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Massively Parallel Classification of Single-Trial EEG
Signals Using a Min-Max Modular Neural Network

Bao-Liang Lu*, Jonghan Shin, and Michinori Ichikawa

Abstract—This paper presents a method for classifying single-trial elec-
troencephalogram (EEG) signals using min-max modular neural networks
implemented in a massively parallel way. The method has three main steps.
First, a large-scale, complex EEG classification problem is simply divided
into a reasonable number of two-class subproblems, as small as needed.
Second, the two-class subproblems are simply learned by individual smaller
network modules in parallel. Finally, all the individual trained network
modules are integrated into a hierarchical, parallel, and modular classifier
according to two module combination laws. To demonstrate the effective-
ness of the method, we perform simulations on fifteen different four-class
EEG classification tasks, each of which consists of 1491 training and 636
test data. These EEG classification tasks were created using a set of non-
averaged, single-trial hippocampal EEG signals recorded from rats; the
features of the EEG signals are extracted using wavelet transform tech-
niques. The experimental results indicate that the proposed method has
several attractive features. 1) The method is appreciably faster than the
existing approach that is based on conventional multilayer perceptrons. 2)
Complete learning of complex EEG classification problems can be easily
realized, and better generalization performance can be achieved. 3) The
method scales up to large-scale, complex EEG classification problems.

Index Terms—Brain-computer interface, classification of EEG,min-max
modular neural network, module combination, parallel learning, single-
trial EEG, task decomposition, wavelet transform.

I. INTRODUCTION

The electroencephalogram (EEG) is one of the most important
sources of information used to study brain functions [1], to pinpoint
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the origins of some neurological disorders [2], and to recognize
mental tasks for brain-computer interfaces (BCIs) [3]–[6]. Recent
developments in hardware and software designed for acquiring EEG
signals make the recording of high-resolution EEGs from large
electrode arrays feasible. In a typical dense-array EEG experiment,
large amounts of digitized EEG data are generated. Therefore, to be
analytically tractable, more efficient data analysis and classification
methods are required for automatically processing large amounts of
highly complex EEG data.
In recent years, artificial neural networks, such as multilayer per-

ceptrons (MLPs) [7], cascade-correlation neural networks [8], and re-
current neural networks [9], have been applied to the classification of
EEG signals. These are clearly recognized as useful tools one might
use for this problem [10]. While most neural networks successfully
process small and simple tasks, few of them successfully deal with
large amounts of high-dimensional EEG data. The reason is that no
efficient learning algorithm has been available for training large-scale
neural networks, and with previous algorithms, satisfactory learning
and generalization accuracy could not be consistently achieved, even
when very long computing times were used. To overcome this problem,
almost all existing methods typically use just a few features extracted
from the EEG signals as inputs [11], or use a small number of training
data [4]. Although feature extraction with various techniques such as
wavelet transform is necessary for successfully classifying EEG sig-
nals, greatly condensing the number of features for neural network in-
puts means that much useful information in the original EEG signals
will be necessarily lost, and generalization accuracy of the trained net-
works will be significantly degraded.
In this paper, we present a method implemented in a massively

parallel neural network for efficiently classifying high-dimensional,
single-trial EEG signals. The method is based on a min-max modular
(M3) neural network model, an alternative committee machine
proposed in our previous work [12], [13]. The method has several
advantages over existing methods based on traditional neural net-
works. 1) A large-scale, complex EEG classification problem can be
simply divided into a number of two-class subproblems, as small as
needed. 2) All the two-class subproblems can be simply learned by
individual smaller network modules in parallel, and therefore, a large
set of high-dimensional EEG data can be learned efficiently. 3) The
classifiers constructed by the method behave better in generalization
performance than those of the existing approaches.
The remainder of the article is organized as follows. In Section II,

we describe the experimental setup and the EEG classification task.
In Section III, we introduce wavelet transform techniques used for ex-
tracting input features from nonaveraged, single-trial EEG signals. In
Section IV, a classification method is descirbed which is based on a
min-max modular neural network model. The simulation results on fif-
teen different EEG classification problems are presented in Section V,
and the performance of our new method is compared with that of a
traditional approach in Section VI. Finally, Section VII comprises the
discussion.

II. HIPPOCAMPAL EEG SIGNALS

Particular hippocampal EEG signals are associated with particular
cognitive process and behaviors, such as attention, learning, and volun-
tary movement [1]. The hippocampal EEG signals used in the present
study were recorded from eight adult male hooded rats weighting be-
tween 300 and 400 g. They were housed in individual cages with free
access to food and water until the behavioral training began. One week
after surgical implantation of hippocampal electrodes, the rats were
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Fig. 1. Four nonaveraged, single-trial hippocampal EEG signals recorded
during the FW, FR, OR, and OW trials of the “oddball” task. Here, the exact
time of 0 s is when a stimulus is presented and the stimulus last 50 ms.

water-deprived and trained in an oddball paradigm [14], in which oc-
casional “target” stimuli have to be detected in a train of frequent “non-
target” stimuli. All training occurred in a standard behavioral training
chamber.We used a low-frequency tone (“odd” tone) as “target” stimuli
and a high-frequency tone (“frequent” tone) as “nontarget” stimuli. The
animals were rewarded by water whenever they correctly discriminated
“target” from “nontarget” tones and crossed a light beam in front of the
water tube.

A total of 2127 nonaveraged, single-trial hippocampal EEG signals
were selected for classification analysis from a data set recorded in
rats trained to discriminate target from nontarget stimuli. Here, we dis-
carded the following two kinds of single trials: 1) EEG signals, during
which a movement artifact occurred, and 2) EEG signals, during which
a behavioral state transition occured (e.g., from waking state to drowsi-
ness). EEG epochs were 6 s in duration and belonged to one of four
classes defined by the target type and animal’s response: FR, FW, OR,
and OW. “FR” refers to a trial in which a frequent tone was presented,
and the rat performed the correct behavior (no go); “FW” refers to a
frequent tone and incorrect behavior (go); “OR” refers to an odd tone
and correct behavior (go); and “OW” refers an odd tone and incorrect
behavior (no go). Fig. 1 illustrates four nonaveraged, single-trial EEG
signals recorded during FR, FW,OR, and OW trials, respectively. In the
simulations described below, we used 1491 EEG signals for training
and the remaining 636 EEG signals for testing. For simplicity of de-
scription, the four classes, FR, FW, OR, and OW, are represented as
C1, C2, C3, and C4, respectively, throughout the paper. Table I shows
the distributions of the training and test data.

III. FEATURE EXTRACTION WITH WAVELET TRANSFORM

In order to quantify changes in single-trial hippocampal EEG signals
in both frequency and time, we used wavelet transform techniques [15]
to extract the features of EEG signals. The original EEG signals were
convolved using the Morlet wavelet w(t; wo) with a Gaussian shape,

TABLE I
DISTRIBUTIONS OF THE TRAINING AND TEST DATA

TABLE II
TWO SCENARIOS FOR EXTRACTING FEATURES FROM NONAVERAGED,

SINGLE-TRIAL EEG SIGNALS

both in the time domain and in the frequency domain around its central
frequency wo:

W (t; wo) = exp jw0t� t2

2
: (1)

These wavelets can be compressed by the scale factor a and shifted in
time by the parameter b. Convolving the signal and the shifted, dilated
wavelet leads to a new signal,

Sa(b) =
1p
a

W
t� b

a
x(t)dt (2)

where W is the conjugate of the complex wavelet and x(t) is the hip-
pocampal EEG signal.
The new signalsSa(b) are computed for different scaling factors a. It

is known that hippocampal theta rhythm (5–12 Hz) is a sinusoidal-like
EEG signal and has been related to arousal, attention, stimulus eval-
uation, learning and memory, and voluntary movements [1], [14]. To
study the relationship between the generalization accuracy of trained
pattern classifiers and hippocampal EEG frequency bandwidths, two
different frequency bandwidths were selected, one from 5 to 12 Hz
and the other from 3.03 to 17.11 Hz. For these two frequency band-
widths, each of the 2127 nonaveraged, single-trial EEG 6-s epochs was
down-sampled from 12 000 samples to 400 and 1200 samples over the
duration of�1:5 � 4:5 s according to the sampling theorem. The num-
bers of the corresponding wavelet coefficients were 5 and 11, respec-
tively, which were selected based on corresponding frequency bands.
Here, the 5-wavelet coefficients were selected by corresponding theta
band (5 – 12 Hz) and the 11-wavelet coefficients were selected by the
extended frequency band (3.03 – 17.11 Hz). Table II shows the related
parameters used for extracting the features of the EEG signals in two
different cases.

IV. METHOD

The proposed method is based on a min-max modular neural
network model [12], [13]. The method has three main steps [16]. First,
a large-scale, complex EEG classification problem is decomposed into
a number of relatively smaller and simpler two-class classification
subproblems, according to the class relationships among the given
training data. Second, all the two-class subproblems are learned
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by smaller network modules in a massively parallel way. Finally,
following two module combination laws, all of the individual trained
network modules are integrated into a hierarchical, parallel, and
modular pattern classifier that produces solutions to the original EEG
classification problem.

A. Task Decomposition

For human beings, the only way to solve a complex problem is to
divide it into smaller, more manageable subproblems. Breaking up a
problem helps human beings deal with complex issues involved in its
solution. This “divide-and-conquer” strategy is also helpful to neural
networks in complex learning problems.

We have suggested that a K-class problem can be divided into
K(K � 1) relatively smaller two-class subproblems [12], [13]. We
have also shown that among theseK(K � 1) two-class subproblems,
only K

2
two-class subproblems need to be learned, and the remaining

K

2
two-class subproblems are the same as the former ones from the

point of view of pattern classification.
Although each of the K

2
two-class subproblems are smaller than

the original K-class problem, this partition may not be adequate for
parallel computation and fast learning due to the following reasons. 1)
Some of the two-class subproblems might fall into a “load imbalance”
situation. Since the speed of parallel learning is limited by the speed
of the slowest subproblem, the undue burdening of even a single
subproblem can dramatically degrade the overall performance of
learning. 2) Some of the two-class subproblems might still be too
large for learning. 3) Some of the two-class subproblems might be
imbalanced in terms of types of examples in the training set, i.e., the
training set contains many more data of the “dominant” class than the
other “subordinate” class. For example, the standard back-propagation
algorithm converges very slowly for imbalanced problems [17]. To
speed up learning, all the large and imbalanced two-class subproblems
are further divided into relatively smaller and more balanced two-class
subproblems.

One of themost important features of the task decompositionmethod
used is simple and straightforward, and neither domain specialization
nor prior knowledge of the problem is required. Therefore, any user
can perform this decomposition and divide a large K-class problem
into many two-class subproblems, as small as needed.

B. Massively Parallel Learning

After task decomposition, each of the two-class subproblems can
be treated as a completely independent, noncommunicating problem
in the learning phase. Therefore, all the two-class subproblems can be
efficiently learned in a massively parallel way. This is an ideal case,
which is called completely parallelizable in the parallel computing lit-
erature [18].

In comparison with directly tackling a K-class problem, there are
several merits in solving the corresponding smaller and simpler two-
class subproblems. 1) Training time can be drastically reduced. From
our experience [13], [19], the more complex theK-class problem, the
greater the speedup rate that is achieved. 2) The two-class subprob-
lems can be easily solved using various network models, learning al-
gorithms, and a wide variety of computing resources from personal
computers to supercomputers, since both the size and complexity of
each two-class subproblem are much more manageable than the orig-
inal K-class problems. 3) Complete learning of a complex K-class
problem can be easily achieved because the size of each of the two-class
subproblems can be reduced as much as needed, and the learning con-
vergence of each of the two-class subproblems can be guaranteed.

In addition, the proposed method has two main advantages over tra-
ditional parallel implementations of neural network paradigms [20]. 1)

Massively parallel learning can be easily implemented not only on su-
percomputers, but also on virtual supercomputers and many individual
serial computers. 2) Existing neural network models, learning algo-
rithms, and software packages can be directly used to construct theM3

networks, and no specific programming techniques are required.

C. Module Combination

After training individual network modules assigned to learn associ-
ated two-class subproblems, all the trained network modules are inte-
grated into a M3 network with the MIN, MAX, or/and INV units ac-
cording to two module combination laws [12], [13], [21], namely the
minimization principle and the maximization principle.
Since the module combination procedure is completely independent

of both the structure of individual trained network modules and their
performance, we can easily replace any trained network modules with
desired ones to achieve better generalization performance. In contrast
to the task decomposition procedure mentioned earlier, the module
combination procedure proceeds in a bottom-up manner. The smaller
network modules are integrated into larger network modules first, and
then the larger networkmodules are integrated into aM3 network. After
finishing module combination, the solutions to the original K-class
problem can be obtained from the outputs of the entireM3 network.

V. CLASSIFICATION OF EEG SIGNALS

In this section, we demonstrate how to use the proposedmethod to ef-
ficiently classify nonaveraged, single-trial EEG signals in a massively
parallel way. To show the effectiveness of the method and study the re-
lationship among generalization accuracy of trained pattern classifiers,
hippocampal EEG frequency bandwidths, and duration of EEG signals,
we performed computer simulations on fifteen different EEG classifi-
cation problems (“EEG problems” for short), which were created using
different frequency bandwidths and durations. In these simulations, all
fifteen EEG problems had the same number of training and test data;
the only difference among them was the number of input features.

A. Parameter Choices

In the simulations presented below, all the network modules in the
M3 networks were chosen to be MLPs with one hidden layer. To com-
pare the performance of the proposed method with that of an existing
approach based on conventional MLPs, the original EEG problems
were also learned by single MLPs. All the MLPs used in both the pro-
posed method and the existing approach were trained using the same
back-propagation algorithm [22]. The momentums of the back-prop-
agation algorithm were all set to 0.9. The learning rates were set to
0.1, 0.12, or 0.15. To guard against bias caused by different local min-
imums, every simulation was performed three times with different ini-
tial weights generated randomly. In the process of training the network
modules for the M3 networks, learning is stopped when the sum-of-
squares error between the desired and actual outputs was less than 0.05
or when the number of epochs reached 5000. All of the simulations
were performed on a Fujitsu VPP700E vector parallel computer.

B. Decomposition of EEG Problems

Each of the fifteen EEG problems was divided into 4

2
= 6 two-

class subproblems, namely T1;2, T1;3, T1;4, T2;3, T2;4, and T3;4. The
number of positive and negative training data belonging to each of
the six two-class subproblems is shown in Table III. From this table,
one can see that the number of training data for the smallest two-class
subproblem T2; 4 is 157, the number of training data for the largest
two-class subproblem T1; 3 is 1334, and all the two-class subproblems
are imbalanced problems.
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TABLE III
NUMBER OF TRAINING DATA USED FOR EACH OF THE SIX TWO-CLASS

SUBPROBLEMS

TABLE IV
TWO WAYS OF PARTITIONING 15 DIFFERENT EEG PROBLEMS

TABLE V
SIX TRAINING DATA SETS EXTRACTED FROM DIFFERENT PERIODS WITHIN THE

SAME 5–12 HZ BANDWIDTH AND CORRESPONDING GENERALIZATION

PERFORMANCE OF THEM NETWORKS. CORRECT RATES ARE MEAN (TOP
ROW) AND STANDARD DERIVATIONS (BOTTOM ROW) FOR THREE SIMULATIONS

To speed-up learning, each of the six two-class subproblems was fur-
ther divided into many relatively smaller and more balanced two-class
subproblems. Two different ways were used for ramdomly dividing the
training data sets of larger two-class subproblems. The number of sub-
sets for each of four classes (N1, N2, N3, and N4), the maximum
number of training data for the two-class subproblems (“Max”), and
the total number of the two-class subproblems (“Total”) are summa-
rized in Table IV.

C. Realization of Complete Learning

In this section, we demonstrate how to realize complete learning
of complex EEG classification problems using the proposed method.
We describe the learning process in detail using the EEG problem A5

shown in Table V, which has 300 features extracted from the duration of
0 � 0:9 s. The experimental results in Table VI indicate that it is diffi-
cult to adequately learn this problem using single MLPs with a variable
number of hidden units, initial weight values, and learning rates.

At the beginning of learning, 1189 three-layer perceptrons with 300
inputs, one hidden unit, and one output unit were selected as initial
network modules to learn the corresponding 1189 two-class subprob-
lems.When training these 1189 individual networkmodules up to 5000
epochs, the numbers of converged and unconverged network modules
were 939 and 250, respectively. Following the minimization and max-
imization principles, all 1189 individually trained network modules
were integrated into a M3 network, as depicted in Fig. 2. Presenting
all the 1491 training and 636 test data to theM3 network, we obtained

TABLE VI
PERFORMANCE OF SINGLE MLPS WITH DIFFERENT NUMBERS OF HIDDEN

UNITS ON EEG PROBLEM A . VALUES ARE MEAN (TOP ROW) AND

STANDARD DERIVATIONS (BOTTOM RAW) FOR THREE SIMULATIONS

the performance of the M3 network and finished the first round of
learning. Here, the term “round of learning” refers to the whole process
of training all the network modules for a given problem, integrating all
the trained network modules into a M3 network, and evaluating the
learning and generalization accuracy of aM3 network. The number of
incorrect outputs produced by theM3 network is shown in Table VII.
From this table, one can see that there are 84 training data that were
not learned successfully after the first round of learning and that there
were 164 wrong outputs from theM3 network with the test data.
There are four different ways to solve the 250 unconverged subprob-

lems remaining after the first round of learning: 1) increase the number
of hidden units for each of the network modules; 2) change the pa-
rameters of the learning algorithm, such as the learning rate and initial
weight values; 3) increase the number of epochs; and 4) further divide
each of the unconverged two-class subproblems into several relatively
smaller and simpler two-class subproblems. In the present study, we
used the first method, increasing by two the number of hidden units for
the 250 unconverged network modules. In the second round of training,
all the 250 re-trained network modules and the converged 939 network
modules obtained in the first round of learning were integrated into a
new M

3 network, the topology of which was identical to the former
M

3 network. The performance of the newM
3 network is shown in the

second row of Table VII. These results indicate that both the learning
and generalization accuracy of the new M

3 network were improved
after the second round of learning.
After the second round of learning, unconverged network modules

still remained. To implement complete learning, the number of hidden
units was increased to six for the remaining 47 unconverged network
modules. In the third round of training, all the 47 re-trained network
modules, the 203 converged network modules obtained in the second
round of learning, and the 939 converged network modules obtained
in the first round of learning were integrated into a M3 network. The
performance of the newly integratedM3 network is shown in the third
row of Table VII. From this table, we see that all the 1491 training
data were adequately learned by the 1189 network modules through
three rounds of learning.We also see that better generalization accuracy
(75.16%) was obtained.
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Fig. 2. Schematic representation of min-max modular network used for
solving the four-class EEG classification problems; thin lines and arrows
represent scalar inputs or outputs and thick lines and arrows represent vector
inputs. Due to space requirements, note that only moduleM is plotted in
detail, and the other modules are roughly illustrated.

To examine the effect of the initial network module size on learning
speed and generalization performance, 1189 three-layer perceptrons
with five hidden units were selected as initial network modules. When
these network modules were trained up to 5000 epochs, all the network
modules converged successfully.

From the above simulation results on the EEG problem A5, we ob-
served that the proposed method offers several useful features. 1) Com-
plete learning can be easily realized, provided that there are no contra-
dictory training data. This useful feature has been successfully applied
to error detection of an annotated corpus in natural language processing
[23]. 2) Separation of the module training process and the module com-

TABLE VII
THE PROCESS OF COMPLETELY TRAINING 1189 NETWORK MODULES ON EEG
PROBLEMA AND PERFORMANCE OF THE CORRESPONDINGM NETWORKS

TABLE VIII
PERFORMANCE OF THEM NETWORKS ON EEG PROBLEMA , IN WHICH THE

NUMBER OF HIDDEN UNITS FOR EACH OF THE 1189 NETWORK MODULES WAS

SELECTED AS 2, 4, 6, 8, AND 10, RESPECTIVELY. VALUES ARE MEAN (TOP
ROW) AND STANDARD DERIVATIONS (BOTTOM ROW) FOR THREE SIMULATIONS

bination process results in a very flexible mechanism of rearranging the
networks. 3) Designing and training networks can be performed auto-
matically.

D. Learning Results

The learning results of the six EEG problems defined in Table V are
summarized in Tables V, VIII, and X. The performance of theM3 net-
works trained on the EEG problem A6 is shown in Table VIII; “Max”
refers to the maximum number of epochs or the maximum CPU time
required for training any networkmodule. FromTable VIII, one can see
that complete training was realized when the number of hidden units
for each of the network modules was greater than four, and the best
generalization performance (80.92%) was obtained when each of the
network modules had eight hidden units. One can also see that only 10
s were required for completely learning the EEG problem in parallel.
The detail classification results obtained by a M3 neural network on
EEG problem A6 are shown in Table IX, where each of the network
modules in theM3 neural network has 6 hidden units.
The generalization performance of the M3 networks trained on all

the six EEG problems is also shown in Table V; each of the six EEG
problems was learned three times using network modules that had dif-
ferent numbers of hidden units. From these learning results, we con-
clude: 1) The EEG signals extracted from the period between 0 �

0:225 s contribute little to discrimination because the generalization
performance of the M3 network trained on the EEG problem A1 is
just 54.09%. 2) The EEG signals extracted from the period between
0:3 � 0:6 s play an important role in discrimination. The reason is that
the generalization performance of theM3 network trained on the EEG
problem A2 is better than that of theM3 network trained on the EEG
problem A3, even through the number of features in A2 is less than
that in A3.
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TABLE IX
THE DETAIL CLASSIFICATION RESULTS OBTAINED BY A M NETWORK

ON EEG PROBLEM A

TABLE X
PERFORMANCE OF SINGLE MLPS WITH DIFFERENT NUMBERS OF HIDDEN

UNITS ON EEG PROBLEM A . VALUES ARE MEAN (TOP ROW) AND

STANDARD DERIVATIONS (BOTTOM RAW) FOR THREE SIMULATIONS

The nine EEG problems and the corresponding learning results are
shown in Table XI. Each of the nine EEG problems was learned by
three differentM3 networks, in which the number of hidden units for
the network modules was set to 5, 7, and 10, respectively. Examining
the learning results shown in Table XI, we can make the following ob-
servations on the relationship among generalization accuracy of trained
classifiers, two different hippocampal EEG bandwidths, and different
numbers of features extracted from various duration of EEG signals.
1) The greater the number of features, i.e., the longer the EEG signal
duration, the fewer the number of average epochs required for training
each of the network modules. In other words, EEG problems that have
many features converge more quickly than those that have few. 2) The
generalization performance of theM3 networks improves as the dura-
tion of the EEG signals increases in the range between 0.5 s and 3.5
s. However, the generalization performance degrades when the dura-
tion is longer than 3.5 s. This trend indicates that there is an optimal
duration for good generalization performance, and the longest duration
examined is by no means the optimal one. 3) The generalization perfor-
mance of theM3 networks improves slightly as the hippocampal EEG
frequency bandwidths are increased from 5–12 Hz to 3.03–17.11 Hz.

VI. COMPARISON STUDIES

In this section, we compare experimentally, through two EEG prob-
lems, the proposed method with the existing approach that is based on
conventional MLPs.

A. Training Time

To compare the performance of our method with the existing
approach, two EEG problems A5 and A6 were learned by single
MLPs with various numbers of hidden units, initial weight values,
and learning rates. The simulation results from these single MLPs are
shown in Tables VI and X. From Table VI, one can see that a very long

TABLE XI
PERFORMANCE OF THEM NETWORKS ON NINE DIFFERENT EEG PROBLEMS

WITHIN THE SAME 3.03–17.11 HZ BANDWIDTH. VALUES ARE MEAN (TOP
ROW) AND STANDARD DERIVATIONS (BOTTOM ROW) FOR THREE SIMULATIONS

IN WHICH THE NUMBER OF HIDDEN UNITS FOR EACH OF THE 469 NETWORK

MODULES WAS SELECTED AS 5, 7, AND 10, RESPECTIVELY.

computing time was required for training each of the MLPs on EEG
problem A5. For these MLPs that had 100 or fewer hidden units, no
complete learning could be obtained, even if twelve episodes of 50 000
epochs each were performed. When the number of hidden units for
single MLPs was increased to 120, some of these MLPs could realize
complete learning. However, the CPU time required for training each
of these MLPs was over 32 h and their generalization performance
was worse than that of the smaller MLPs. The simulation results in
Table X indicate that all of the MLPs could learn EEG problem A6

completely.
For the reader’s convenience, the simulation results of two MLPs

and two M3 networks on EEG problems A5 and A6 are summarized
in Table XII. Provided that learning with our method was performed
in parallel, the results show that our new method is about 6344 and
662 times faster on learning EEG problems A5 and A6, respectively,
than the existing approach based on conventional MLPs. The results
in Table XII also indicate that, even though all the network modules
were trained in serial, our method is still much faster than the existing
approach.

B. Generalization

Generalization is one of the most important measures for judging
the efficiency of neural network models. This property refers to the
ability of a trained neural network to generate reasonable outputs for
novel inputs that did not occur during learning. A popular method for
examining generalization performance is to measure the performance
of trained networks on test data that were not presented during training,
i.e., the generalization performance of a trained network is judged by
the correct recognition rates on test data.
To compare the generalization performance of our method with that

of the existing approach, a number of experiments was performed
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TABLE XII
PERFORMANCE COMPARISON ON EEG PROBLEMS A AND A OF THEM NETWORKS WITH SINGLE MLPS.

on EEG problems A5 and A6. The simulation results are shown in
Tables VI, VIII, X, and XII. From Table XII, one can see that the
generalization performance (74.68%) of our method is far superior to
that (66.88%) of the existing approach on EEG problem A5. For EEG
problem A6, the generalization performance (80.92%) of our method
is slightly better than that (80.71%) of the existing approach.

Examining the correct recognition rates shown in Table VIII for the
test data, one can see that our new method generates stable generaliza-
tion performance, i.e., the generalization performance of the M3 net-
works was almost invariant with the size of network modules in theM3

networks. A similar phenomenon can also be observed from the simula-
tion results on the nine EEG problems (Table XI). This property is very
useful for realizing efficient learning because we can easily determine
the topology of network modules according to the module expansion
procedure [19]. Furthermore, it is not necessary to train several network
modules of different sizes in order to achieve better generalization. In
contrast, the simulation results in Tables VI andX show that the number
of hidden units for single MLPs strongly affects the generalization per-
formance. For example, the correct rate obtained by the MLP with 60
hidden units was 66.88%, while the correct rate achieved by the MLP
with 120 hidden units was only 62.32%. To obtain better generaliza-
tion performance, one needs to train several MLPs that have different
numbers of hidden units. This results in a much longer training time
compared to that for training a single MLP.

C. Scaling

In the application of neural network solutions to large-scale, real-
world problems, one of the biggest difficulties encountered by most
neural network models is the scaling problem. This problem addresses
the issue of how well the training time and generalization performance
of a network model behave as the learning task increases in size and
complexity [24]. While most network models successfully operate in
small and artificial domains, few of them show promise with large-
scale, real-world problems.

It has been shown theoretically that learning in traditional MLPs is
NP-complete [25]. That is, training MLPs becomes intractable as the
problem size becomes larger. The simulation results mentioned above
also indicate that training large-scale MLPs is computationally expen-
sive, especially for complicated problems such as the EEG problem
A5.

In contrast, the simulation results in Tables VIII, XII, and XI indi-
cate that our method could scale-up to large-scale problems. Specifi-
cally, the computing time required for training the network modules in
theM3 networks was reasonable and did not grow exponentially with
problem size.

VII. DISCUSSION

It is widely believed that the human brain’s electrical activity re-
flects higher cognitive functions such as attention, arousal, and even

consciousness [26]. For example, the P300 component of event-related
potentials (mainly interpreted as a cognitive potential) has been ob-
served in human subjects when they are required to respond to infre-
quent events, while ignoring frequent ones in psychophysical tasks [1].
The P300 is an endogenous component of the event-related potential
(ERP) that appears as a positive deflection with a peak latency of ap-
proximately 300 – 600 ms for simple auditory stimuli [27]. This de-
flection is largest at centro-parietal electrodes.
In animals (includingmonkeys, cats and rats) trained to perform sim-

ilar “oddball” types of tasks, P300-like potentials are remarkably sim-
ilar to those in human subjects. Several investigators have found that
the hippocampal theta rhythm is responsible for the genesis of the P300
response [26], [28]. Hippocampal theta rhythm is a local field poten-
tial also known as rhythmical slow-wave activity in the rat. This si-
nusoidal-like EEG signal occurs at frequencies within the bandwidth
of 5 and 12 Hz. On the contrary, human theta rhythm occurs at fre-
quencies between 5 Hz and 8 Hz in neocortex and limbic system. The
long-standing focus on the theta rhythm in brain research stems from
the hope that it may be linked to higher cognitive functions such as,
“attention,” “motivational state,” or “learning” [29]. Theta rhythm can
be recorded from the hippocampal formation of mammals during vol-
untary motor behaviors, such as walking, running, rearing, jumping,
swimming, digging, manipulating objects with the forelimbs, and ori-
enting head and body movements [30]. In recent experiments involving
human subjects, the theta rhythm recorded from the cortical surface
during virtual spatial navigation has been reported [31], and its pos-
sible connection to hippocampal theta rhythm has been discussed [32].
Given the close relationship between the P300 ERP and event-related
changes in theta band rhythm, event-related theta rhythm, like P300
ERP responses [33], can be used for a BCI. Although the P300 ERP
has been used as a BCI, to date, the event-related theta rhythm has not
been implemented in a BCI system.
In this paper, we explored whether a min-max modular neural net-

work can classify event-related changes in hippocampal theta rhythm
recorded from rats performing an auditory oddball discrimination task.
As expected, the min-max modular neural network successfully dis-
criminated four behavioral classes from single trial, hippocampal EEG
signals. More interestingly, the min-max modular neural network cor-
rectly identifies that the EEG signals extracted from the 0.3 – 0.6 s pe-
riod of the task play an important role in discrimination (see Section V).
The period from 0.3 to 0.6 s is identical to the P300 ERP latency. Our
results, thus, demonstrate that event-related theta rhythm can be used
for implementing an efficient BCI system.
We also investigated an optimal duration that can result in better dis-

crimination performance. Our results suggest that there is an optimal
duration that supports good generalization performance. However, the
longest duration we investigated is by no means the optimal (see Sec-
tion V). Finally, we confirmed that generalization performance of the
min-max modular neural network improves as the bandwidth increases
for the selected raw hippocampal EEG data used for classification (see
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Section V). These results can guide the design of a practical BCI system
for human subjects. Previously, we used the min-max modular neural
network for testing hypotheses related to hippocampal theta rhythm
and found that this network can be used for objective data interpreta-
tion. This can, at least partly, complement human subjective data inter-
pretation [1]. Taken together, the min-max modular neural network can
be applied to diverse bio-informatics and neuro-informatics research,
such as complex and large biological data mining, objective data inter-
pretation, and efficient BCI system implementation.
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Erratum to “Quantifying Ventricular Fibrillation:
In Silico Research and Clinical Implications”

In [1], Dr. Alexander V. Panfilov, was misidentified as Alberto V.
Pavilov. We apologize for any inconvennience this error may have
caused.
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