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Abstract— To explore the capability of utilizing electroen-
cephalograms (EEGs) for the measurement of human decision
confidence levels, this paper develops a new visual percep-
tual decision confidence experiment. In this experiment, a
visual perceptual decision-making task is performed by 14
participants, and their EEG data are recorded. The problem
of measuring decision confidence levels is considered to be
a pattern classification task, and two pattern classifiers are
trained with differential entropy (DE), power spectral density
(PSD), differential asymmetry (DASM), rational asymmetry
(RASM), and asymmetry (ASM) features extracted from mul-
tichannel EEG data. We compare the performance of these
features and find that the DE feature performs better than
the others for measuring levels of decision confidence. The
experimental results indicate that EEG signals offer good
capability for measuring human decision confidence levels. The
best performance of our proposed method in measuring five
levels of decision confidence reaches an accuracy of 49.14%
and F1-score of 45.07%, and for the extreme levels of decision
confidence, the recognition accuracy reaches 91.28%, with an
average F1-score of 88.92%. Topographic maps are also used to
depict the neural patterns of EEG signals, suggesting that the
posterior parietal cortex and occipital cortex might be sensitive
brain areas for indicating decision confidence.

I. INTRODUCTION
Decision confidence is the feeling of correctness or opti-

mization of an individual when making a decision and can re-
flect the probability of being correct [1]. In addition, decision
confidence is a very common psychological phenomenon
and may be the most basic component in the decision-
making process [2]. Existing research indicates that decision
confidence is closely related to perceptual decision-making
and may influence the accuracy of perceptional choices.
Therefore, the investigation of human decision confidence
is not only of very high scientific value but also of great
practical significance.

Moreover, people do not act honestly all the time, and they
may sometimes pretend to be right and assume that their
judgments are definitely reliable. Considering that people’s
decisions are not completely reliable and that some mistakes
may be inevitable, it is necessary to find an objective way
to measure the reliability of decisions.

In recent years, researchers have carried out a series of
studies on decision confidence from low rodents to higher
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primates and human subjects by using a variety of techniques
such as single-cell recording and functional magnetic reso-
nance imaging (fMRI). The research pertaining to human
subjects based on fMRI methods [3], [4], [5] reveals that the
anterior cingulate cortex, prefrontal cortex, superior parietal
lobule, posterior parietal cortex and ventral striatum may
be the most sensitive brain regions with respect to human
decision confidence and that different decision-making tasks
with different difficulty levels may have different neural
bases.

There are several studies that employ event-related po-
tential (ERP) to investigate the neural mechanisms of hu-
man decision confidence [6], [7]. These research endeavors
have demonstrated that electroencephalography (EEG) sig-
nals have the capability to enable distinguishing between dif-
ferent levels of decision confidence when making a decision.
Nevertheless, the ERP experiment needs to be repeated many
times to average the results so that random brain activity
may be averaged and to ensure that the relevant waveform
is retained. In addition, the ERP experimentation usually
requires rapid presentation of the stimulus in an ideal labora-
tory environment. These restrictions on ERP experimentation
are not appropriate for the single trial scenario in real-world
applications.

In this study, our aim is to develop a novel objective
approach to assess the reliability of people’s judgments
and to develop an efficient method for measuring different
levels of decision confidence from EEG signals in the visual
perception task, as it is easy to understand and operate and
readily inspires different decision confidence levels.

In this paper, we focus on investigating the neural patterns
and the capability of EEG signals for measuring five levels of
decision confidence in a visual perceptual task. We design a
decision confidence experimental paradigm in which subjects
perform a visual perception task. During the experiment,
multichannel EEG data are acquired from subjects with
different decision confidence levels. Furthermore, we adopt
two pattern classifiers to recognize the level of decision
confidence from EEG data. The experimental results demon-
strate that EEGs are able to distinguish different levels of
decision confidence and that neural patterns of EEG signals
for decision confidence in the visual perception task do exist.

II. CONFIDENCE EXPERIMENT DESIGN

It is important to design a reliable and effective decision
confidence experiment to help people make decisions more
credibly. We design a new visual perceptual decision ex-
periment to investigate discrimination capability of different
levels of decision confidence.



A. Stimuli

The stimuli materials that we used in this confidence
experiment were selected from the Caltech 101 dataset [8],
which was collected by Fei-Fei Li and colleagues. We
selected three groups of images, each containing three types
of similar animals (duck, goose, swan; cougar, leopard, wild
cat; goat, gerenuk, elk), and every type includes five images.
There are a total of 135 images, and every image represents
one trial as well as one decision. Different degrees of
downsampling are performed to distinguish the task difficulty
and each type of animal is divided into three difficulty
grades according to the downsampling rate: easy, medium
and difficult. As a result, we can obtain the EEG data of
different decision confidence levels. The subjects are required
to identify the types of the animals in the images and to
report their confidence levels for each decision.

B. Subjects

Fourteen healthy subjects (7 males and 7 females, aged
from 18 to 24) participated in the experiment, and each
subject self-reported normal or corrected-to-normal vision.
All subjects were informed about the experimental proce-
dures and were required to refrain from body movement to
obtain EEG data of high quality. To encourage the subjects
to participate more actively in the experiment, the payment
for the participation was calculated according to the decision
accuracy of each participant and was reported in advance.

C. Protocol

The experiment consists of 135 trials, where each trial
contains one image, which corresponds to one decision. In
each trial, the subject is supposed to identify the animal
in the image and is required to complete three sections:
1) First, an image appears randomly on the screen, along
with three different options including the correct answers for
the other two animals in the same group, and the subject is
required to make a decision about which option to choose; 2)
Second, once the subject has made the decision, the option
should be clicked with a mouse; and 3) Finally, the subjects
should report their subjective decision confidence levels
about this decision by scoring based on a 5-point confidence
scale appearing on the screen. The 5-point confidence scale
includes the following: certainly wrong: 1; probably wrong:
2; not sure: 3; probably correct: 4; and certainly correct: 5.
The protocol of the experiment in this paper is illustrated in
Fig. 1.

The experiment was conducted in a separate and quiet
room, and EEG data were recorded during the entire ex-
periment using a 62-channel active AgCl electrode cap with
the ESI NeuroScan System at a sampling rate of 1000 Hz
according to the international 10-20 system. This study was
reviewed by the Scientific and Technical Ethics Committee
of the Bio-X Institute at Shanghai Jiao Tong University,
and all subjects proactively signed an informed agreement
describing the details and the matters requiring attention in
this experiment.

Trial K-2 Trial KTrial K-1 Trial K+1 Trial K+2
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Fig. 1. The protocol of the visual perception decision confidence experi-
ment proposed in this paper.

III. METHODOLOGY

A. Data Preprocessing

We first checked the EEG signals visually, and then, a
bandpass filter between 0.3 and 50 Hz was applied to each
channel to filter the noise and remove artifacts. After data
preprocessing, we extracted only the EEG segments that
were acquired during the decision-making process and that
were related to decision confidence. The decision segments
utilized in our analysis are illustrated in Fig. 1, which is from
the presentation of a stimulus in response to the press of a
button to cause a decision. We then divide the segments into
epochs of the same length of 1 s without overlapping.

B. Feature Extraction

Feature extraction is performed for each epoch of the pre-
processed EEG data through the short-term Fourier transform
(STFT) of a Hanning window of 1 s. Five different EEG
features in five frequency bands (delta: 1-4 Hz, theta: 4-8 Hz,
alpha: 8-14 Hz, beta: 14-31 Hz, and gamma: 31-50 Hz) are
extracted in our experiments: power spectral density (PSD),
differential entropy (DE), differential asymmetry (DASM),
rational asymmetry (RASM) and asymmetry (ASM) features
[9], [10]. The DE feature is proven to be equivalent to
the logarithmic PSD for EEG sequences of a fixed length
[10]. The DASM and RASM features are computed as the
differences and ratios, respectively, between the DE features
of 27 pairs of hemispheric asymmetry electrodes. The ASM
features represent the direct concatenation of DASM and
RASM features.

The dimensions of the PSD, DE, DASM, RASM, and
ASM features are 310 (62 electrodes×5 bands), 310 (62
electrodes×5 bands), 135 (27 electrode pairs×5 bands),
135 (27 electrode pairs×5 bands) and 270 (54 electrode
pairs×5 bands), respectively. The linear dynamic system
(LDS) algorithm was also applied to filter out irrelevant
components [11].

C. Classification

The extracted EEG features are normalized between 0
and 1 separately and fed to two classifiers: support vector
machine (SVM) and deep neural network with shortcut
connections (DNNS) [12]. The confidence levels (1-5) are
used as labels to investigate the capability of EEG signals
for measuring human decision confidence. The classifiers



are trained for each subject with stratified five-fold cross-
validation. For each subject, the features belonging to each
class are divided into five parts of the same size according
to the confidence level: four for the training set and one for
the test set.

We use the SVM classifier with the RBF kernel and
search the parameter space from 2[−5:10] for C. The deep
neural network with shortcut connections is also employed to
measure the decision confidence levels. We construct a neural
network with four hidden layers and one output layer and
introduce two short connections to ensure that the original
information is not lost. The ReLU function is employed as
the activation function, and batch normalization layers are
also employed. The size of the hidden layers is searched,
the range is from 50 to 700, and the learning rate is set to
0.0001.

IV. EXPERIMENTAL RESULTS

The mean accuracy rates and F1-scores of SVM and
DNNS for different features obtained from different fre-
quency bands and total frequency bands that represent the
direct concatenation of all five frequency bands are described
in Table I. First, the results in Table I demonstrate that
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Fig. 2. The confusion matrix of two classifiers with the DE feature. The
rows of the confusion matrix represent the target class and the columns
represent the predicted class that the classifier outputs. The numbers inside
the figures denote the classification accuracy.

DNNS performs better than SVM, with the best classifica-
tion accuracy of 49.14% and F1-score of 45.07% for the
DE feature. Furthermore, the performance with respect to
different features is compared. It can be determined that the
DE feature achieves higher classification accuracy than the
other features, indicating the superior performance of DE
features over the other features in this task.

The results also illustrate that the delta band performs
better than the other four bands, with an accuracy of 45.12%
and F1-score of 39.08%. The confusion matrices of these two
classifiers with the DE feature in the total band are shown in
Fig. 2. From the confusion matrices, we can find that extreme
confidence levels 1 and 5 are easy to recognize and that the
intermediate confidence levels (2, 3 and 4) are difficult to
be distinguished. Additionally, DNNS is better than SVM in
identifying intermediate confidence levels.
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Fig. 3. The accuracy and F1-score (%) of DNNS of 14 subjects for the
DE feature in identifying extreme confidence levels.

A. Extreme Levels of Decision Confidence

We then further distinguish the lowest decision confidence
level of 1 from the highest decision confidence level of 5. The
performance of this binary classification achieves an average
accuracy and standard deviation of 91.28%/5.83% and an
average F1-score and standard deviation of 88.92%/6.55%.
The classification results of 14 subjects are shown in Fig.
3, which describes the classification performance of DNNS
with respect to the DE feature for the extreme levels of
decision confidence: 1 and 5.

The experimental results mentioned above demonstrate
that EEG signals have the capability to distinguish different
decision confidence levels.

B. Neural Patterns

We further explored the neural patterns corresponding to
different levels of decision confidence. Fig. 4 demonstrates
the neural patterns for decision confidence by averaging the
DE features from all participants in each channel. We can
find that the neural patterns that correspond to the decision
confidence levels do exist, which are reflected in the degree
of activation of brain regions and frequency bands with
different decision confidence levels. In particular, we can
find that a higher decision confidence level corresponds with
higher energies of the posterior parietal cortex and occipital
cortex in the delta, theta and alpha bands, indicating that
the sensitive areas with respect to the decision confidence in
this task might be the posterior parietal cortex and occipital
cortex.

V. CONCLUSIONS

In this paper, we have investigated the capability of EEG
signals for measuring different levels of human decision
confidence in a visual perceptual decision task. We have
adopted SVM and DNNS to build EEG-based decision
confidence detection models for measuring five levels of
decision confidence. The experimental results indicate that
EEG signals have the capability of measuring decision
confidence and that the DE feature is more effective than



TABLE I
THE MEAN ACCURACIES AND F1-SCORES (%) OF SVM AND DNNS CLASSIFIERS IN DIFFERENT FREQUENCY BANDS FOR DIFFERENT FEATURES.

Feature Classifier
Delta Theta Alpha Beta Gamma Total

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1

PSD
SVM 35.04 29.64 34.57 29.67 32.9 28.92 34.4 29.74 31.85 26.02 38.34 34.62

DNNS 44.81 38.36 44.48 38.86 44.98 37.55 44.91 37.25 41.74 34.17 46.76 41.08

DE
SVM 34.71 31.43 33.88 29.06 31.26 27.46 33.39 29.12 34.14 29.38 40.93 37.43

DNNS 45.12 39.08 43.06 35.19 42.01 34.94 43.58 38.06 42.83 37.86 49.14 45.07

RASM
SVM 33.92 27.8 29.44 25.63 31.19 26.64 30.77 25.85 32.92 27.45 34.72 31.86

DNNS 40.65 33.79 42.39 33.59 42.94 35.41 42.09 35.01 41.05 34.65 45.31 39.7

DASM
SVM 31.91 26.32 30.94 26.56 29.8 26.31 31.18 26.21 32.55 28.07 34.89 32.22

DNNS 39.14 32.89 41.04 32.88 42.25 35.52 41.24 34.06 43.58 35.89 45.53 39.32

ASM
SVM 31.17 26.25 29.34 25.6 31.67 26.47 30.72 26.06 32.22 28.04 34.8 32.21

DNNS 41.43 35.12 41.98 34.4 42.71 35.69 41.61 34.55 43.03 36.21 47.13 40.49
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Fig. 4. The average neural patterns of 14 subjects for five confidence
levels. Rows represent the different frequency bands, and columns represent
the confidence levels.

other features in this decision confidence detection task. The
best detection performance reaches an accuracy of 49.14%
and F1-score of 45.07%, and for extreme levels of decision
confidence, the recognition accuracy reaches 91.28%, with an
average F1-score of 88.92%, suggesting that specific decision
confidence levels can be identified based on brain activities.
The existence of neural patterns has also been identified in
the context of decision confidence for the visual perception
task, as the posterior parietal cortex and occipital cortex
might be sensitive regions in measuring the levels of decision
confidence.
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