The raw EEG signals are downsampled to 200 Hz and filtered
with a bandpass of 0-75 Hz with a baseline correction as well as
a PCA-based artifact elimination method with Curry 7 software.
Different entropy (DE) features are extracted within a nonoverlap-
ping one-second time window from 5 frequency bands (namely,
𝛿 : 1-3 Hz, 𝜃 : 4-7 Hz, 𝛼 : 8-13 Hz, 𝛽 : 14-30 Hz, and 𝛾 : 31-50 Hz) of
every sample [6]. Therefore, the dimension of EEG features is 310
per sample, calculated by 62 channels multiplied by 5 bands. We
choose DE because various studies have demonstrated that the DE
features perform better for EEG-based emotion recognition than
other artificial features.

For the eye movement signals, 33 features, including pupil diam-
eter, dispersion, fixation duration, blink duration, saccade duration,
saccade amplitude, blink frequency, maximum fixation duration and
so on, are extracted by SMI BeGaze Analysis software as described
in [16, 27].

4.2 Experiment Results
4.2.1 Verification of Feature Generation. Before examining the per-
formance, we start from feature distribution to certify that the
structure we construct works properly as we expect. We pick out
the generated multimodal features from each subject and visualize
them with t-SNE [25], as shown in Figure 2. Each point in the figure
represents a feature from a 4 s window size. Figure 2(a) and Figure
2(b) depict features from a single modality as eye movements and
EEG, respectively. We can see that there are no obvious clusters
in either Figure 2(a) or Figure 2(b). These results account for the
ineffectiveness of emotion classification based on single-modal fea-
tures. Comparatively, Figure 2(c) and Figure 2(d), presenting the
multimodal features extracted by the bimodal deep autoencoder
and those generated by our model, respectively, clearly illustrate
the distinguished groups where dots of the same emotion gather.
We must admit that the distinction among groups in Figure 2(c)

Table 2: Average accuracies and standard deviations(%) of dif-
ferent methods on 3 datasets.

Feature SEED SEED-IV SEED-V
Representation Avg. Std. Avg. Std. Avg. Std.

Eye 77.80 14.61 67.82 18.04 59.66 8.77
EEG 78.51 14.32 70.33 14.45 68.58 10.27
Eye+EEG (concatenate) 81.55 11.79 75.88 16.44 73.65 8.90
Eye+EEG (align) 93.05 3.85 86.55 5.72 80.37 6.03
Eye (regressor) 75.72 8.87 73.49 7.02 72.80 5.07
Eye (our work) 81.02 8.04 75.74 6.66 73.66 6.05

is more apparent than in Figure 2(d). The visualized distribution
further indicates that our method can generate reliable realistic mul-
timodal features, which is a cornerstone to guarantee performance
in emotion recognition tasks.

In Table 2, the mean accuracies and standard deviations on three
datasets of our model are compared with other methods. As demon-
strated, the table is separated into three zones. The first two rows
are of single modality, while the middle two and the last represent
multimodal methods and cross-modal structures, respectively. Be-
sides, we also provide the confusion matrices in Figure 3 to directly
present the classification results. In general, the more emotion cat-
egories there are, the more difficult the task, which is accompanied
by relatively lower performance. Note that our purpose is to build

(a) (b)

(c) (d)

������� �������

�������
�������

Figure 2: Emotion feature visualization, where different col-
ors represent different emotions. (a) Single-modal features
of eye movements. (b) Single-modal features of EEG signals.
(c) Multimodal features of bimodal deep autoencoder. (d)
Generated multimodal features of our model.
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Figure 3: Confusion matrices based on the SEED-V dataset. (a) Single-modality of eye movements. (b) Single-modality of EEG.
(c) Bimodal deep autoencoder. (d) Our model. The deeper the color, the higher the recognition rate between emotions. The
vertical axis represents the true label, and the horizontal axis represents the predicted label.

an effective and convenient model with a high generalization ability,
so in the detailed discussion below, we devote much attention to
the performance on the SEED-V dataset, especially in the figure
illustrations.

4.2.2 Comparison with multimodal methods. The core issue of mul-
timodal methods is the fusion strategy. Regarding to the ways they
fuse, the multimodal methods can be categorized into three types:
aggregation-based fusion, alignment-based fusion, and their com-
bination. We select the most commonly used methods among the
first two types as representatives to compare with our model. As
shown in the third [16] and fourth [15] rows of Table 2, alignment
fusion performs better since it can effectively extract the relation-
ships among multimodalities. Although our model does not surpass
the multimodal alignment fusion method in accuracy, it is as com-
petitive as the one fused by concatenation. Considering that this
performance is achieved with only a single modality, we believe
our structure can help enhance the user experience and reduce the
dependence on modalities. From the confusion matrices in Figure 3,
we can straightforwardly deduce the superiority of the multimodal
method with the darker color. Nevertheless, in the classification of
the happy emotion, our model even outperforms the bimodal deep
autoencoder by 4% in Figure 3(c) and Figure 3(d). We also observe
that the recognition of disgust is always mixed up with others, es-
pecially happy emotion, when the features used are closely related
to eye movements as suggested by Figure 3(a) and Figure 3(d). This
might be because eye tracking features such as pupil diameters
and saccade details are similar when subjects feel happy and dis-
gusted, which is consistent with the findings of Kuo and Heather
[8] that the eye-tracking characteristics of the happy emotion and
the disgust emotion have more in common compared with other
emotions.

4.2.3 Comparison with single-modal methods. In essence, our sys-
tem is a single-modal method that only takes the signals from one
modality as the input. We compare it with other single-modal mod-
els using either eye movements or EEG signals [16] [27], and the
results are displayed in the first two rows in Table 2. It is appar-
ent from the accuracy values that the EEG signals fit the emotion
classification task better and are more reliable than eye movement
signals. Regardless of which dataset among the three is employed,

our method outperforms all others, with a huge advantage of ap-
proximately 5% for EEG signals and 14% for eye movements. This
is also reflected in Figure 3(a) and Figure 3(b), which show that our
model outperforms single eye movement in all emotion types. Clas-
sification accuracies of the fear and the happy emotion classification
have been enhanced by 6% (86% versus 80%) and 11% (79% versus
68%), respectively. Notably, the result of sad emotion recognition
using a single eye modality is unsatisfactory. However, with the
same input, our model remarkably increases the accuracy by 32%. In
addition, the standard deviation is dramatically smaller than those
of the existing approaches, indicating that our model is pretty sta-
ble and robust. The model we propose has successfully digged out
the values of eye movements in emotion recognition tasks, which
makes it possible for emotion intelligence to be used in daily life.
More importantly, for similar questions in other fields, it provides a
new initiative to improve the performance of single-modal methods
by integrating knowledge of other modalities.

4.2.4 Comparison with cross-modal methods. There are a few cross-
modal models used in the emotion recognition task. Compared
with the regressor of Jiang [11], it is evident that our model fits
the characteristics of data well based on the three relatively higher
accuracies. However, although both have a tendency to be more ro-
bust when facing more emotion categories, the standard deviations
of the regressor decline more quickly than those of our model and
even reach 5.07% for the five-class emotion classification task. The
relationship between multimodal high-level representations and
eye movement features needs to be further explored in the future.

5 CONCLUSIONS
In this paper, we have proposed a new direction to simplify the
multimodal structure in emotion recognition tasks by combining a
multimodal fusion strategy and a generative model to explore the
underlying connections between single modality input and high-
dimensional multimodal features. Then, multimodal features can be
generated based on a single modality which have the similar charac-
teristics to the real multimodal features extracted from multimodal
signals in the training stage. In this way, only information from
a single modality is needed in the test stage. The comprehensive
experimental results on SEED series datasets demonstrate that our
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proposed model is as competitive as many multimodal models even
though it only requires a single modality as input, which reduces
the dependence on multimodalities and makes real-world applica-
tions more possible. Moreover, this idea has the potential to be used
in other fields to simplify the multimodal process. In future work,
we first plan to perfect the model by improving both multimodal fu-
sion and generation parts. Breaking the specification of modalities
and expanding the modal coverage is also attractive to us, and the
final goal is to build an overall network with which we can use any
signal that is the most convenient at the time to perform emotion
recognition. Only in this way can we utilize emotion intelligence
to benefit people in more practical scenarios such as mental health.
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