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Abstract. Most of the studies on decision confidence are from the fields
of neuroscience and cognitive science, and existing studies based on deep
neural networks do not exploit the topology of multi-channel EEG sig-
nals. In this paper, we propose an attentive simple graph convolutional
network (ASGC) for EEG-based human decision confidence measure-
ment. ASGC captures both coarse-grained and fine-grained inter-channel
relationship by learning a shared adjacency matrix and utilizing self-
attention mechanism, respectively. In addition, we propose a confidence
distribution learning (CDL) loss based on a natural intuition to alleviate
two problems: lack of training samples and label ambiguity. We conduct
experiments on a dataset built for the confidence measurement in a visual
perception task. The experimental results demonstrate advanced perfor-
mance of our model, achieving an accuracy of 68.83% and F1-score of
66.9%. Finally, we investigate the critical channels for decision confidence
measurement with the attention matrix of EEG channels.
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1 Introduction

Nowadays, with the development of deep learning algorithms, human participa-
tion is no longer needed in some well-structured problems. Nevertheless, profes-
sionals are still indispensable in complex tasks with high risk, such as business
decision making and military remote sensing images interpreting. Unfortunately,
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it is impossible to always make decisions with honesty and certainty. Hence, de-
veloping an objective and stable method to measure human decision confidence
is of great practical value.

Human decision confidence is defined as the probability of an overt or covert
decision, given the evidence, being correct [11]. Most of the studies on decision
confidence are from the fields of neuroscience and cognitive science. They can be
broadly divided into two categories depending on the techniques used to acquire
data from brains: functional magnetic resonance imaging (fMRI) and electroen-
cephalography (EEG). The studies based on fMRI [1, 5, 10] indicate that anterior
cingulate cortex, prefrontal cortex, posterior parietal cortex, superior parietal
lobule, and ventral striatum may be the brain regions closely related to human
decision confidence. On the other hand, there are some works that use EEG and
event-related potentials (ERPs) to investigate neural patterns of human decision
confidence [4, 2]. These works have shown that EEG signals recorded in decision-
making process can be used to discriminate different degrees of human decision
confidence. However, ERP experiments require rapid presentation of the stimu-
lus in a laboratory environment, so they are not feasible to real-world one-trial
applications.

In the field of machine learning, there have been some attempts to handle
the strict requirements of ERP experiments and improve discrimination per-
formance [8, 7]. They leveraged the power of deep learning models to measure
human decision confidence from multi-channel EEG recorded in decision-making
process. Their experimental results show that EEG signals are capable of mea-
suring different levels of decision confidence and the differential entropy (DE)
feature using all 5 bands achieves the best performance. However, their ap-
proaches ignore the topological structure of multi-channel EEG. Moreover, their
approaches suffer from the limited number of training samples and the label am-
biguity of 5-level confidence categorization caused by the huge costs of collecting
EEG data and the difficulty of acquiring accurate labels.

Graph neural networks (GNNs) are deep learning approaches applied in the
graph domain. In GNNs, convolution operations are the most popular propa-
gation operations, which aims to generalize the classical signal processing oper-
ation to the graph domain. Kipf and Welling [6] proposed graph convolutional
network (GCN), which simplifies the convolution operation and handles gradient
exploding/vanishing problem by introducing a renormalization trick. To reduce
the excess complexity of GCNs, SGC [13] removes nonlinearities and merges
weight matrices between consecutive layers. All of the models mentioned before
use the fixed original adjacency matrices to represent relations between nodes.
To capture implicit relations between nodes, Li et al. [9] proposed an Adaptive
Graph Convolution Network(AGCN). The residual graph Laplacian is learned
by AGCN and added to the original Laplacian matrix. In addition, many ad-
vanced works [14, 15] in affective computing have successfully adopted GNN to
exploit the topology of EEG signals.

In this paper, inspired by biological topology of human brains, we pro-
pose an attentive simple graph convolutional network (ASGC) to capture both
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the coarse-grained and fine-grained topological structure of multi-channel EEG.
Specifically, inspired by [12], we use a learnable adjacency matrix to capture
coarse-grained inter-channel relations shared among all samples. Furthermore,
we use an attention score matrix to capture fine-grained inter-channel relations
for each sample in runtime. In addition, we propose a confidence distribution
learning (CDL) loss to solve two problems: inadequate training samples and am-
biguous labels. Inspired by [3], our CDL loss enforce our model to learn a discrete
class distribution rather than a single class for each sample, leading to a better
performance of the trained model. We conduct experiments on the dataset built
for the confidence measurement in a visual perception task developed in [8].
Our experimental results demonstrate the superior performance of our proposed
ASGC compared to other baseline models. Finally, critical channels are explored
for decision confidence measurement in the visual perception task.

2 Methodology

In this section, we formulate the confidence classification problem and our atten-
tive simple graph convolutional network (ASGC). Then, we detail the confidence
distribution loss (CDL) designed for this specific problem.

2.1 Attentive Simple Graph Convolutional Network

We consider each EEG channel as a graph node, so the input can be represented
by a feature matrix X ∈ Rn×d, where n denotes the number of channels and d
denotes the feature dimension of each channel. For each training sample, a label
Y ∈ {1, 2, ..., C} is given, where C denotes the number of categories.

The overall architecture of ASGC is illustrated in Fig. 1. The SGC is used
to exploit the coarse-grained inter-channel relationship. Let A ∈ Rn×n be the
learnable adjacency matrix in SGC. We define S as follows

S = D̃− 1
2 ÃD̃− 1

2 , (1)

where Ã = A+In, and D̃ii =
∑

j Ãij . This is a renormalization trick introduced
by [6] to solve the exploding and vanishing gradient problem. Then, the simple
graph convolution network (SGC) can be formulated as follows

Z = SKXW = X̃W, (2)

where W ∈ Rd × h, and h denotes the hidden size. In the graph convolution
operation defined in (2), K implies that each node can aggregate information
from the nodes that are K−hops away. Although X̃ is still in the same feature
space as X, it incorporates the topological information of EEG channels. The
final output of SGC Z, linearly transformed from X̃, is a feature matrix in a
high-dimensional feature space. L1 regularization is applied on A to improve
the sparsity of the adjacency matrix.
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Fig. 1. The overall architecture of our ASGC model.

To further capture the fine-grained topological structure of EEG channels in
runtime, we introduce a self-attention module as follows

M = (mij) = softmax(ZZT ), (3)

X̂ = MX̃, (4)

where M ∈ Rn×n is the attention matrix, and softmax is employed in self-
attention to normalize the attention matrix so that

∑
j mij = 1. Essentially,

self-attention mechanism can be viewed as the refinement of the input feature
using a linear combination of self-values. It worth noting that attention matrix is
dynamically calculated for each sample, compared to the fixed adjacency matrix
in the SGC.

Finally, rather than use global pooling, we concatenate the feature of all
nodes into a vector. Then, the vector is fed into a fully-connected layer with
softmax activation function. The output distribution over all classes is computed
as follows

Ŷ = softmax(X̂Wo), (5)

where Wo ∈ Rh×C , and Ŷ ∈ RC .

2.2 Confidence Distribution Loss

The works in [8, 7] simply use the one-hot encoding of 5-level confidence labels
to calculate the training loss. However, the distance between each pair of classes
should not be considered as equal due to the intuition that the confidence level is
a continuous state. For example, the distance between level 1 and level 5 should
be greater than the distance between level 1 and level 2. Inspired by [3], we
propose a confidence distribution loss to address this problem. Specifically, we
convert each label Y ∈ {1, 2, .., C} to a distribution Ỹ ∈ RC . We assume that
the distribution should concentrate around the ground-truth label Y and the
distance between the adjacent confidence levels is equal. Thus, it is nature to use
the normal distribution with µ = Y and σ to construct the target distribution:

Ỹc =
p(c|µ, σ)∑C

l=1 p(l|µ, σ))
, (6)
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p(l|µ, σ) =
1√
2πσ

exp

(
− (l − µ)2

2σ2

)
, (7)

where c = 1, 2, ..., C, σ is a hyper-parameter that can be tuned, and the distri-
bution requirement

∑C
l=1 Ỹl = 1 is satisfied.

Then, the confidence distribution loss can be calculated as the Kullback-
Leibler (KL) divergence between the predicted distribution Ŷ and target distri-
bution Ỹ:

CDL = −Ỹc

C∑
l=1

Ŷc (8)

3 Experiments
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Fig. 2. The accuracy and F1-score (%) of ASGC and SGC for 14 subjects and their
average.

3.1 Dataset

We conduct experiments on the dataset developed in [8]. When participants were
performing visual perceptual decision-making task, the EEG data is recorded in
62 channels using an active AgCl electrode cap at a sampling rate of 1000 Hz.
The dataset comprises 14 subjects and each subject has 135 trials, where each
trial corresponds to one decision process. For data preprocessing, a bandpass
filter between 0.3 and 50 Hz is applied to each channel to filter the noise and
linear dynamic system (LDS) method is adopted to smooth feature. We use the
differential entropy (DE) feature on all five bands, since it achieves the best
performance in [8, 7]. We follow the subject-dependent classification setting in
their works and train a model for each subject.
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Table 1. The classification accuracy and F1-score (%) (mean/std) of SVM, DNNS,
SGC, SGC with CDL and our ASGC model.

Model

Metric SVM [8] DNNS [8] SGC SGC+CDL ASGC

Accuracy 40.93/ - 49.14/- 59.32/4.03 63.41/5.46 68.83/5.25

F1-score 37.43/ - 45.07/- 56.87/3.84 59.85/5.24 66.90/5.33

3.2 Performance Evaluations

The mean accuracy and F1-scores of SVM, DNNS, SGC, SGC with CDL and
our final model ASGC are presented in Table 3.2. The performance of SVM and
DNNS are quoted from [8]. We can find that SGC performs better than DNNS
and SVM, which justifies the idea of capturing inter-channel topological rela-
tionship. Moreover, SGC with CDL performs better than SGC only, indicating
the effectiveness of our proposed CDL. Finally, our ASGC model achieves the
best accuracy and F1-score compared to all other baselines, showing the superior
performance in this task.

Predicted Label
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(a) SGC (b) ASGC

Fig. 3. The confusion matrices of SGC and ASGC. The rows of the confusion matrix
represent the target class and the columns represent the predicted class.

The classification results of each subject (14 in total) and their average are
shown in Fig. 2. We can find that our ASGC model achieves better accuracy
and F1-score than SGC for all subjects. It shows that our ASGC model has
consistent performance across different subjects, indicating the robustness of
ASGC. The confusion matrices of SGC and ASGC averaged on all 14 subjects
are shown in Fig. 3. We can find that both SGC and ASGC perform relatively
better on the lowest confidence level, and that the intermediate levels are more
difficult to classify. It may indicate that participants in the lowest confidence
level may have similar EEG patterns. In addition, our model gets relatively
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Fig. 4. The heatmap visualization of the attention matrix averaged on all subjects in
the dataset.

worse at recognizing the highest confidence level, but still performs better than
SGC does. Moreover, ASGC is better than SGC in discriminating intermediate
confidence levels, showing a more fine-grained discrimination ability.

3.3 Analysis of Critical Channels

We further investigate the critical channels associated with confidence measure-
ment in the visual perception decision-making task. Fig. 4 visualizes the atten-
tion matrix averaged on all subjects in the dataset. Note that the sum of each
row is equal 1 due to the softmax operation along each row. The diagonal values
represent the attention paid to itself by each channel. We can find that the at-
tention matrix is sparse and some of the channels are of greater importance than
others. It is clear form Fig. 4 that FP2, CZ, C6, and CPZ may be the important
channels to discriminate the decision confidence in the visual perception task.

4 Conclusion

In this paper, we have proposed an attentive simple graph convolutional network
(ASGC) for capturing fine-grained topology structure of EEG channels compared
to SGC. In addition, we used a concatenate operation instead of global pooling
to preserve the structure of channels. Moreover, we have proposed a confidence
distribution loss based on the intuition that samples with closer confidence levels
are more similar, alleviating the problems of lacking training samples and label
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ambiguity. The experimental results demonstrate the superior performance of
our ASGC model compared to other baseline models, and the effectiveness of
the CDL designed for the confidence level classification problem. Finally, the
analysis on the attention matrix suggests that FP2, CZ, C6, and CPZ may be
the important channels for measuring decision confidence in the visual perception
task.
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10. Molenberghs, P., Trautwein, F.M., Böckler, A., Singer, T., Kanske, P.: Neural
correlates of metacognitive ability and of feeling confident: a large-scale fmri study.
Social cognitive and affective neuroscience 11(12), 1942–1951 (2016)

11. Pouget, A., Drugowitsch, J., Kepecs, A.: Confidence and certainty: distinct prob-
abilistic quantities for different goals. Nature neuroscience 19(3), 366 (2016)

12. Song, T., Zheng, W., Song, P., Cui, Z.: EEG emotion recognition using dynamical
graph convolutional neural networks. IEEE Transactions on Affective Computing
11(3), 532–541 (2018)

13. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International conference on machine learning. pp. 6861–
6871. PMLR (2019)

14. Zhang, G., Yu, M., Liu, Y.J., Zhao, G., Zhang, D., Zheng, W.: Sparsedgcnn: Rec-
ognizing emotion from multichannel EEG signals. IEEE Transactions on Affective
Computing (2021)

15. Zhong, P., Wang, D., Miao, C.: EEG-based emotion recognition using regularized
graph neural networks. IEEE Transactions on Affective Computing (2020)


