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Abstract
Objective. Previous studies on emotion recognition from electroencephalography (EEG) mainly
rely on single-channel-based feature extraction methods, which ignore the functional connectivity
between brain regions. Hence, in this paper, we propose a novel emotion-relevant critical
subnetwork selection algorithm and investigate three EEG functional connectivity network
features: strength, clustering coefficient, and eigenvector centrality. Approach. After constructing
the brain networks by the correlations between pairs of EEG signals, we calculated critical
subnetworks through the average of brain network matrices with the same emotion label to
eliminate the weak associations. Then, three network features were conveyed to a multimodal
emotion recognition model using deep canonical correlation analysis along with eye movement
features. The discrimination ability of the EEG connectivity features in emotion recognition is
evaluated on three public datasets: SEED, SEED-V, and DEAP.Main results. The experimental
results reveal that the strength feature outperforms the state-of-the-art features based on
single-channel analysis. The classification accuracies of multimodal emotion recognition are
95.08± 6.42% on the SEED dataset, 84.51± 5.11% on the SEED-V dataset, and 85.34± 2.90%
and 86.61± 3.76% for arousal and valence on the DEAP dataset, respectively, which all achieved
the best performance. In addition, the brain networks constructed with 18 channels achieve
comparable performance with that of the 62-channel network and enable easier setups in real
scenarios. Significance. The EEG functional connectivity networks combined with
emotion-relevant critical subnetworks selection algorithm we proposed is a successful exploration
to excavate the information between channels.

1. Introduction

Emotion plays a crucial role in many aspects of
our daily lives, such as social communication and
decision-making. According to the Gartner hype
cycle in 2019 [1], emotion artificial intelligence (AI)
is one of the 21 emerging technologies that will

significantly impact our society over the next 5 to
10 years. Emotion AI, also known as artificial emo-
tional intelligence or affective computing [2], aims at
enabling machines to offer the capabilities to recog-
nize, understand, and process emotions. Compared
with the rich studies on the motor brain-computer
interface (BCI), the recently emerging affective BCI
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(aBCI) [3] faces distinct challenges since the brain
functional connectivity networks involving emotions
are not well investigated [4]. The aBCI technology
aims to advance the human-computer interaction
systems with the assistance of various devices to
detect the affective states fromneurophysiological sig-
nals. Therefore, the major challenge facing emotion
AI and aBCI in the primary stage lies in emotion
recognition [5].

In recent years, extensive endeavors have been
devoted to emotion recognition. Among a variety
of emotion recognition approaches, the modalities
used to detect affective states primarily comprise two
categories: the external behavioral signals, includ-
ing facial expression [6], speech [7], body language,
etc and the internal physiological signals [8], con-
taining electroencephalography (EEG) [9], electro-
cardiography (ECG) [10], respiration, galvanic skin
response, etc. These two categories have their own
prominent properties. The external behavioral sig-
nals outperform in terms of convenience of data col-
lection, while the physiological signals are believed
to be more objective and reliable in conveying emo-
tions. As a result, multimodal emotion recognition
has become the major trend, since it may leverage
the complementary representation properties of dif-
ferent modalities. Nevertheless, most existing studies
have focused on the fusion of visual and audio signals
[11, 12], while few studies have combined the beha-
viors with physiological signals [13, 14].

Among the physiological modalities, EEG has
exhibited outstanding performance in emotion
recognition and is promising in elucidating the basic
neural mechanisms underlying emotion [15, 16].
Moreover, the fusion of EEG and eye tracking data has
been shown efficient inmultimodal emotion recogni-
tion, with increasing interests among research com-
munities [17, 18]. In this paper, we adopt the EEG
signals, along with eye movement data or peripheral
physiological signals, to classify different emotions.

Most existing studies on EEG-based emotion
recognition have relied on single-channel analysis
[15–18], where EEG features are independently
extracted within each EEG channel in different brain
regions. In contrast, studies on cognitive science and
neuroimaging have demonstrated that emotion is a
complex behavioral and physiological reaction that
involves circuits in multiple cerebral regions [19].
In addition, studies in neuroscience and neuropsy-
chiatry have revealed that patients with cognitive
defect psychophysiological diseases such as autism,
schizophrenia and major depressive disorder present
decreased brain functional connectivity by both func-
tional magnetic resonance imaging (fMRI) and EEG
[20]. Furthermore, studies on neuroimaging based
on fMRI have indicated that brain functional con-
nectivity may offer the potential of representing the
fingerprints in profiling individuals [21], as well as

the ability of individuals to sustain attention [22].
These results have provided evidence for the connec-
tion between cognition and brain functional con-
nectivity. However, few studies have explored the
emotion-relevant brain functional connectivity pat-
terns. The study of emotion recognition from the per-
spective of the brain functional connectivity network
remains to be further investigated and may eventu-
ally lead to the understanding of the underlying neur-
ological mechanisms behind how emotions are pro-
cessed in the brain.

In this paper, we aim to investigate the emotion-
relevant brain functional connectivity patterns. We
propose a novel emotion-relevant critical subnetwork
selection algorithm to improve the recognition per-
formance and evaluate the performance of the EEG
connectivity feature for multimodal emotion recog-
nition with respect to three public datasets: SEED
[17], SEED-V [23], and DEAP [24]. Figure 1 depicts
the overall framework of our proposed multimodal
emotion recognition method. The main contribu-
tions of our work lie in the following aspects:

(a) We propose a novel emotion-relevant critical
subnetwork selection algorithm to remove the
weak and emotion-irrelevant associations in
brain networks and investigate three EEG con-
nectivity features: strength, clustering coeffi-
cient, and eigenvector centrality.

(b) We demonstrate the outstanding performance
of the EEG connectivity feature and its com-
plementary representation properties with eye
movement data inmultimodal emotion recogni-
tion.

(c) We reveal the emotion associated brain func-
tional connectivity patterns and the potential
of applying the brain networks based on fewer
EEG electrodes to build aBCI systems in real
scenarios.

The remainder of this paper is organized as
follows. Section 2 introduces the related literat-
ure regrading multimodal emotion recognition and
brain functional connectivity analysis. Section 3
describes the emotion experimental design. Section 4
presents the proposed multimodal emotion recogni-
tion framework based on the brain functional con-
nectivity. Section 5 analyzes the experimental results
and describes the future work. Finally, a brief conclu-
sion will be presented in section 6.

2. Related work

2.1. Emotion recognition
Various modalities have been exploited to detect
affective states in the past few decades. With the
advent of computer vision and speech recognition,
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Figure 1. The framework of our proposed multimodal emotion recognition model using EEG-based functional connectivity and
eye movement data. First, the emotion experiment is designed to simultaneously collect the EEG and eye tracking data while the
subjects are watching emotional movie clips. Second, the EEG-based functional connectivity networks are constructed and
selected to obtain the emotion-relevant critical subnetworks. Finally, the EEG functional connectivity network features and eye
movement features are extracted and later fused to train the affective model.

research on emotion recognition using facial expres-
sion and speech has gained prevalence [6, 7]. Hasani
and Mahoor [25] proposed an enhanced neural net-
work architecture that consists of a 3D version of the
Inception-ResNet network followed by a long short-
term memory (LSTM) unit for emotion recognition
from facial expressions in videos. They employed four
databases in classifying different emotions, includ-
ing anger, fear, disgust, sadness, neutrality, con-
tempt, happiness, and surprise. Trigeorgis et al [26]
presented an end-to-end speech emotion recogni-
tion framework created by combining the convolu-
tional neural network (CNN) and LSTM models.
Schirmer and Adolphs [27] studied different mod-
alities with respect to emotion perception, includ-
ing facial expression, voice, and touch. The authors
suggested that the mechanisms of these modalities
have their own specializations and that together, they
could lead to holistic emotion judgment.

Apart from the external behavioral modalities,
the internal physiological signals have also attracted
the attention of numerous researchers due to their
objectivity and reliability. Zhang et al [28] conduc-
ted respiration-based emotion recognition using the
sparse autoencoder and logistic regression model.
Nardelli et al [29] performed valence-arousal emo-
tion recognition based on the heart rate variability
derived from the ECG signals. Atkinson and Cam-
pos [30] improved the EEG-based emotion recogni-
tion by combining themutual information-based fea-
ture selectionmethods with kernel classifiers. Liu et al
[31] constructed a real-time movie-induced emotion

recognition system to continuously detect the dis-
crete emotional states in the valence-arousal dimen-
sion. Zheng et al [15] systematically evaluated the
performance of different feature extraction, feature
smoothing, feature selection and classification mod-
els for EEG-based emotion recognition. Their results
indicated that stable neural patterns do exist within
and across sessions. Among thesemodalities, EEGhas
been proven to be promising for emotion recognition
and demonstrates competence for revealing the neur-
ological mechanisms behind emotion processing.

In EEG-based emotion recognition, numerous
EEG features have been exploited to enhance the per-
formance of aBCI systems. The conventional EEG
features could be categorized into temporal domain,
frequency domain, and time-frequency domain [32].
In the temporal domain, the most commonly used
EEG features mainly include the fractal dimension
and higher order crossings [33]. Due to the non-
stationary essence of the EEG signals and the fact that
raw EEG signals are usually contaminated with arti-
facts and noises, the frequency domain features such
as power spectral density (PSD) [34], higher order
spectra [33], and differential entropy (DE) [35] and
the time-frequency domain features such as wave-
let features [32] and Hilbert-Huang spectra [33, 36]
have demonstrated outstanding performance in the
EEG-based emotion recognition systems. However,
these conventional EEG feature extraction methods
are based on single-channel analysis, which neglects
the EEG-based functional connectivity networks in
association with different emotions.
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2.2. Brain functional connectivity
Brain connectivity has long been studied in the fields
of neuroscience and neuroimaging to explore the
essential nature of the cerebrum. According to the
attributes of connections, brain connectivity could
be classified into three modes: structural connectiv-
ity, functional connectivity, and effective connectiv-
ity [37]. These modes separately correspond to the
biophysical connections between neurons or neural
elements, the statistical relations between anatomic-
ally unconnected cerebral regions, and the directional
causal effects from one neural element to another.

Recently, increasing evidence has indicated that a
link does exist between brain functional connectivity
and multiple psychophysiological diseases with cog-
nitive deficiency. Murias et al [38] found that robust
patterns of EEG connectivity are apparent in aut-
ism spectrum disorders in the resting state. Yin et al
[39] concluded that the EEG-based functional con-
nectivity in schizophrenia patients tends to be slower
and less efficient. Ho et al [40] indicated that adoles-
cent depression typically relates to the inflexibly elev-
ated default mode network connections based on
fMRI. Whitton et al [41] suggested that elevations
in high frequency EEG-based functional connectiv-
ity may represent a neural pattern for the recur-
rent illness course of major depressive disorder. Xu
et al [42] compared two coherence-based EEG func-
tional connectivity network features, statistical prop-
erties and common spatial pattern (SPN), between
psychogenic nonepileptic seizures (PNES) and epi-
lepsy patients based on fisher discriminate analysis
(FDA) and support vector machine (SVM), through
which they demonstrate the feasibility of SPN in dis-
tinguishing PNES from epilepsy.

In the past years, a growing number of pre-
liminary research efforts on EEG-based emotion
recognition have attempted to employ the brain func-
tional connectivity networks. Dasdemir et al [43] dir-
ectly used the connectivity metric of phase locking
value (PLV) as the EEG feature in distinguishing the
positive and negative emotions. Lee and Hsieh [44]
tested three different connectivity metrics, correla-
tion, coherence, and phase synchronization index, in
classifying the positive, neutral, and negative emo-
tions. Li et al [45] also studied these three emo-
tions by combing the PLV-based network features
with 6 power-based features utilized in [15]. F-score
was applied to select features with strong discrim-
inative ability. Al-Shargie et al [46] utilized similar
strategy. They concatenated PLV-based network fea-
tures and PSD features calculated from the autore-
gressive model parameters to distinguish the positive,
neutral, and negative emotions.

Some studies applied deep learning methods to
the connectivity feature extraction or the brain net-
work construction processes. Moon et al [47] utilized
CNN to model the connectivity matrices constructed

by three different connectivity metrics: correlation,
PLV, and phase lag index. Chao and colleagues pro-
posed a deep learning framework with a multiband
feature matrix and a capsule network to capture
the frequency domain and spatial characteristics in
multichannel EEG [48]. Hua et al [49] proposed a
newmethod to construct brain connectivity network.
They conveyed the eight-channel EEG signals to the
stacked autoencoder and calculated the Euclidean dis-
tance using the values from hidden layers to form a
network.

However, these studies mentioned above ignore
the optimization of network features for emotion
recognition task. Emotion-related information is not
fully utilized neither in the network construction nor
the feature extraction processes. Whether there truly
exist specific connectivity patterns for different affect-
ive states remains to be elucidated. In our previous
study on EEG-based emotion recognition [50], we
identified the brain functional connectivity patterns
of the three emotions (sad, happy and neutral) and
extracted the topological features from the brain net-
works to recognize these emotions. In this paper,
we extend this preliminary work to the three-class
(sad, happy, and neutral), five-class (disgust, fear, sad,
happy, and neutral), and valence-arousal dimension
multimodal emotion recognition tasks.

2.3. Eye movement analysis
Studies in neuroscience and biological psychology
have indicated the relation between emotion and eye
movement data, especially pupil diameter and dila-
tion response. Widmann et al [51] indicated that
emotional arousal by novel sounds is reflected in
the pupil dilation response and the P3 event-related
potentials. Oliva and Anikin [52] suggested that the
pupil dilation response reveals the perception of emo-
tion valence and confidence in the decision-making
process. Moreover, Black et al [53] showed that the
eye tracking and EEG data in autism spectrum dis-
orders are atypical during the processes of attention
to and cognition of facial emotions.

In addition, eyemovement data could be obtained
through eye tracking glasses which arewearable, port-
able and noninvasive. Therefore, eye movement data,
as a behavioral reaction to emotions, have beenwidely
utilized to assist with EEG-based emotion recogni-
tion in aBCI systems. López-Gil et al [18] improved
EEG-based emotion recognition by combining eye
tracking and synchronized biometrics to detect the
valence-arousal basic emotions and a complex emo-
tion of empathy. Zheng et al [54] evaluated the com-
plementary characteristics of EEG and eyemovement
data in classifying positive, neutral and negative emo-
tions by fusing the DE and pupil diameter features.
Lu et al [17] extended this preliminary work and
systematically examined sixteen different eye move-
ment features. Furthermore, their work has been
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extended to the five emotions by Li et al [23] andZhao
et al [55], and the discrimination ability and stabil-
ity over time of EEG and eye tracking data were also
revealed. However, these research approaches were
all based on single-channel analysis for the EEG sig-
nals: whether there exist complementary representa-
tion properties of EEG connectivity features and eye
movement data remains to be further analyzed.

2.4. Multimodal frameworks
As a complex psychological state, emotion is reflected
in both physical behaviors and physiological activities
[19, 56]. The collection of external behavioral data is
more convenient than that of internal physiological
signals, since the procedure could be accomplished
without involving any invasive devices. Despite the
inconvenience of data collection, the physiological
signals are believed to be more objective and reliable
because they are directly controlled by the peripheral
or central nervous systems and forging signals such as
EEG consciously seems unfeasible.

With different modalities exhibiting distinct
properties, modern emotion recognition approaches
have the tendency of combining multiple modal-
ities to enhance the performance of aBCI systems.
Perez-Gaspar et al [57] extended the evolutionary
computation of artificial neural networks and hidden
Markov models in classifying four emotions (angry,
sad, happy, and neutral) by combining the speech
with facial expressions. Tzirakis et al [58] also fused
the auditory and visual modalities using an end-
to-end valence-arousal emotion recognition model.
They applied the CNN and ResNet models to extract
features from speech and visual signals, respectively,
which were then concatenated and fed into the LSTM
model to accomplish the end-to-end training man-
ner. Ranganathan et al [59] conducted a 23-class dis-
crete emotion recognition task based on four different
deep belief networks by combining a variety of mod-
alities, including face, gesture, voice and physiological
signals. Huang et al [60] studied the fusion of EEG
and facial expression data using two decision-level
fusion strategies, the sum and production rules, in
detecting the four basic emotions (fear, sad, happy,
and neutral).

In recent years, many researchers have sugges-
ted that the combination of EEG and eye tracking
data is a promising approach for recognizing emo-
tions in aBCI systems. López-Gil et al [18] combined
EEG with eye tracking and biometric signals in a syn-
chronizedmanner to classify emotions usingmultiple
machine learning methods. Liu et al [61] applied the
bimodal deep autoencoder (BDAE) neural network to
fuse EEGand eyemovement features by extracting the
shared representations of these two modalities and
detected the three basic valences for emotion (posit-
ive, neutral, and negative). Tang et al [62] conducted
the same task using bimodal deep denoising autoen-
coder and bimodal-LSTM models. Zheng et al [63]

presented EmotionMeter for detecting the four emo-
tions (fear, sad, happy, and neutral). Qiu et al
[64] adopted the deep canonical correlation ana-
lysis (DCCA) model as a multimodal feature fusion
network for classifying the three-class, four-class,
and valence-arousal emotions. Their results suggested
that DCCA outperforms BDAE and bimodal-LSTM
models in multimodal emotion recognition. In this
paper, we apply the DCCAmodel to address the mul-
timodal emotion recognition task.

3. Emotion experiment design

3.1. Stimuli
The emotion experiments were designed to simul-
taneously record the EEG and eye movement signals
of the five prototypical emotions (disgust, fear, sad,
happy, and neutral). Many existing works have indic-
ated the efficiency and reliability of movie clips in eli-
citing the subjects’ emotions due to the blending of
audio and visual information [17, 63]. Therefore, the
movie clips were selected as the type of stimuli to bet-
ter induce the subjects’ affective states.

During the preliminary experiment, a stimuli
pool containing emotionalmovie clips corresponding
with the five emotionswas prepared and then assessed
by 20 volunteers using rating scores ranging from 0
to 5. The higher scores represented the more success-
ful elicitation of the subjects’ emotions. Eventually, 9
movie clips for each of the five emotions were selec-
ted from the stimuli pool, all of which received amean
score of 3 or higher. The durations of these clips range
from 2 to 4 min.

3.2. Subjects
Sixteen subjects (six males and ten females) aged
between 19 and 24 (mean: 21.62, std.: 2.48) with nor-
mal hearing and self-reported normal or corrected-
to-normal vision were recruited for our emo-
tion experiments. All subjects were the students
from Shanghai Jiao Tong University and selec-
ted using the Eysenck Personality Questionnaire
(EPQ), which could measure the personality of
an individual in three independent dimensions:
Extroversion/Introversion, Neuroticism/Stability,
and Psychoticism/Socialization [65]. Those with
extroverted characteristics and stable mood are more
readily induced to experience the intended emotions
throughout the experiment in comparison with those
of other personalities. Hence, subjects that are more
appropriate for the emotion experiments were selec-
ted according to the EPQ feedback.

3.3. Protocol
The emotion experiments were conducted in a labor-
atory environment. During the emotion experiment,
the subject was required to view the emotional movie
clips and relaxed as much as possible to induce
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Figure 2. The wearable devices and the layout of the
62-channel EEG cap are presented in (a) and (b),
respectively. Here, the GND channel denotes the reference
electrode and is excluded from the 62 channels. The
locations of the 18-channel electrodes in the layout of the
62-channel electrodes are highlighted.

their emotions. Meanwhile, their EEG and eye move-
ment signals were simultaneously collected by the
62-channel wet-electrode cap and the SMI eye track-
ing glasses, respectively. The EEG data were recorded
with the ESI NeuroScan System at a sampling rate
of 1000 Hz. The layout of the 62-channel EEG cap
is based on the higher-resolution international 10–20
system. Figure 2 presents these wearable devices and
the layout of the 62-channel EEG cap. The refer-
ence channel is set between CPZ and CZ. All of the
electrode impedances were kept below 5000Ω. The
vertical electrooculogram (VEO) signal was acquired
simultaneously by the NeuroScan System to facilitate
artifact elimination.

In this paper, there were 15 trials in total in each
experiment, where each of the five emotions corres-
ponds to 3 movie clips. Moreover, each subject was
required to perform three sessions of the experiment
on different days with an interval longer than three
days. To better elicit the subjects’ emotions, there was
no repetition of movie clips within or across the three
sessions. Thus, the aforementioned 9 movie clips
for each emotion were randomly divided into three
groups and later constructed the three sessions. As
studies in cognitive science have indicated that emo-
tion varies in a fluent and smooth manner, the order
of play of these movie clips in one experiment was
elaborately designed according to the following cri-
teria: (a) avoiding sudden changes in emotion, such
as clips of the emotion of disgust followed by clips of
happiness; (b) utilizing movie clips of neutral emo-
tion as a cushion between two opposite emotions.

Figure 3 illustrates the protocol of the designed
emotion experiment. During each trial of the exper-
iment, the movie clip was guided by 15 s of a brief
introduction about the content and the emotion to be
elicited and ended with 15 or 30 s of self-assessment
and relaxation for the subjects to mitigate their emo-
tions. Particularly, the resting time was 30 seconds
after disgust or fear emotions, and 15 s after the
other three emotions. In general, the duration of

Figure 3. The protocol of the designed emotion experiment.

one experiment was approximately 55 min. The self-
assessment required subjects to rate their arousal level
evoked by the stimuli from 0 to 5. Here, 0 indicates
no corresponding emotion is evoked while 5 indic-
ates the strongest corresponding emotion is evoked;
16 subjects rated 45 (15× 3) different trails. There are
in total 720 (16× 45) rating sheets of which only 58
rating sheets have scores less than 3, demonstrating
the effectiveness of our emotional stimuli.

This multimodal emotion dataset is named
SEED-V, of which the Vmeans there are five emotion
included in SEED-V. SEED-V was firstly introduced
in our previous conference paper [23]. We provide a
more systematic introduction about it in this paper.
SEED-V is an expansion of our public emotion EEG
dataset SEED8. The SEED dataset [17], which was
proposed in 2015 contains 62-channel EEG signals
and eye movement data corresponding to three emo-
tions (sad, happy, and neutral) from nine subjects
five males and four females, mean: 23.27, std.: 2.37),
with each subject performing the experiments three
times. Thus, there are 27 experiments in total and
each experiment contains 15 trials, with 5 movie clips
for each of the three emotions.

3.4. Ethic statement
The emotion experiments have been approved by the
Scientific & Technical Ethics Committee of the Bio-
X Institute at Shanghai Jiao Tong University. All of
the subjects participating in our experiments were
informed of the experimental procedures and signed
the informed consent document before the emotion
experiments.

4. Methodology

4.1. Preprocessing
The SEED-V dataset follows the same preprocessing
process as SEED. The raw EEG signals collected dur-
ing the emotion experiments are usually of high res-
olution and contaminated by surrounding artifacts,
which hampers both the processing and the analysis
of the emotion-relevant brain neural activities. We
applied the Curry 7 software to remove the irrelev-
ant artifacts. First, we adopted the Constant option
in the Baseline block of Curry 7 to do the baseline

8 http://bcmi.sjtu.edu.cn/home/seed/.
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correction. Second, in the Filter Parameter block, a
bandpass filter between 1 and 50 Hz and a notch filter
of 50 Hz was applied. Finally, the artifacts caused by
eye movements were eliminated based on VEO signal
in the Artifact Reduction block. Curry 7 can automat-
ically locate blink artifacts in each channel accord-
ing to VEO signal and remove them using Principal
Component Analysis (PCA). We needed to visually
inspect the time period of each located blink arti-
fact and chose the best location parameters for each
subject.

Then, we downsampled the EEG signals to 200Hz
to expedite the processing procedures. For further
exploration of the frequency-specific brain functional
connectivity patterns, the EEG data were filtered with
the five bandpass filters corresponding to the five fre-
quency bands (δ: 1–4 Hz, θ: 4–8 Hz, α: 8–14 Hz, β:
14–31 Hz, and γ: 31–50 Hz).

It has been proven that pupil diameter is subject
to the ambient luminance in addition to the emotion
stimuli materials [66]. Fortunately, according to our
observation and analysis, the pupil diameter exhib-
its consistency in response to the same emotional
stimuli material across different subjects. Thus, prin-
cipal component analysis was adopted to eliminate
the luminance reflex of the pupil and to preserve the
emotion-relevant components [17, 54, 63].

4.2. Brain functional connectivity network
The EEG-based brain functional connectivity net-
works consist of vertices and edges, which could be
represented by the EEG electrodes and the associ-
ations between pairs of EEG signals from two differ-
ent channels, respectively [67].

4.2.1. Vertex selection
Although the wet-electrode EEG cap was adopted
in our emotion experiments within the laboratory
environment due to its reliability, the dry-electrode
device with fewer EEG channels offers great con-
venience and portability in developing aBCI systems
under actual scenario conditions. Thus, the ques-
tion of whether the brain functional connectivity
networks comprised of fewer EEG channels could
exhibit considerable performance in emotion recog-
nition remains unexplored.

Tong and colleagues [68] conducted two exper-
imental paradigms: a laboratory experiment which
utilize a 62-channel wet-electrode cap based on ESI
NeuroScan System and a real-scenario experiment
which utilize an 18-channel dry-electrode cap based
on the DSI-24 System. They demonstrated that the
DSI-24 wearable sensing EEG headset is quite port-
able and appropriate for real scenarios. Inspired by
this work, we wonder if the proposed model using
18 channels can achieve comparable results compared
with 62 channels based on ESI NeuroScan System.

The results may facilitate the reduction in the num-
ber of electrodes in real-scenario emotion recognition
research. However, it should be mentioned that the
influence of electrode sensitivities on signal quality
needs to be taken into account when applying 18
channels on other wearable EEG devices.

The layout of DSI-24 headset electrodes conform
to the normal international 10–20 system. Fortu-
nately, these 18 electrodes can be perfectly mapped
into the same locations in the layout of the higher-
resolution international 10–20 system. Figure 2(b)
displays the locations of the 18-channel dry-electrode
reflected in the layout of the 62-channel wet-electrode
device.

In this paper, since the raw EEG signals were
acquired with the 62-channel wet-electrode device,
we constructed the brain connectivity network with
62 vertices in total. Furthermore, we selected these 18
electrodes and compared the performances of EEG
connectivity features extracted from the brain net-
works constructed with two categories of vertices: 18-
channel and 62-channel.

4.2.2. Edge measurement
To measure the associations between pairs of EEG
signals recorded from different channels, we com-
pared two connectivity metrics in this paper: Pear-
son’s correlation coefficient and spectral coherence.
The former can measure the linear relation between
two EEG signals x and y, which is defined as:

ρx,y =
cov(x,y)

σxσy
, (1)

where cov(x,y) denotes the covariance between x
and y, and σx and σy are the respective standard
deviations.

Distinguished from the correlation that measures
the connectivity between two EEG channels in the
temporal domain, coherence can measure the con-
nectivity between two signals x and y at frequency f
in the frequency domain, which could be written as:

Cx,y( f) =
|Pxy( f)|2

Pxx( f)Pyy( f)
, (2)

where Pxy( f) is the cross power spectral density
between x and y, and Pxx( f) and Pyy( f) are the
respective power spectral densities.

4.2.3. Network construction
In some previous work, the complementary char-
acteristics of the state-of-the-art DE feature and
eye movement data in emotion recognition have
been revealed, where features were extracted with a
4-second nonoverlapping time window in SEED and
SEED-V dataset, while DEAP dataset used a 2-second
nonoverlapping time window [17, 55, 63, 69, 70].
Considering further fusion of our proposed EEG
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Figure 4. Illustration of the procedure for constructing
EEG-based brain functional connectivity networks.

connectivity feature with eye movement data and
comparison with the DE feature, we constructed the
brain functional connectivity network using the same
time window. Taking SEED and SEED-V dataset as
example, the detailed procedure of brain network
construction is depicted in figure 4.

First, the preprocessed EEG signals were segmen-
ted with a 4-second nonoverlapping time window. As
a result, each sample is represented by a 4-second EEG
segment of 62 channels. Since the five bandpass filters
were employed during the preprocessing, each sample
actually contains five 4-second EEG segments corres-
ponding to the five frequency bands.

Second, the associations between pairs of EEG
channels were computed using the connectivity met-
ric (correlation or coherence) in each frequency band
for each sample. Therefore, each brain network cor-
responds to a 62× 62 symmetric connectivity mat-
rix, where elements denote the association weights
between pairs of EEG channels. Since the value of self-
correlation is always equal to 1, elements on the main
diagonal of connectivity matrices are usually set to
zero and will not be used in later analysis [37].

Finally, five brain connectivity networks were
acquired for each sample, corresponding to the five
frequency bands. For the brain networks construc-
ted with 18 channels, there is no need to repeat the
above procedures. We could directly select the corres-
ponding elements in the 62× 62 connectivity matrix
to construct the 18× 18 connectivity matrix.

4.3. Emotion-relevant critical subnetwork selection
Although the raw EEG signals were preprocessed to
remove the noises, there still remain certain minor
artifacts that may not be eliminated during the pre-
processing phase. Unfortunately, these artifacts may
further lead to the weak associations in the brain
networks, which eventually results in obscureness in
profiling the brain network topology. By conven-
tion, this problem is resolved by directly discarding
these weak associations according to an absolute or
a proportional threshold after sorting the association

weights [37, 67]. However, this method fails to take
the targeted task into consideration, thus offering
no guarantee that the preserved stronger associations
are truly task relevant. Therefore, we have proposed
an emotion-relevant critical subnetwork selection
approach to address this issue.

The goal is to explore the universal emotion-
relevant brain functional connectivity patterns
among different subjects. Therefore, we utilized
samples in training sets of all subjects to select the
emotion-relevant critical subnetworks. Neverthe-
less, it should be mentioned that the affective mod-
els trained in this paper are subject-dependent. A
subject-independent adaptation model still needs
further research to fully explore the EEG-based func-
tional connectivity patterns across subjects [71–75].
For analysis of the brain connectivity patterns in dif-
ferent frequency bands, we selected a total of five
critical subnetworks corresponding to the five fre-
quency bands. Assuming that L is the set of emo-
tion labels, there are thus |L| categories of emotions.
The emotion-relevant critical subnetwork selection
approach for one specific frequency band is summar-
ized into the following three phases:

(a) Averaging phase: all brain networks in training
sets are averaged over all samples and all subjects
for each emotion: thus, |L| averaged brain net-
works corresponding to |L| emotions could be
obtained.

(b) Thresholding phase: for each averaged brain net-
work, the same proportional threshold is applied
to solely preserve the strongest associations.
Thus, we attain critical edges for each emotion.

(c) Merging phase: along with the original ver-
tices, the critical edges in all |L| averaged brain
networks are merged together to construct the
emotion-relevant critical subnetwork.

Here, the proportional threshold represents the
proportion of the preserved connections relative to
all connections in the brain network. Particularly, the
threshold value was tuned as a hyperparameter. Spe-
cifically, we utilized SVM to select the best threshold
values for 18-channel model and 62-channel model,
respectively. The selection range is [0.0, 1.0] with step
size of 0.01. Details of threshold tuning is described in
section 5.1.

This procedure is also described in algorithm 1.
Suppose that the connectivity matrices X along with
corresponding labels Y in the training sets for one fre-
quency band are defined as:

X= {xi}Mi=1 (x
i ∈ RN×N)

Y= {yi}Mi=1 (y
i ∈ L),

(3)

whereM andN represent the number of samples and
the number of vertices, respectively.
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Algorithm 1. The proposed emotion-relevant critical
subnetwork selection algorithm in a frequency band.

Input: Connectivity matrices X, labels Y, label set L,
threshold t, and vertices V
Output: The emotion-relevant critical subnetwork G∗

1: for each c ∈ L do
2: Average matrices with the same emotion label c:

xc =meanyi==c(x
i)

3: Sort the upper triangular elements of matrix xc based
on the absolute value of the association weights:

x∗c = sort(abs(triu(xc)))
4: Derive the critical edges corresponding to the

strongest associations using threshold t:
Ec = index(x∗c (1 : t ∗N ∗ (N− 1)/2))

5: end for
6: Merge the critical edges of all emotions:

E∗ = unionc∈L(Ec)
7: Construct the emotion-relevant critical subnetwork:

G∗ = (V,E∗)
8: return G∗

4.4. Feature extraction
4.4.1. EEG functional connectivity network features
In this paper, we extracted EEG features from the per-
spective of brain functional connectivity networks.
The essence of the emotion-relevant critical subnet-
work primarily consists in the network topology.
According to the five critical subnetworks in the
five corresponding frequency bands, we could derive
the critical connectivity matrices for each sample
in the entire dataset. Precisely, if one edge belongs
to the critical subnetwork, the corresponding asso-
ciation weight in the matrix will remain unmod-
ified; otherwise, it will be set to zero, thus simu-
lating the process of discarding this edge from the
brain network. The critical connectivity matrices
were subsequently fed into the Brain Connectivity
Toolbox [37] to extract the three topological fea-
tures: strength, clustering coefficient, and eigenvector
centrality.

Assume that the selected emotion-relevant brain
functional connectivity network of one sample is
regarded as an indirect graph G= (V,E∗), where
V and E∗ represent the sets of vertices and critical
edges, respectively. There are in totalN vertices in the
brain network. Suppose that the corresponding sym-
metric connectivity matrix of G is A= (aij), where
i, j= 1,2, . . .,N, aij denotes the association between
two vertices vi and vj, and aij = aji. According to
[37], we could provide rigorous definitions for the
three EEG functional connectivity network features as
below.

The strength feature FS is a basic measurement of
the network topology, which could be written as:

FS =

[
si+

∣∣N
i=1

, si−
∣∣N
i=1

,
N∑
i=1

si+,
N∑
i=1

si−

]
, (4)

where si+ and si− represent the sum of the posit-
ive and negative associations connected to vertex vi,
respectively, and are computed as:

si+ =
∑
aij>0

j=1,2,...,N

aij, (5)

si− =
∑
aij<0

j=1,2,...,N

aij. (6)

The clustering coefficient feature FC is a measure-
ment of the brain functional segregation that primar-
ily quantifies the clusters within the brain network,
which is defined as:

FC =

[
ci+

∣∣N
i=1

, ci−
∣∣N
i=1

,
N∑
i=1

ci+,
N∑
i=1

ci−

]
, (7)

where ci+ and ci− represent the clustering coefficient
vector for the positive and negative associations of
vertex vi, respectively. The clustering coefficient is
equivalent to the fraction of triangles around a ver-
tex and is calculated as:

ci+ =
2ti+

ki(ki − 1)
, (8)

ci− =
2ti−

ki(ki − 1)
, (9)

where ki denotes the total numbers of neighbors for
vertex vi, and tk+ and tk− are the positive and negat-
ive weighted geometric means of triangles around vi,
respectively. The triangles around a vertex are repres-
ented as:

ti+ =
∑
j,h∈Mi

aij,aih,ajh>0

(aijaihajh)
1/3, (10)

ti− =
∑
j,h∈Mi

aij,aih,ajh<0

(aijaihajh)
1/3, (11)

whereMi = {vj|eij ∈ E∗} is the neighborhood of ver-
tex vi.

The eigenvector centrality feature FE evaluates the
significance of an individual vertex in interactingwith
other vertices and thus serving a crucial role in net-
work resilience. A vertex is more central and influ-
ential if the vertices it connects have high centrality.
The eigenvector centrality score of vertex vi could be
defined as:

FE(i) =
1

λ

N∑
j=1

aijFE(k). (12)

The eigenvector centrality of vertex vi is proportional
to the average of centrality values of its neighbors.
This equation could be easily transformed to the
eigenvector equation using the vector notations:

AFE = λFE, (13)

where we define λ is the maximal eigenvalue of A
[76].
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In general, the dimensions of the strength, clus-
tering coefficient, and eigenvector centrality features
in each frequency band are 2N+ 2, 2N+ 2, and N,
respectively.

4.4.2. Eye movement features
First, eyemovement parameters were calculated using
the BeGaze9 analysis software of the SMI eye track-
ing glasses, including pupil diameter, fixation dur-
ation, blink duration, saccade, and event statistics.
Subsequently, the statistics of these eye movement
parameters were derived, thus obtaining the 33-
dimensional eye movement feature. The detailed
description of the extracted eye movement feature
could be found in the previous work [17, 55].

4.5. Classification
As aforementioned, the variation of emotion is fluent
and smooth, which should be reflected in the attrib-
utes of the extracted features. In addition, the extrac-
ted EEG features are typically of high dimensionality
and may contain unrelated and redundant inform-
ation, which increases the unnecessary computation
and time costs. Hence, a feature smoothing method,
linear dynamical system (LDS) [77] was applied to
tackle this issue before feeding features into the fea-
ture fusion model DCCA.

4.5.1. Deep canonical correlation analysis model
The DCCAmodel can fuse features frommultimodal
data by learning the most relevant features and form-
ing the shared representations [78]. Figure 5 presents
the architecture of the DCCA model, which com-
prises three parts: the stacked nonlinear layers (L2 and
L3), CCA calculation, and feature fusion layer.

Assume that the transformed features for two
modalities X1 and X2 are separately denoted byH1 =
f1(X1;θ1) andH2 = f2(X2;θ2), where f 1 and f 2 are the
respective nonlinear transformations, and θ1 and θ2
are the corresponding parameters. Thus, the optim-
ization function is written as:

(θ∗1 ,θ
∗
2 ) = argmax

(θ1,θ2)

corr
(
f1(X1;θ1), f2(X2;θ2)

)
. (14)

Suppose that the centered data matrices are H̄1 and
H̄2, and r1 and r2 are the respective regularization
parameters: hence, the correlation of the transformed
features could be calculated as:

corr(H1,H2) = ||T||tr = tr(T ′T)1/2, (15)

where

T= Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 ,

Σ̂11 =
1

m− 1
H̄1H̄ ′

1 + r1I,

9 https://gazeintelligence.com/smi-software-download.

Figure 5. Architecture of the DCCA model.

Σ̂22 =
1

m− 1
H̄2H̄ ′

2 + r2I,

Σ̂12 =
1

m− 1
H̄1H̄ ′

2. (16)

In particular, the gradient of corr(H1,H2) could be
computed using singular value decomposition. The
parameter updating is accomplished by using the neg-
ative value of correlation as the loss function. Thus,
minimizing loss is equivalent to maximizing cor-
relation. The feature fusion layer is defined as the
weighted average of the two transformed features
[64]. Finally, the fused multimodal feature is fed into
the SVM to train the affective model.

In this paper, the cross validation and grid search
methods were adopted to tune the hyperparamet-
ers in different experiments. The search scope was
defined as follows: Supposing that the numbers of
nodes in L1, L2, and L3 layers of DCCA are n1,
n2, and n3, respectively, these three hyperparameters
are searched in the space where n1 ⩾ n2 ⩾ n3 and
n1,n2,n3 ∈ {32,64,128,256}. So n1,n2,n3 have 20
combinations in total. The learning rate is tuned from
set {10−8,10−7,10−6,10−5,10−4}. These hyperpara-
meters were optimized according to experiments.

4.5.2. Experiment setups
In this paper, we evaluated the proposed approaches
on three public datasets: SEED [17], SEED-V [23],
and DEAP [24]. For model evaluation, we used dif-
ferent cross validationmethods on different databases
with consideration of consistency with previous stud-
ies and the amount of emotion data available. For
the SEED dataset, the three-class (sad, happy, and
neutral) emotion classification task was conducted.
The training and test sets were the first 9 trials and
the last 6 trials, respectively, which was the same as
in [17, 61, 62, 69]. For the SEED-V dataset, the five-
class (disgust, fear, sad, happy, and neutral) emotion
classification task was performed with a three-fold
cross validation strategy, which followed the same
setups as in [55, 69]. SEED and SEED-V followed
the same experiment protocol for data collection and
several sessions with the same participant were done
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on different days in both datasets, which was one of
the advantages over DEAP to study the stable neural
patterns over time. The preprocessing of EEG and
eye movement signals was the same in SEED and
SEED-V.

The DEAP dataset contains 32-channel EEG sig-
nals and 8-channel peripheral physiological signals
from 32 subjects (16 males, 16 females) aged between
19 and 37 (mean age 26.9) with labels in the valence-
arousal dimension. Each subject watched 40 one-
minute music videos. The EEG signals were prepro-
cessed with a bandpass filter between 4 and 45 Hz.
For the DEAP dataset, we built the brain networks
using solely 32 channels in the four frequency bands
(without the δ band) with a 2-second nonoverlap-
ping time window. The peripheral physiological fea-
ture was 48-dimensional. In addition, two binary
(arousal-level, valence-level) classification tasks were
conducted with a ten-fold cross validation strategy.
We divided the continuous arousal and valence
dimensions into two categorical levels (low/high)
with the threshold of 5. The DEAP database includes
continuous levels of arousal, valence, like/dislike,
dominance, and familiarity. However, we focused on
the arousal and valence dimensions in this study,
which are the most common components in emo-
tion models. The setups for the DEAP dataset are in
accordance with [61, 62, 69].

5. Experimental results and discussion

5.1. Threshold tuning for subnetwork construction
As mentioned in section 4.3, the proportional
threshold is applied to preserve the strongest asso-
ciations in the averaged brain networks. It is a crucial
value for subnetwork construction. We utilized SVM
to select the best threshold values. The hyperpara-
meter penalty coefficient C of SVM is tuned from
2−10 to 210 with the step size of the index setting to 1.
Taking SEED-V as example, the best thresholds dif-
fer according to the categories of edge measurements
and vertices, so the threshold tuning process should
be applied in the following four cases: 18-channel
network with correlation edges, 64-channel network
with correlation edges, 18-channel network with
coherence edges and 64-channel network with coher-
ence edges. To reduce time overhead, the threshold
tuning includes two steps:

(a) Rough tuning: The threshold range is set as
[0.0, 1.0] with step size of 0.1. The best threshold
a found in the rough tuning process will be util-
ized to construct the threshold search space in
fine tuning.

(b) Fine tuning: The threshold range is set as
[a− 0.1,a+ 0.1]with step size of 0.01. Threshold
that achieves the highest accuracy rate is selected
as the final threshold afinal.

Figure 6. Threshold rough tuning results of SEED-V.

Figure 7. Threshold fine tuning results of SEED-V
(64-channel network with correlation edges).

Table 1. The best thresholds in four cases with respect to SEED-V.

18-channel 64-channel

Corr. 0.83 0.70
Cohe. 0.65 0.24

Figure 6 depicts the rough tuning results of
SEED-V dataset. The best threshold ranges differ in
these four cases. Taking 64-channel networkwith cor-
relation edges as example, the best range is [0.6, 0.8].
Figure 7 depicts the fine tuning results under this cir-
cumstance. Finally, the best threshold is 0.7 with the
accuracy rate of 70.59 ± 8.03%. For other cases with
respect to SEED-V, the best thresholds are shown in
table 1. According to section 5.3.1, strength features
with correlation as the connectivity metric achieves
the best performance, so we only verify the discrimin-
ation ability of this feature on SEED and DEAP data-
sets, for which the best thresholds are 0.83 and 0.9,
respectively.
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Table 2. Performance (%) of conventional thresholding and
critical subnetwork thresholding methods with respect to the
SEED-V dataset using 18 channels.

Conventional Critical subnetwork

Mean. 55.64 84.45
Std. 5.27 6.10

5.2. Conventional thresholding vs critical
subnetwork thresholding
The conventional thresholding method directly sets
weak associations to 0 according to a propor-
tional threshold after sorting the association weights
[37, 67]. However, this approach is task-unrelevant.
In this study, we proposed an emotion-relevant crit-
ical subnetwork selection approach. To demonstrate
the superiority of our method, we compare the per-
formance of both methods on SEED-V with 18 chan-
nels using DCCA.

The experiment setups in conventional threshold-
ing method were exactly the same as our method.
The strength feature with correlation as connectivity
metric was applied. The threshold value was tuned as
a hyperparameter ranging from [0.0, 1.0] with step
size of 0.01. The best threshold value for conventional
thresholding method is 0.9.

Table 2 shows the performance comparison.
The best classification performance values (%)
of conventional thresholding and critical subnet-
work thresholding methods are 55.64 ± 5.27 and
84.45± 6.10, respectively. Our method shows sig-
nificant superiority with accuracy rate improved by
around 30%. This result demonstrates that compared
with the conventional method, our proposed method
extracts the emotion-relevant subnetworks actively
to reduce the influence of noise in the functional
connectivity.

5.3. Discrimination ability
To demonstrate the discrimination ability of the EEG
functional connectivity network features in emo-
tion recognition, we conduct EEG-based emotion
recognition for the three datasets. The LIBLINEAR
tool kit is adopted to achieve SVM classifier with
L2-regularized and L1-loss, of which penalty coeffi-
cient C is the only hyperparameter. Applying the best
threshold afinal, the tuning process includes two steps:

(a) Rough tuning: The search space of penalty coef-
ficient is set as 2[−10,10] with step size of 0.1. The
best penalty coefficient 2c found in the rough
tuning process will be utilized to construct the
search space in fine tuning.

(b) Fine tuning: The search space is set as 2[c−2,c+2]

with step size of 0.01. Penalty coefficient 2cfinal

that achieves the highest accuracy rate is selected
as the final hyperparameter value.

5.3.1. Experimental results on the SEED-V dataset
For the SEED-V dataset, we constructed the
EEG-based brain functional connectivity networks
using two different categories of vertices and two dif-
ferent edge measurements, then extracted three EEG
functional connectivity network features from the
brain networks.

Table 3 presents the five-class emotion recogni-
tion performance of these features. We could observe
that the strength feature exhibits outstanding per-
formance regardless of the number of vertices and
connectivitymetric. Thismay be because the strength
feature could intuitively reflect the emotion associ-
ated connectivity of the entire brain regions. In gen-
eral, the strength and eigenvector centrality features
exhibit higher accuracy with correlation as the con-
nectivity metric, whereas the clustering coefficient
feature exhibits better performance with coherence.

Correlation and coherence measure the similarity
of paired signals in two aspects. Correlation focuses
on the temporal domain whereas coherence focuses
on the frequency domain. According to the analyses
of Guevara et al [79], coherence is affected by the
power and phrase changes and represents the stabil-
ity of paired signals in power and phase relationship.
Correlation is independent on amplitudes and indic-
ates the time coupling andwaveform similarity. These
two methods construct different network patterns,
which makes differences in the information extrac-
tion efficiency of network features. Our results show
that quantifying the clusters (i.e. clustering coefficient
feature) within brain network is more effectively to
refine information when the network edge is coher-
ence between paired signals. Strength and eigenvector
centrality features, on the other hand, are more effi-
cient when correlation is applied.

The features extracted from 18-channel-based
brain networks exhibit considerable performance
compared with those of 62-channel networks, which
indicates that the EEG functional connectivity net-
work features extracted from the brain networks
constructed with fewer channels are promising for
actual scenarios of emotion recognition applications
in aBCI systems.

In the previous work [50], the authors have
demonstrated that the EEG functional connectiv-
ity network features considerably outperform the
PSD feature and that they are superior to those
directly using the connectivity metrics as features.
In this paper, the best classification accuracy of
74.05 ± 7.09% achieved by the strength feature
defeats the value of 69.50 ± 10.28% attained by the
single-channel-based state-of-the-art DE feature in
the work of [55] for the same dataset.

To further analyze the capability of the best fea-
ture, the strength, in recognizing each of the five
emotions, the confusion matrices are displayed in
figure 8. It could be observed that the strength feature
is superior in detecting the emotion of happiness,
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Table 3.Mean accuracy (%) and standard deviation (%) of the EEG connectivity features in classifying the five emotions with respect to
the SEED-V dataset.

Vertices 62-Channel 18-Channel

Edges Correlation Coherence Correlation Coherence

Stat.
Mean Std. Mean Std. Mean Std. Mean Std.Features

Strength 74.05 7.09 71.89 7.20 72.63 8.26 71.46 6.08
Clustering coefficient 56.35 11.14 71.18 7.82 51.94 8.63 64.14 6.10
Eigenvector centrality 68.78 9.39 60.80 7.18 67.89 11.13 65.57 7.38

Figure 8. The confusion matrices of the strength feature
extracted from the brain networks constructed with two
categories of vertices and two connectivity metrics.

followed by the emotions of neutrality and fear with
correlation as connectivity metric. In contrast, from
the perspective of coherence as connectivity metric,
the strength feature exhibits the best performance in
recognizing the fear emotion and exhibits similar per-
formances with respect to the emotions of sadness,
neutrality, and happiness.

Generally, the strength feature with correlation as
connectivitymetric could achieve better performance
in classifying all emotions, except sadness, in compar-
ison with that of coherence. Overall, the EEG feature
exhibits fair performance in recognizing the emotion
of disgust and could be easily confused by the sad and
neutral emotions, the results for which are in accord-
ance with previous findings [55]. In addition, the
strength feature with the 18-channel approach exhib-
its considerable performance compared with that of
the 62-channel approach. Particularly, the strength
feature with the 18-channel approach could achieve
the same classification accuracy of 84% with that of
the 62-channel approach with respect to recognizing
the emotion of happiness.

5.3.2. Experimental results on SEED and DEAP
datasets
On SEED and DEAP datasets, we utilize the best
EEG functional connectivity network feature, the

strength, to further verify its discrimination ability in
classifying emotions.

On the SEED dataset, the three-class emotion
recognition accuracy achieved by the strength fea-
ture is 80.17 ± 7.12%, which is higher than the
value of 78.51 ± 14.32% [17] attained by the DE
feature. On the DEAP dataset, the performances of
the strength feature for two binary classification tasks
(arousal-level and valence-level) are 73.42 ± 4.67%
and 76.10 ± 4.49%, respectively. These results con-
siderably outperform those of 62.0% and 57.6% [24]
achieved by the PSD feature, as well as those of
68.28% and 66.73% [80] attained using the capsule
network.

These results demonstrate the discrimination
ability of the EEG functional connectivity network
features in classifying three-class emotions (sad,
happy, and neutral), five-class emotions (disgust,
fear, sad, happy, and neutral), and valence-arousal
dimension. Additionally, the strength feature outper-
forms the most commonly used PSD feature and the
state-of-the-art DE feature.

5.4. Complementary representation properties
In this section, the DCCA model is adopted to com-
bine the EEG signals with other modalities for mul-
timodal emotion recognitionwith respect to the three
datasets. Here, the best EEG functional connectiv-
ity network feature, strength with correlation as con-
nectivity metric, is utilized for the evaluation.

5.4.1. Experimental results on the SEED-V dataset
The combination of EEG and eye movement data for
the SEED-V dataset was implemented using two dif-
ferent feature fusion strategies: feature-level fusion
(FLF) and DCCA. The FLF is a direct concatenation
of two feature vectors from EEG and eye movements
within the same time windows according to the time
stampers provided by the recording systems. The con-
catenated feature vectors were used as the inputs of
classifiers for training.

The experimental results are displayed in table 4.
The best classification performance values (%) based
on the EEG connectivity feature, eye movement
data, FLF, and DCCA approaches are 74.05 ± 7.09,
65.21± 7.60, 78.03± 6.07, and 84.51± 5.11, respect-
ively. These results indicate that the combination of
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Table 4. Performance (%) of two single modalities and two
multimodal fusion strategies in classifying the five emotions with
respect to the SEED-V dataset.

Vertices 62-Channel 18-Channel

Stat. Mean Std. Mean Std.
EEG 74.05 7.09 72.63 8.26
EYE 65.21 7.60 65.21 7.60
FLF 78.03 6.07 78.02 7.30
DCCA 84.51 5.11 84.45 6.10

Table 5. Classification performance (%) of different works in
multimodal emotion recognition on the SEED-V dataset.

Works Method Mean Std.

Zhao et al [55] FLF 73.65 8.90
BDAE 79.70 4.76

Liu et al [69] Max 73.17 9.27
Fuzzy 73.24 8.72
DCCA 83.08 7.11

Our method
(62-channel)

FLF 78.03 6.07
DCCA 84.51 5.11

Our method
(18-channel)

FLF 78.02 7.30
DCCA 84.45 6.10

the EEG connectivity feature and eye movement data
could enhance the performance of five-class emotion
recognition. Moreover, the DCCA model may find
the shared space to be more related to emotion. In
addition, the fusion based on the 18-channel EEG
connectivity feature and eye movement data also
achieves considerable classification performance.

Table 5 presents the performance of our proposed
EEG feature compared with the single-channel-based
state-of-the-art DE feature [55, 69] for the mul-
timodal emotion recognition task with respect to the
SEED-V dataset. All these methods applied fusion
methods. BDAE is a feature fusion approach which
combines EEG and Eye movement features by two
deep autoencoder models [55]. Max fusion and fuzzy
fusion are decision-level fusion approaches, of which
the aim is to combine the classification results of
many small classifiers [69]. These results reveal that
our proposed EEG connectivity feature outperforms
the DE feature in combination with eye movement
data based on DCCA when classifying the five emo-
tions, whether using the 62-channel or 18-channel-
based functional connectivity networks.

To investigate the capabilities of EEG connectivity
feature and eye movement data in detecting each spe-
cific emotion, the confusion matrices are displayed
in figure 9. Here, the EEG feature is the strength fea-
ture with 62 channels and the correlation connectiv-
ity metric. It could be observed that both EEG and
eye movement data exhibit potential in classifying
the emotions of fear, happiness, and neutrality. In
particular, the EEG connectivity feature dominates
the recognition of the happiness emotion, while eye
movement data excel at detecting the fear emotion.

Figure 9. Confusion matrices of five-class emotion
recognition using: (a) eye movement data, (b) EEG signals,
(c) FLF, and (d) DCCA models.

Figure 10. Confusion graph of the EEG functional
connectivity network feature and eye movement data in
classifying the five emotions: disgust, fear, sadness,
happiness, and neutrality.

The confusion graph of these two modalities is also
presented in figure 10.

In comparison with the single modality affective
model, the last two confusion matrices in figure 9
indicate that the multimodal fusion strategies could
indeed improve the classification performance for all
of the five emotions. These results demonstrate the
complementary representation properties of the EEG
connectivity feature and eye movement data in classi-
fying the five emotions.

5.4.2. Experimental results on SEED and DEAP
datasets
The classification performances of our work and sev-
eral existing works with respect to the SEED dataset
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Table 6. Classification performance (%) of different works in multimodal emotion recognition on the SEED dataset. All methods were
evaluated with the same dataset split for training and test sets, i.e. 9/6 trial split.

Works Method Mean Std.

Lu et al [17] FLF 83.70 —
Fuzzy 87.59 —

Song et al [81] DGCNN 90.40 8.49
Liu et al [61] BDAE 91.01 8.91
Tang et al [62] Bimodal-LSTM 93.97 7.03
Liu et al [69] DCCA 94.58 6.16
Our method DCCA 95.08 6.42

Table 7. Classification performance (%) of different works in multimodal emotion recognition on the DEAP dataset. All reported
performance were evaluated using 10-fold cross validation. All methods used the same threshold of 5 for valence and arousal except
Xing et al [82], where the ratings below 4.5 were labeled as low and those above 5.5 were labeled as high.

Arousal Valence

Works Method Mean Std. Mean Std.

Xing et al [82] SAE-LSTM 74.38 — 81.10 —
Liu et al [61] BDAE 80.50 3.39 85.20 4.47
Tang et al [62] Bimodal-LSTM 83.23 2.61 83.82 5.01
Yin et al [83] MESAE 84.18 — 83.04 —
Liu et al [69] DCCA 84.33 2.25 85.62 3.48
Our method DCCA 85.34 2.90 86.61 3.76

are displayed in table 6. The existing works are
based on the DE feature and eye movements. We
could observe that the best performance of 95.08±
6.42% is achieved by our work, which combines the
strength feature with eye movement data to detect
three emotions (happiness, neutrality, and sadness).
These results further verify that the combination of
EEG and eye movements could enhance the classific-
ation performance.

Table 7 presents the classification performances of
our work and several existing works with respect to
the DEAP dataset. The existing works are based on
the combination of peripheral physiological features
with the PSD [82, 83] or DE [61, 62, 69] features.
The highest classification accuracy of the two bin-
ary classification tasks, 85.34± 2.90% for the arousal-
level and 86.61± 3.76% for the valence-level, are
both obtained by our work. These results reveal that
the strength feature is also superior to the PSD and
DE features in fusion with peripheral physiological
signals.

5.5. Critical frequency bands
In this section, we evaluate the critical frequency band
of the EEG functional connectivity network feature
on the SEED-V dataset. Figure 11 presents the clas-
sification performance of different frequency bands
using the strength feature with correlation as the con-
nectivity metric. The result demonstrates that 18-
channel and 62-channel networks with correlation
edges show similar characteristics, i.e. the β and γ
frequency bands are superior in classifying the five
emotions in comparison with other bands, which is
in accordance with the results attained by the DE fea-
ture [34, 50]. The topology similarity of these two

Figure 11. Classification performance (%) of different
frequency bands using the strength feature with two
different categories of vertices.

networks may be indicated. Additionally, the fre-
quency bands with the 18-channel approach achieve
comparable performance with that of the 62-channel
approach, which implies the possibility of applying 18
electrodes to detect emotions in real scenario applic-
ations. It should be noted that the performance of the
18-channel approach is obtained by selecting 18 out
of 62 channels in the ESI NeuroScan System instead
of direct recordings from a wearable device. The elec-
trode sensitivity could influence the signal quality and
might degrade the task performance.

5.6. Brain functional connectivity patterns
In this section, we investigate the brain functional
connectivity patterns based on the SEED-V dataset.
The emotion-relevant critical subnetworks are selec-
ted through three phases: averaging, thresholding,
and merging. The numbers of subnetworks attained
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Figure 12. The brain functional connectivity patterns for the five emotions in the five frequency bands with correlation as
connectivity metric. In each subfigure, the positive and negative associations are drawn in red and blue colors, respectively, with
darker line colors reflecting larger absolute values of association weights. In addition, the 62 nodes in each circle denote the 62
EEG electrodes located according to the following criterion: (1) the electrodes in the left and right cerebral regions lie in the left
and right parts of the circle, respectively; (2) the electrodes in the frontal, temporal, parietal, and occipital areas are displayed
from the top to bottom of each circle.

after each phase are 25, 25, and 5, respectively. Spe-
cifically, 25 corresponds to the five emotions in the
five frequency bands, while 5 refers to the five fre-
quency bands, since the critical connections of the five
emotions in each frequency band aremerged together
during the third phase.

In this paper, the 25 subnetworks attained after
the thresholding phase are adopted to analyze the
frequency-specific brain functional connectivity pat-
terns in association with the five emotions. To analyze
both the positive and negative connections, we visual-
ize the brain functional connectivity networks based
on the connectivity metric of correlation.

Considering that the subnetworks are selected
using samples from training sets of all participants
and that a three-fold cross validation strategy is

utilized, the emotion-relevant critical subnetworks
are calculated three times. The results demonstrate
that stable connectivity patterns are exhibited across
these three calculations.

Figure 12 presents the 25 critical subnetworks
associated with the five emotions in the five frequency
bands averaged over three folds. For better analysis of
the distinct connectivity patterns for each emotion in
each frequency band, we display all of the critical con-
nections except for the intersections among the five
emotions.

It could be observed that the positive correlation
connectivity is much higher in the frontal lobes in
the δ band for the negative affective states, includ-
ing the emotions of disgust, fear, and sadness. In
particular, for the disgust emotion, stronger positive
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connectivity is exhibited in the γ bands within both
the left and right brain regions, and stronger neg-
ative connectivity is observed between the left and
right brain regions. However, the fear emotion in the
γ band is dominated by the stronger negative con-
nectivity, and there aremuch weaker positive connec-
tions compared with those of the disgust emotion. In
addition, much more positive connectivity in the θ
band is exhibited for the fear emotion.

The fact that the functional connectivity patterns
are quite similar for the sad and neutral emotions
could account for the confusion between the sad and
neutral emotions, which is consistent with previous
findings [23, 34]. Nevertheless, the connectivity in the
δ band tends to be positive within the frontal areas
and negative in the left brain regions for the sadness
emotion, while negative in larger brain areas for the
neutral emotion.

In terms of the happiness emotion, the entire
cerebral areas aremuchmore active in the δ bandwith
both positive and negative correlation connectivity.
Moreover, in the θ band, negative connectivity is
revealed between the frontal and parietal lobes, with
positive connectivity between the frontal and tem-
poral lobes. In the γ band, the functional connectivity
patterns for the emotions of happiness, fear, and dis-
gust are more similar, which may be originated from
the fact that amygdala voxels contribute to these three
emotions [84]. Overall, these results are in accord-
ancewith findings in the literature based on fMRI that
the brain regions contributing to the emotion classi-
fication are predominated in the frontal and parietal
lobes [84].

5.7. Future work
In this study, we mainly focus on the subject-
dependent models. However, there are some open
questions that are worth exploring in the future. For
example, how could the models generalize across dif-
ferent subjects? i.e. developing subject-independent
models. Some factors such as individual differ-
ences and temporal evolution should be considered.
Recently transfer learningmethods including domain
adaptation and domain generalization have been
shown efficient to deal with these problems [71–75].

We demonstrated that our proposed model can
achieve comparable performance when using 18
channels compared with that using 62 channels
by directly selecting 18 out of 62 channels in the
ESI NeuroScan System. However, when applying 18
channels on other wearable EEG devices, the differ-
ent frequency sensitivities may influence the signal
quality and thereby affect emotion recognition res-
ults. Meanwhile, whether 18-channel network can be
applied to datasets using different EEG acquisition
devices such as DEAP are not discussed as we only
did a preliminary exploration of the reduction in the
number of electrodes in this paper. More in-depth
research about this field is needed.

We recruited sixteen subjects aged between 19
and 24 (mean: 21.62) for SEED-V dataset. The ratio
of women to men is 0.6. Compared with other
physiological-signal based emotional datasets such
as DEAP (32 subjects), DREAMER (23 subjects)
and so on, the number of subjects seems moder-
ate. However, it is still insufficient compared with
conventional healthy EEG datasets. Meanwhile, all
these subjects in SEED-V are college student with
extroverted characteristics and stable mood, which
limits our research to a particular personality and
age profile. To conduct more rigorous and com-
prehensive research, expanding the number of sub-
jects and increasing the diversity of subjects are
essential.

6. Conclusion

In this paper, we have proposed a novel emotion-
relevant critical subnetwork selection algorithm and
evaluated three EEG connectivity features (strength,
clustering coefficient, and eigenvector centrality) on
three public datasets: SEED, SEED-V, and DEAP.
The experimental results have revealed that the emo-
tion associated brain functional connectivity patterns
do exist. The strength feature is the best EEG con-
nectivity feature and outperforms the state-of-the-art
DE feature based on single-channel analysis. Further-
more, we have performed the multimodal emotion
recognition using the DCCAmodel based on the EEG
connectivity feature. The classification accuracies are
95.08± 6.42% on the SEED dataset, 84.51± 5.11%
on the SEED-V dataset, and 85.34± 2.90% and
86.61± 3.76% on the DEAP dataset. These results
have demonstrated the complementary representa-
tion properties between the EEG connectivity fea-
ture and eye movement data. Additionally, the res-
ults have indicated that the brain functional con-
nectivity networks based on the 18-channel approach
are promising for multimodal emotion recognition
applications in aBCI systems under actual scenario
situations.
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