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Abstract. Decision confidence can reflect the correctness of people’s
decisions to some extent. To measure the reliability of human decisions
in an objective way, we introduce a spectral-spatial-temporal adaptive
graph convolutional neural network (SST-AGCN) for recognizing deci-
sion confidence levels based on EEG signals in this paper. The advantage
of our proposed method is that it fully utilizes the knowledge from the
spectral, spatial, and temporal dimensions of the EEG signals. The ex-
periments based on a confidence text exam task within limited time are
designed and conducted. The experimental results demonstrate that the
SST-AGCN enhances the performance compared with the models with-
out using the spatial or temporal information for classifying five decision
confidence levels, achieving the average F1-score of 57.92% and the av-
erage accuracy of 58.16%. As for the two extreme confidence levels, the
average F1-score reaches to 93.17% with the average accuracy of 94.11%.
Furthermore, the neural patterns of decision confidence are analyzed in
this paper through the brain topographic maps and the learned func-
tional connectivities by the SST-AGCN. The experimental results indi-
cate that the delta, theta and alpha bands may be critical in measuring
human decision confidence levels with better recognition performance
than other frequency bands.

Keywords: Decision confidence · Electroencephalogram · Graph con-
volutional neural network · Functional connectivity.

1 Introduction

Decision confidence is a subjective sense of correctness or optimization when
making a decision, which reflects an internal estimation of the probability that
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a choice is correct [13]. Moreover, in spite of the rapid development of science
nowadays, human involvement is still essential in our actual working lives. How-
ever, people do not always make reliable decisions since they can subjectively
lie. So there needs to be an objective way to measure the reliability of people’s
decisions, such as measuring their decision confidence levels.

Due to the importance of decision confidence, it has been extensively inves-
tigated using different types of recorded physiological data, such as eye move-
ment, functional magnetic resonance imaging (fMRI), and electroencephalogram
(EEG), etc. There are many studies employing fMRI methods [11, 1] to explore
the neural basis of the decision confidence, revealing that anterior cingulate
cortex, prefrontal cortex, superior parietal lobule, posterior parietal cortex and
ventral striatum might be the brain areas of great importance for human decision
confidence. Electroencephalogram (EEG) data record the electrical activity in
the brain, which can also contribute to the study of decision confidence. Several
researches based on event-related potential (ERP) have been conducted to inves-
tigate the human decision confidence [17, 2, 7]. Electroencephalographic studies
have confirmed that in the event related potential of the signal, the magnitude
of the signal varies at different levels of confidence [17] and the two levels of
confidence can be distinguished [7]. Nevertheless, the ERP experiment is usually
have many experimental restrictions, such as the stimulus is usually needed to
be presented in a rapid speed, which is not conducive to practical applications.

The majority of studies on decision confidence are based on psychological
research techniques. To study decision confidence in a more realistic scenario,
researchers [9, 8] have developed some new experiments in the visual percep-
tual tasks with infinite amount of time to simulate real-world situations, and
deep neural networks are employed to measure the human decision confidence
levels from multi-channel EEG recorded in decision-making process. Moreover,
Liu et al. proposed an attentive simple graph convolutional networks to learn
the topological knowledge of EEG in the spatial dimension and improved the
performance of classifying the five decision confidence levels [10]. From those
researches, EEG signals are proved to be able to recognize decision confidence
levels in the visual perceptual tasks with deep learning algorithms.

In this paper, we employ a spectral-spatial-temporal adaptive graph convo-
lutional neural network (SST-AGCN) to recognize different levels of decision
confidence from EEG data, which fully utilizes the information from spectral,
spatial and temporal domains of EEG signals. We construct a confidence graph
of the brain, in which the vertices of the graph represented by EEG channels
are connected by functional brain connections to serve as the topology of graph.
Furthermore, the decision confidence associated functional brain connectivities
can be learned by the model in an adaptive manner. Moreover, we design a
novel confidence experimental paradigm where subjects perform a text-based
exam task with limited time, which simulates the real scenarios in exams, to
investigate the discrimination ability of EEG signals for measuring decision con-
fidence levels in the situation of text-based exam. Extensive experiments on this
text-based exam confidence dataset demonstrate the superior performance of
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SST-AGCN compared with other models missing the knowledge from the spa-
tial or temporal domains. Finally, we investigate the neural patterns of decision
confidence in the text-based exam task.

2 Methodology

To fully utilize the knowledge related to decision confidence from spectral, spatial
and temporal dimensions of EEG signals, we adopt a spectral-spatial-temporal
adaptive graph convolutional neural network to measure human decision con-
fidence levels. Fig. 1 illustrates the overall architecture of the spectral-spatial-
temporal adaptive graph convolutional neural network. The preprocessed EEG
features are passed to a stack of L basic SST-AGCN blocks where we apply
the spectral-temporal convolution and spectral-spatial convolution in parallel to
extract the confidence-related features.
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Fig. 1. The overall process of the spectral-spatial-temporal adaptive graph convolu-
tional neural network (SST-AGCN), which consists of L basic SST-AGCN blocks, a
global average pooling layer and a linear classifier to discriminate the decision con-
fidence levels. Each SST-AGCN block contains a spectral-temporal convolution layer
and a spectral-spatial convolution layer in parallel to extract the confidence-related
features.

2.1 Data Preprocessing

To investigate the decision confidence levels, we extract the differential entropy
(DE) features from the multi-channel EEG data in the spectral domain [4], as the
DE feature has been proved to have excellent performance in decision confidence
recognition tasks [9, 8]. The EEG data were first preprocessed with curry 7 and
baseline corrected. Eye movement artifacts were removed using the signals of
EOG and FPZ channels and the noise were filtered out by a 0.3 - 50 Hz band-
pass filter. Then only the EEG segments during the decision-making process
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were extracted, and the segments were divided into the same-length epochs of 1
second without overlapping.

The short-time Fourier transform (STFT) of 1-second Hanning window was
conducted on each epoch of the preprocessed EEG data to extract the DE fea-
tures of five frequency bands (delta: 1-3 Hz, theta: 4-7 Hz, alpha: 8-13 Hz, beta:
14-30 Hz, gamma: 31-50 Hz). In addition, the linear dynamic system method
[15] was employed for feature smoothing in order to filter rapid fluctuations.

The extracted spectral EEG features are defined as X = (x1, x2, . . . , xN ) ∈
RN×F×C , where N denotes the number of samples in time series after pre-
processing, F denotes the five frequency bands of EEG feature, and C de-
notes the number of EEG channels. In addition, X is further transformed into
X̃ = (x̃1, x̃2, . . . , x̃N ) ∈ RN×F×T×C with an overlapping window size of T , in
order to obtain the time sequences while keeping the sample size unchanged. For
each sample, x̃i ∈ RF×T×C .

2.2 Spectral-Spatial-Temporal Adaptive Graph Convolutional
Neural Network

We build the spectral-spatial-temporal adaptive graph convolutional neural net-
work for identifying decision confidence levels based on EEG signals inspired by
the adaptive graph convolution operation for skeleton-based action recognition
[14], and further take the characteristics of the brain into account. We construct
a confidence brain graph represented as G = (V,E), here V is the set of EEG
channels, serving as the vertices in this graph, C = |V | and E represents the set
of edges between EEG channels. The spectral EEG feature X, regarded as the
information on V , contains the decision confidence knowledge in the spectral di-
mension. The weighted adjacency matrix A ∈ RC×C represents the set of edges
E, which also means the functional brain connectivity associated with decision
confidence.

Spectral-Spacial Convolution To learn dynamics and inter-channel depen-
dencies from the data explicitly, the knowledge from the EEG features in the
spectral domain and the topological structure of EEG channels in the spacial do-
main are merged to extract the decision confidence related features. The spectral-
spatial summary of the confidence brain graph B̃ss is calculated between EEG
channels by the graph convolution.

The operation of the graph convolution on vertex vi can be formulated as
[14] :

fout (vi) =
∑

vj∈Bi

1

Zij
fin (vj) · w (li (vj)) , (1)

where fin is the input feature and v denotes the vertex of the graph. The weight-
ing function of convolution operation is represented by w, and Bi represents the
sampling area of the convolution operation for vi. As the sampling area Bi may
be varied, the mapping function li is introduced to map each vertex with a
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weight vector. Zij is the cardinality of sampling area Bi, aims to balance the
contribution of each sampling area.

Considering the topological structure of the brain, we assume that the func-
tional connections may exist between all channels, and the spatial convolution
mechanism considers all channels. In consequence, the sampling area of the ver-
tex vi contains all of the vertices in the confidence brain graph we constructed.
The graph convolution operation implemented in this paper is as follows:

B̃ss = WBin(Apublic +Aprivate), (2)

where W is the Sout × Sin × 1× 1 weight vector of 1× 1 convolution operation.
The input confidence brain embedding can be represent as Bin ∈ RSin×T×C .
Sin denotes the number of the channels in the spectral dimension. In the first
layer, Bin = x̃i ∈ RF×T×C , where Sin equals F . Apublic and Aprivate denote the
public and private weighted adjacency matrices, respectively, representing the
connection strength between vertices.

In particular, Aprivate is a C × C private weighted adjacency matrix repre-
senting the strength of the connections between EEG channels of each sample,
which is obtained by the dot product operation to measure the similarity be-
tween two vertices in an embedding space. Since we aim to identify the most
relevant channels, we project them into the same embedding space and com-
pare with the EEG channel of interest. The input feature Bin ∈ RSin×T×C is
transformed into the embedding space using two 1 × 1 convolution functions,
obtaining two embed features Eθ ∈ RSe×T×C and Eτ ∈ RSe×T×C , respectively.
Eθ and Eτ in the embedding space are then reshaped and multiplied to get the
private adjacency matrix with the shape of C×C. Then the softmax operation
is conducted to normalize the matrix into 0− 1. The calculation of Aprivate can
be formulated as:

Aprivate = softmax
(
Eθ

TEτ

)
. (3)

In addition, Apublic is a C × C public weighted adjacency matrix shared by
all the samples to capture the general functional brain connectivity patterns for
decision confidence recognition, which is a data-driven parameter and is set to be
trainable. From the element of Apublic, the neural patterns of decision confidence
can be clearly illustrated.

Spectral-Temporal Convolution Consider the temporal characteristics of
EEG signals, the convolution operation in the spectral-temporal dimension is
introduced in the model. Time-series of EEG signals are represented as contigu-
ous sequences of every single channel. Therefore, we calculate a spectral-temporal
summary B̃st for each channel from the input spectral feature Bin ∈ RSin×T×C .
The temporal aspect of the graph is constructed by connecting the same EEG
channels across consecutive sequences to model the temporal dynamics within
EEG sequence. Then extending the concept of neighbor-hood to temporally con-
nected EEG channels, the graph convolution operation can be extend to the
temporal dimension. The spectral-temporal embedding B̃st is updated by the
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adjacent frames of the same channel and is formulated as:

B̃st = Convt(Bin), (4)

where B̃st ∈ RSout×T×C and Sout denotes the number of the output channel in
the spectral dimension. The convolution operation Convt is performed on the
temporal dimension T of the input spectral features in each EEG channel with
the kernel size of Kt × 1. The parameter Kt controls the temporal range to be
included in the neighbor graph and can thus be called the temporal kernel size.

Aggregation For each SST-AGCN block, the spectral-spatial and spectral-
temporal convolutions run in parallel to calculate embedding summaries B̃.
Moreover, the batch normalization (BN) and the residual connection [5] are
introduced to ensure the stability of the network and retain the original in-
formation, which is achieved by 1 × 1 convolution operation. The aggregation
process can be formulated as:

B̃ = σ(BN(B̃ss) + BN(B̃st) + residual(Bin)), (5)

where σ denotes the Relu activation function. We stack L such basic SST-AGCN
blocks to successively update the embeddings, followed by a global average pool-
ing layer and a linear classifier layer to predict the decision confidence levels.

3 Experiment

3.1 Dataset

We design a novel decision confidence experiment to collect EEG data during
the decision-making process in a text exam task. Twenty-four healthy subjects
(11 men and 13 women) aged from 19 to 24 (mean: 22.5, std: 1.69) took part
in the experiment. In the experiment, participants were supposed to answer
questions in the form of single choice based on the text in Chinese, and score
the confidence levels of each choice. The EEG signals were recorded during the
decision confidence experiment.

Stimuli The stimulus material were composed of 80 text-based exam questions
in Chinese in the form of single choice and each question offered 4 options con-
taining several words. The exam questions were some incomplete sentences lack-
ing some words, and the options were alternative words to fill in the sentences.
The participants were supposed to decide which of the words in the option were
the most appropriate. These questions came from the exam question bank in
Chinese high school exam, making the experiment very close to the real scene.
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Procedure In our experiment, the participants need to choose the appropriate
words in Chinese in the options to fill in incomplete sentences from the questions
and score their confidence levels. The experiment consists of 80 trials and each
trial contains one exam question, corresponding to one decision. In each trial,
the subjects are asked to choose which option they think was correct. Just as
there is a time limit in the real exam, we have a fixed time limit for each question
so that the participants must decide within a certain time limit. The subjects
are told to click the choice button by a mouse to choose the appropriate answer
they thought, and then the subjects should report their subjective confidence
about this decision by scoring on the confidence scale on the screen. The 5-point
confidence scale includes: certainly wrong: 1; probably wrong: 2; not sure: 3;
probably correct: 4; and certainly correct: 5.

During the experiment, subjects wore 62 channel electrode caps. The EEG
data are collected by an ESI neuroscan system, and the sampling frequency was
1000 Hz according to the international 10-20 system. The impedance of each
electrode was controlled below 5 kΩ. Only the EEG data collected during the
decision-making process were used to recognize the decision confidence levels.

3.2 Implementation Details

The five levels of decision confidence (1-5) reported by the subjects are used as
classification labels to investigate the capability of EEG signals for measuring
human decision confidence levels in the text-based exam task. All the classi-
fiers are trained for each subject with stratified five-fold cross validation, which
means that the EEG features of each confidence level are divided into the train-
ing set and the test set in a ratio of 4:1, in order to make the proportion of
each confidence level in the training set and the test set same. To evaluate the
performance of SST-AGCN for classifying human decision confidence levels in
the text-based exam task, we compare with other four classifiers, support vector
machine (SVM) [3], long short-term memory neural networks (LSTM) [6], regu-
larized graph neural networks (RGNN) [16], and spectral-spatial adaptive graph
convolutional neural network (SS-AGCN). RGNN is proved to be a powerful
model in EEG-based recognition tasks [16], and SS-AGCN is constructed by the
SST-AGCN removing the spectral-temporal aspect to evaluate the contributions
of the temporal components.

For the SST-AGCN and SS-AGCN classifiers, the EEG features X ∈ RN×F×C

are transformed into X̃ ∈ RN×F×T×C by an overlapping window with the size
of T . In our experiments, T is set to 5 seconds and C equals to 62. The num-
ber of the SST-AGCN blocks L is set to 6, and the channel size of the graph
convolutional layer of each SST-AGCN block is ranged from 30 to 120. RGNN
adopted in this paper is implemented using the public code [16]. The adopted
LSTM classifiers have two layers, with the layer size ranged from 300 to 600, and
the overlap operation is also conducted in LSTM by the window size of T , which
equals to 5. The SST-AGCN, SS-AGCN, RGNN and LSTM are all implemented
by PyTorch [12] deep learning framework, and employ the cross-entropy as the
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loss function. The SVM classifiers applied in this paper are with the RBF kernel
and the range of parameter C is 2[−10:10].

3.3 Results Analysis

In this section, we compared the performance of SST-AGCN with other four
pattern classifiers, SVM [3], LSTM [6], RGNN [16], and SS-AGCN to recognize
five confidence levels and two extreme confidence levels. The neural patterns of
decision confidence in the text-based exam task are also investigated.

Table 1. The mean accuracies and F1-scores (%) of SST-AGCN and baseline models
for classifying five decision confidence levels with DE features in five frequency bands
and the total frequency band.

Classifier
Delta Theta Alpha Beta Gamma Total

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1

SVM 42.82 39.68 43.35 40.78 42.67 39.98 40.67 38.40 39.87 36.75 46.73 45.22
LSTM 47.76 46.88 48.41 45.73 45.98 42.38 43.09 38.87 45.26 41.84 51.30 49.97
RGNN 50.52 48.20 50.80 46.54 49.74 46.91 48.62 44.95 49.38 44.83 53.58 52.83
SS-AGCN 53.23 52.81 53.79 52.83 52.57 53.17 52.05 51.42 51.16 51.27 55.14 54.88
SST-AGCN 54.49 53.75 54.61 54.18 54.40 54.22 53.05 52.82 53.61 53.25 58.16 57.92

Measuring Five Decision Confidence Levels The mean accuracies and
F1-sores of SVM, LSTM, RGNN, SS-AGCN, and SST-AGCN for the EEG fea-
tures obtained from five frequency bands are listed in Table 1, as well as the
total frequency band that contains all of the five frequency bands. From Table
1, the experimental results demonstrate that SST-AGCN performs best among
these five pattern classifiers, achieving the best performance with the classifica-
tion accuracy of 58.16% and F1-score of 57.92% using the DE features in the
total frequency band. Furthermore, the delta, theta and alpha bands seem to
be important in investigating decision confidence levels in the text exam task,
as they achieve the best accuracies/F1-cores of 54.49%/53.75%, 54.61%/54.18%
and 54.40%/54.22%, respectively, with the SST-AGCN classifier. The reason why
SST-AGCN performs better than other models is that others do not take the
all of the spectral, spatial and temporal information of EEG into account. The
fact that SST-AGCN always surpasses SS-AGCN also indicates the importance
of the spectral-temporal convolutional layer.

To further study each levels of decision confidence, the confusion matrices of
five classifiers with the EEG feature in the total frequency band are presented in
Fig. 2. One of the interesting things we find from these confusion matrices is that
extreme confidence levels (1 and 5) are much easier to be distinguished than the
intermediate confidence levels (2,3,4) by all models. In addition, the neighboring
confidence levels are more easily confused in most cases which is consistent with
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b)  LSTMa) SVM c) RGNN d) SS-AGCN e) SST-AGCN

Fig. 2. The confusion matrices of five classifiers for identifying five decision confidence
levels in the total frequency band.

our common sense. Moreover, the SST-AGCN is better for discriminating most
of the five confidence levels than other classifiers.
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Fig. 3. The accuracies and F1-scores (%) of 24 subjects and their average with SST-
AGCN for discriminating extreme confidence levels based on the EEG feature in the
total frequency band.

Measuring Extreme Confidence Levels We further distinguish the lowest
decision confidence level of 1 with the highest decision confidence level of 5. Fig.
3 demonstrates the discriminating performance of two extreme confidence levels
(1 and 5) of 24 subjects with SST-AGCN using EEG features in the total band,
which can be regarded as a binary classification problem. The experimental
results show that the extreme confidence levels can be well distinguished with
the average accuracy of 94.11% and the average F1-score of 93.17%.
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Visualization of the Brain Topographic Maps The neural patterns corre-
sponding to different levels of decision confidence are illustrated in Fig. 4, which
are obtained by averaging the DE features from all 24 participants in each EEG
channel. From Fig. 4, we can see that the energy of bilateral frontal cortex and
temporal cortex in the low confidence levels were stronger in the delta and theta
bands than in high confidence levels. Moreover, as confidence levels increasing,
the energy increases in the central frontal cortex, parietal cortex, and occipital
cortex in the Delta band, as well as in parts of the occipital cortex in the Al-
pha and Beta bands. These phenomena illustrate that the neural patterns that
correspond to the confidence levels might exist.

1

2

3

4

5

Delta Theta Alpha Beta Gamma

0.30 0.35 0.40 0.45 0.50 0.55 0.60

Fig. 4. The average topographic maps of 24 subjects for five decision confidence levels
with five frequency bands. The column denotes the different confidence levels and the
row denotes the different frequency bands.

Visualization of the Learned Functional Connectivities We visualized
the functional brain connectivities learned in each SST-AGCN block while clas-
sifying five confidence levels in Fig. 5, from which we can see that the learned
functional connections mainly aggregate on the frontal and parietal regions at
the first block, and the complicated connections appear in the deep blocks. This
phenomenon is consistent with the brain topographic mapping discussed above,
indicating that the frontal and parietal brain areas may be important for mea-
suring decision confidence levels based on EEG signals in the text exam task.
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Block-1 Block-2 Block-3 Block-4 Block-5 Block-6

Fig. 5. The functional brain connectivities learned by SST-AGCN represented as the
edge weight of the adjacency matrix are visualized by top 10 connections between EEG
channels. The rows present the six basic SST-ACGN blocks. Darker color of the line
denotes the stronger connection between EEG channels.

Furthermore, the SST-AGCN model can process complicated global connectivi-
ties with the deep layers.

4 Conclusion

In this paper, we propose a spectral-spatial-temporal adaptive graph convolu-
tional neural network (SST-AGCN) to fully exploit the knowledge of EEG data
in different domains, and address the problem of measuring decision confidence
levels in a text-based decision confidence task. A novel decision confidence ex-
periment was designed based on the text exam task in Chinese to investigate the
discrimination ability of EEG signals for identifying human decision confidence
levels in a realistic scenario. We compared the performance of SST-AGCN with
four baseline pattern classifiers for recognizing the different levels of decision
confidence. The experimental results demonstrate that the SST-AGCN model
performs best in five levels classification problems. And the extreme confidence
levels can be distinguished best through the SST-AGCN model. The experimen-
tal results also indicate that the delta, theta and alpha bands are critical in the
text-based exam task with the highest accuracy and F1-score. In addition, ac-
cording to the analysis of the brain topographic maps and the learned functional
connectivities by SST-AGCN, the frontal and parietal area may play important
roles in measuring decision confidence levels.
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