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Abstract— One of the central problems in computational bi-
ology is to identify the protein function in an automated and
high-throughput fashion. A key step in this process is to predict
subcellular compartment the protein belongs to, since the protein
localization closely correlates with its function. A wide variety of
methods for protein subcellular localization has been proposed
over recent years. They fall into two categories, sequence-based
and database-based. The first one is to extract useful features
from amino acid sequences and strives to discover the principles
behind protein localization process. The second one is more apt to
conduct data mining from existing public annotation databases.

This paper focuses on the sequence-based approach and
exploits the discriminative ability contained in amino acid se-
quences for protein subcellular localization. By using support
vector machines (SVMs) as predictors, we conducted comparisons
among amino acid composition approach, amino acid tuple
approach, voting scheme, and a new characteristic representation
of proteins proposed in this paper. Our experiments are carried
out on 7579 eukaryotic protein sequences from 12 subcellular
locations. The highest accuracy, 82.8% across 5-fold cross vali-
dation, is obtained by voting scheme using five predictors. This
is the best performance achieved on this dataset using sequence-
based approach. Our experiments demonstrate that there are
considerable potentials on improving prediction accuracy by
exploiting protein sequences, which have not been fully utilized
so far, and more explorations are still needed in this direction.

I. INTRODUCTION

One of the fundamental goals in cell biology and proteomics
is to identify the function of new proteins. Since experimental
determination is expensive and time consuming, as well as the
amount of internet available protein sequences are exploding
dramatically, computational methods aiming to predict protein
function in an automated and high-throughput fashion are in-
creasingly becoming an appealing complement to experimental
techniques.

Protein subcellular localization closely relates to the protein
function. Therefore, predicting the subcellular location of
protein sequences is a key step to understand the biological
functions of protein sequences. Various methods for predict-
ing subcellular localization of protein sequences have been
extensively studied in the last decades, and researchers have
developed increasingly more new models to acquire better
prediction performance. Typically, the development in this area

follows two trends: sequence-based and database annotation-
based.

The sequence-based discriminative prediction attempts to
extract increasingly more characteristic subsequence features
from protein sequences and performs prediction based on these
features. The methods in sequence-based trend can be further
divided into three sub-categories: (a) prediction based on
amino acid composition; (b) prediction with known targeting
sequences; and (c) prediction based on other novel extracted
features.

The pioneering work on amino acid composition discrimi-
native capability was done by Nishikawa et al. [1], Reinhardt
and Hubbard [2]. Then extensive studies upon it have been
conducted [3] [4] [5] [6]. Furthermore, an extensional explo-
ration on amino acid pair composition and voting scheme was
proposed by Park and Kanehisa [7]. The underlying biological
model in this category is fairly simple since it only depends
on 20 amino acid features. Although the discriminative ability
is limited by the lack of features, it is nonetheless still a good
choice when very little annotation information is known about
the query protein sequence.

Another way to predict subcellular localization of protein
based on sequences is to identify targeting sequences [8]
[9] [10] [11]. These methods strive towards mimicking the
biological protein sorting process with computational simula-
tion. However, these methods based on targeting sequences
inevitably have a common drawback: it is hard to determine
the presence of a targeting sequence. As protein sequences
from draft genomes are often incomplete and lacking in N-
terminal region, the prediction methods in this category will be
inaccurate when the targeting signals are missing or partially
included. On the other hand, these methods based on targeting
sequences such as [8] [11] have relatively high prediction
accuracies only for predicting three or four locations. In
practical application sense, the coverage scope of this kind
of method is fairly narrow.

Besides amino acid composition and targeting sequence,
many other novel methods for feature extraction from pro-
tein sequences have been developed. The spectrum kernel
and mismatch kernel by Leslie et al. [12] [13], and weight
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decomposition kernel by Menchetti et al. [14], take the context
of each amino acid residue into account. Yang and Lu [15]
developed a method, in which Chinese language segmentation
techniques are used to extract features from protein sequences.
Toh and colleagues adopted N-terminal sorting signals by
using the information derived from amino acid index database
[16].

The second trend of prediction of protein subcellular loca-
tion arises from the protein annotation databases. This kind of
method depends on the fact that the annotation databases are
becoming increasingly more capable to supply reliable clues
for protein identity or homology analysis, such as motifs, gene
ontology (GO) [17] and function domain of proteins. Chou
and his colleagues [18] [19] [20] proposed a Go-FunD-PseAA
hybridized method, which performs better than others. In fact,
the prior domain knowledge derived from database query
involves abundant information relating to protein profiles of
subcellular localization and can be used to further improve
the prediction accuracy by annotation matching. However, this
kind of method faces a deficiency. When the protein to be
predicted is a newly discovered one, there is no existing anno-
tation in the database. As a result, the prediction performance
of this kind of methods will be degraded. Fortunately, along
with the growing coverage of public annotation databases,
further improvement can be expected.

Recently, Höglund and colleagues [21] [22] [23] proposed
a hybrid method which combines targeting sequences, amino
acid composition, and sequence motifs for predicting protein
subcellular localization. Their predicting model is an inte-
grated system of four or five different classifiers, SVMTarget,
SVMSA, SVMaac, MotifSearch and/or text-based method,
some of which partially depend on specific databases such
as PROSITE and NLSdb.

In this paper, by using support vector machines (SVMs) as
predictors, we carry out in-depth exploration on the discrimi-
native ability of different sequence-based methods with amino
acid composition and amino acid k-tuples. Furthermore, we
apply the feature selection methods derived from text classi-
fication to amino acid sequences to select the subsequences
with the most statistical characteristic. And then we propose a
new hybrid method for incorporating characteristic tuples into
amino acid features to improve the prediction performance.

This paper is organized as follows. Section 2 describes
several existing methods used in our comparative study and
our new prediction method. Section 3 presents the experiments
and the simulation results. Section 4 discusses the benefit and
cost of these methods. Section 5 summarizes the conclusions.

II. METHODS

Protein sequences are consecutive amino acid residues,
and we regard them as text strings with an alphabet A of
size |A| = 20. Many feature extraction methods have been
developed in the past several years. Typically, these methods
can be classified into two categories. One is based solely on
amino acid composition [1] [2]. The other one is an extension
of the atomic length from only one amino acid to k amino

acid tuple, where k is an integer and larger than one. We refer
to it as ‘k-tuple’, such as 2-tuple in [7].

The rest of this section consists of three parts. Firstly, 20
amino acid features are adopted as our initial representative
features, as it is based on the assumption which is simple
and effective. Secondly, k-tuple features are introduced to
take the place of 20 amino acid as feature set. Against
the high computational cost of k-tuple prediction caused by
large feature amount, three feature selection methods which
are commonly used for text classification are introduced to
eliminate irrelevant k-tuples. Thirdly, we propose a hybrid
prediction method with all r (for r = 1, . . . , k) length amino
acid tuples together as a mixed feature set. The experiment
shows that our hybrid method appears to be an alternative
choice.

A. Amino Acid Composition

In amino acid composition prediction model, each protein
sequence i in the dataset of size N is represented by an input
vector �xi of 20 dimensions and a location label yi for i =
1, . . . , N . The prediction procedure can be understood within
a 20 dimensional space and each protein sequence represents
a point in it. What we need to do is to classify the points to
their corresponding labels.

Intuitively, we consider amino acid composition (AAC-I in
short) to be amino acid residue occurrence times.

xij = counti(j)
for i = 1, . . . , N and j = 1, . . . , 20

(1)

where xij is the jth element of �xi, and counti(j) denotes the
times that amino acid j occurs in protein sequence i.

For normalization purpose, the following equation is always
satisfied for any protein sequence whether it is longer or
shorter than others.

20∑
j=1

xij = 1. (2)

So we consider amino acid composition to be amino acid
residue occurrence probability (AAC-II in short)

xij =
counti(j)∑20

j=1 counti(j)
. (3)

It is reported that better performance could be obtained
by normalizing each �xi to �ai [6], where |�ai| = 1 for i =
1, · · · , N . So each �ai will be the unit length vector in 20
dimensional Euclidean space. The following relation (AAC-
III in short) between �xi and �ai can be easily proven

aij =
√

xij

for i = 1, . . . , N and j = 1, . . . , 20.
(4)

B. k-tuple Subsequence

It should be pointed out that all of the prediction algorithms
based on amino acid composition do not take the sequence or-
der effect into account. To improve the prediction accuracy, it
is necessary to incorporate some order information. Intuitively,
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we use amino acid tuples to partially represent the sequence
order. For example, the sequences “AIC” and “CIA” have the
same representation by the 20 amino acid features. But if we
use 2-tuple features, “AIC” is represented by “AI” and “IC”,
and “CIA” is represented by “CI” and “IA”.

Since the experimental results show that ACC-I defined in
(1) give the best performance (see Table II), we accordingly
modify it to be the k-tuple feature vector for each protein
sequence as follows. The length of k-tuple feature vector
would be 20k and each element is the corresponding k-tuple
occurrence time, i.e.,

xij = counti(j)

for i = 1, . . . , N and j = 1, . . . , 20k
(5)

where counti(j) denotes the times that jth amino acid tuple
occurs in protein sequence i.

It should be noted that the dimensionality of k-tuple space
increases exponentially with k. So if k is assigned to an
arbitrary number, such as 10 or larger, the dimensionality of
feature space will be 2010 ≈ 1013. It is too large a feature
space for learning.

In this paper we choose the following two different strate-
gies for feature extraction. (a) Without dimension reduction:
we take prediction based on full k-tuple space without any
dimension reduction, and the maximum value of k is set to 5.
As a result, at most 205 = 3.2×106 features are extracted. (b)
With dimension reduction: when the proteins are represented
in a high dimensional space, the occurrences of many k-
tuples will be very scarce. The occurrence distributions of
k-tuples for k = 2, 3, 4, and 5 are shown in Fig. 1. Note
that some k-tuples just occur only once or even never occur
in the dataset. Thus lots of them must be irrelevant to the
subcellular localization since they are too sparse. Motivated by
this phenomenon, we adopted the feature selection techniques
from text classification to filter the k-tuple feature set.

Three feature selection methods derived from text cate-
gorization are adopted in this study, each of which uses a
term-goodness criterion and a predefined threshold to achieve
a desired degree of term elimination from the full k-tuple
feature set. We try to find the most significant k-tuples from
these selection procedures to improve the prediction accuracy.
These feature ranking criteria are term frequency, Fisher linear
discriminant criterion, and χ2 statistics.

1) Term frequency: Term frequency [24] is the occurrence
time of the specific term. We calculate the term frequency for
each unique term in the training set and preserve a predefined
proportion of the most high frequency terms. Those terms
whose frequency rankings are lower than a given threshold
are removed from the feature space. The basic assumption
behind this selection criterion is that the rare terms are either
non-informative for category prediction, or not influential in
global performance. It is also possible that improvement of
performance will be acquired if the rare terms are more likely
to be noise terms.

2) Fisher linear discriminant criterion: Fisher linear dis-
criminant analysis [25] is based on finding the direction that

is the most efficient for discrimination. The original analysis
and term criterion formula are both for two-category case, but
they can be modified to a generalized form and extended to
multi-category case.

For two-category case, let us consider the problem of
projecting data from d dimensions onto a line, which is one
dimension. The direction of this line is denoted by a vector
w. The Fisher linear discriminant analysis employs the linear
function wtx, for which the following criterion function is
maximum.

J (w) =
|m̃1 − m̃2|2

s̃2
1 + s̃2

2

(6)

where m̃1 denotes the sample mean for the projected points
of category C1, m̃2 for points of C2, s̃2

1 denotes the variance
for projected points of category C1, and s̃2

2 for points of C2.
Let J (w) represents the dimension-goodness. So we can

use the criterion defined in (6) to rank the dimensions,
providing that w is assigned to specific dimension parallel
vector. Note that in feature space, one term is represented by
a dimension, so dimension ranking is in fact the term ranking
that we would like to acquire.

To naturally extend (6) to multi-category case, we firstly
modify this criterion to a generalized form as follows,

J (w) =
|m̃1 − m̃|2 + |m̃2 − m̃|2

s̃2
1 + s̃2

2

(7)

where m̃ denotes the sample mean for all the projected points
of category C1 and C2.

As a result, the criterion function for multi-category case
can be formulated as

J (w) =
∑

i∈Y |m̃i − m̃|2∑
i∈Y s̃2

i

(8)

where Y is the label set of the dataset. Usually, we call the
numerator, sum of |m̃i − m̃|2, the between-category scatter.
Likewise the divisor, sum of s̃2

i , is called the within-category
scatter. This modified form of Fisher discriminant criterion is
also adopted for tumor classification [26].

3) χ2 statistics: A χ2 statistics [24] is used to measure the
lack of independence between term t and category c and can
be compared to the χ2 distribution with one degree of freedom
to judge extremeness. By using the two-way contingency table
of a term t and a category c, the term-goodness criterion is
defined by

χ2(t, c) =
N × (AD − CB)2

(A + C) × (B + D) × (A + B) × (C + D)
(9)

where A denotes the number of times that t and c co-occur, B
denotes the number of times the t occurs without c, C denotes
the number of times the c occurs without t, D denotes the
number of times neither t nor c occurs, and N is the total
number of proteins.

The χ2 statistic has a natural value of zero if t and c are
independent. The higher χ2 statistic value, the less indepen-
dence between t and c holds. To compute the χ2 statistic value
for term t, we first compute for each category c and t, then
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(a) 2-tuple distribution
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(b) 3-tuple distribution
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(c) 4-tuple distribution

−Inf 0 5 10 15
0

2

4

6

8

10

12

14

16

18
x 10

5

Logarithm of Occurrence Time

5−
tu

pl
e 

N
um

be
r

(d) 5-tuple distribution

Fig. 1. Distributions of k-tuples. Here, x-axis represents the logarithm to base 2 of the k-tuple occurrence times, that is, the occurrence times can be computed
by 2x, y-axis represents the number of k-tuples with greater than 2x−1 and less than or equal to 2x occurrence times. For example, ‘-Inf’ in x-axis denotes
the k-tuples never occurrence, ‘0’ denotes those with one occurrence time, and ‘5’ denotes those with occurrence times between 24 + 1 and 25.

combine the category specific scores for the term t into the
following two scores,

χ2
avg(t) =

∑
i∈C

Pr(ci)χ2(t, ci) (10)

and

χ2
max(t) = max

i∈C
{χ2(t, ci)}. (11)

Since the prior location distribution is not known to us, χ2
avg

statistic value can not be estimated accurately if the Pr(ci)
is not accurate. In the experiment, we use the χ2

max as our
term-goodness criterion to rank the terms and then eliminate
the terms of lower χ2 statistic values.

C. Hybrid Features

Since the discriminative ability of amino acid composition
is limited by only 20 features, and the improved performance

(see Table III) using k-tuple space consumes too high com-
putational resource, we try to make a tradeoff between these
two types of feature sets.

In our hybrid model, we define each protein i (for i =
1, . . . , N ) as

Pi =




a1

...
a20

ak1(1)
...

ak1(N1)
...

akM
(1)

...
akM

(NM ))




(12)
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where for a1, a2, . . . , a20, we use the amino acid composition
form of (1). And we also incorporate the characteristic k-tuple
subsequence by their occurrence time. So every element of the
vector Pi in (12) is given by

aj = counti(j) for j = 1, . . . , 20 (13)

and

akm
(n) = counti(km-tuple(n)) for m = 1, . . . ,M (14)

where km-tuple(n) denotes the nth highest score km-tuple in
km-tuple space. The number of dimensions of Pi defined in
(12) is given by

D = 20 +
M∑

m=1

Nm. (15)

In our experiment, to simplify the hybrid model, we assign
all Nm to a fixed value N , i.e.

Nm = N for m = 1, · · · ,M. (16)

Thus we get a feature vector whose dimensionality is

D = 20 + N × M. (17)

III. EXPERIMENT

A. Dataset and Evaluation

To have a critical comparison in this study, we use the
dataset created by Park and Kanehisa [7]. The dataset consists
of 7579 protein sequences (sequence similarity less than 80%,
by ALIGN), all of which are eukaryotic proteins of 12 sub-
cellular locations and collected from SWISS-PROT database
release 39.0 [27]. Table I describes the location distributions
of the dataset.

TABLE I

THE NUMBER OF PROTEINS USED IN THE DATASET

Subcellular locations Number of proteins
Chloroplast 671
Cytoplasmic 1241
Cytoskeleton 40

Endoplasmic reticulum 114
Extracellular 861

Golgi apparatus 47
Lysosomal 93

Mitochondrial 727
Nuclear 1932

Peroxisomal 125
Plasma membrane 1674

Vacuolar 54
Total 7579

To evaluate our approach, we adopt 5-fold cross validation
test, in which the dataset is divided into five subsets of
approximately equal size. Then five rounds of training and test
are carried out, and each time four subsets are used as training
set and the other one as test set. Every performance measure
is obtained by calculating the mean value of the results of five
rounds of training and test. To be consistent with the previous
work of other researchers, we use the same 5 folds as in [7].

We use five measures to assess our approach performance.
They are standard precision (P ), recall (R), F1, total accuracy
(TA) and location accuracy (LA). Three measures, P , R and
F1, are used to measure the prediction quality of each location.
Two measures, TA and LA, are used to measure the overall
prediction quality across all locations. These five measures can
be defined by the following equations.

For each location l, the precision, recall and F1 can be
defined by true positive (TP ), false positive (FP ), false
negative(FN ) [28].

Pl =
TPl

TPl + FPl
(18)

Rl =
TPl

TPl + FNl
(19)

F1,l =
2 × Pl × Rl

Pl + Rl
. (20)

For the overall prediction, we use the total accuracy and
location accuracy defined by the following equation. It is the
same as defined in [7].

TA =
∑L

l=1 TPl

N
(21)

LA =
∑L

l=1 ACCl

L
(22)

where N is the total number of proteins in the dataset (N =
7579), L is the number of subcellular locations (L = 12), nl

is the number of proteins in each location l in Table I, and
ACCl is the accuracy for each location, defined by

ACCl =
TPl

nl
= Rl. (23)

B. Prediction and Result

Since support vector machine (SVM) is regarded as the
state-of-the-art classifier, we adopt it as our predictor to testify
our method. The SVM used in our experiment is partially
based on the implementation of LibSVM version 2.82 [29].
We adopt one-versus-others strategy and RBF kernel, because
this configuration is reportedly the best on this dataset [7].

The parameters used in the training process are selected
from grid search procedure, which can be standardized as
follows. γ is selected from {2−15, 2−14, . . . , 210} and C is
selected from {2−2, 2−1, . . . , 212}. The combination of γ and
C which gives the highest total accuracy was used as the
training parameter across the 5-fold cross validation.

1) Amino acid composition: According to (1), (3) and (4),
three predictors based on different representations of amino
acid composition were compared in our experiment. The best
parameters (γ and C) for AAC-I, AAC-II and AAC-III are
(2−10, 23), (28, 22), and (26, 21), respectively. The detailed
accuracies are shown in Table II.

From the experimental results, we can observe that the
representation form of AAC-I gives the best prediction per-
formance among these three representations although it is the
roughest one. Surprisingly, the form AAC-III proposed by [6]
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TABLE II

COMPARISON BETWEEN THREE REPRESENTATION OF AMINO ACID COMPOSITION (%)

Location AAC-I AAC-II AAC-III
R P F1 R P F1 R P F1

Chloroplast (671) 69.5 64.7 67.0 65.7 67.6 66.7 65.1 71.4 68.1
Cytoplasmic (1241) 66.8 65.4 66.1 65.8 64.2 65.0 64.7 67.1 65.9
Cytoskeleton (40) 48.0 91.0 60.2 76.0 88.7 81.0 70.7 93.3 79.3

ER (114) 56.2 71.6 62.8 49.0 76.3 58.5 55.1 77.3 63.5
Extracellular (861) 77.6 77.6 77.6 75.4 79.6 77.4 72.8 79.7 76.1

Golgi apparatus (47) 29.6 54.5 37.7 19.3 50.7 26.7 19.1 46.7 25.8
Lysosomal (93) 64.2 75.4 68.8 65.5 70.4 67.5 65.5 70.0 67.5

Mitochondrial (727) 45.4 60.1 51.7 45.2 57.2 50.4 40.7 59.3 48.2
Nuclear (1932) 86.1 73.4 79.2 85.6 72.7 78.6 88.8 67.7 76.8

Peroxisomal (125) 37.6 68.8 48.1 28.0 60.1 37.4 28.0 62.5 38.4
Plasma membrane (1674) 88.3 92.9 90.5 89.5 89.1 89.3 88.3 89.6 88.9

Vacuolar (54) 41.1 68.4 49.0 24.4 47.3 30.2 22.2 55.9 29.6
Total accuracy 74.7 73.8 73.4

Location accuracy 59.2 57.5 56.8

could not give better performance than AAC-II even with the
best parameters. It may be due to Bayes classifier that they
used is different from the SVMs we used.

2) k-tuple subsequence: We compare the SVM prediction
performance based on k-tuple feature set for different k from
2 to 5. The detailed values of performance measures are
given in Table III. To make comparison with the amino acid
composition features, we also include the best performance
of prediction based on amino acid composition. We selected
the best kernel parameter γ and penalty parameter C from
grid search procedure. When k equals to 2, 3, 4 and 5, the
parameter values are (2−10, 24), (2−10, 22), (2−13, 25) and
(2−15, 210), respectively.

From the experimental result, we can observe that about
5.8% to 6.5% accuracy improvement can be obtained when
we use k-tuple space with k equal to 4 or 5. In previous
sequence-based prediction, the discriminative ability of k-
tuples has never been solidly studied. Therefore, our extensive
experiments on those tens of thousands of k-tuples demon-
strate that considerable potential discriminative abilities in the
protein sequence have not been utilized so far. The amount
of information of subcellular location encoded in the protein
sequence is still open for biology research until now.

In order to further utilize the potential discriminative abil-
ities of k-tuple spaces, we adopt the voting scheme. The
scheme can be described as follows. For a protein to be
predicted, the five classifiers, based on amino acid composition
(ACC-I), 2-tuple, 3-tuple, 4-tuple and 5-tuple respectively,
can be organized as a classifier committee. Then majority
voting is adopted as the decision-making strategy. In case of
a tie, the final decision will be made by randomly select one
location from the highest vote getters. The result of voting
gives the highest performance in our comparative study, which
is compared with reported prediction results in Table VI.

Apparently, this voting scheme integrates all the k-tuple
space information together, and achieves better performance
while maintaining robust prediction, that is, it alleviates the
influence by little mutation or missing in protein sequence.

3) Hybrid feature: In order to explore the k-tuple dis-
criminative ability from another aspect, we introduced the
hybrid feature set in Section II part C. Then we carried out
experiments to testify the effectiveness. Concerned about the
computational complexity, we assign some of the parameters
in our new representation to fixed values, M = 4, k1 = 2,
k2 = 3, k3 = 4 and k4 = 5. Table IV presents the total
accuracy (TA) values of this hybrid approach using different
feature selection methods. Table V compares performance of
this feature extraction method with others. The comparison
demonstrates that our feature extraction method makes a trade-
off between accuracy and computational cost. The accuracy is
2.4% lower than 4-tuple prediction but the feature amount is
reduced by about 99.5% from 204 to 820.

TABLE IV

TOTAL ACCURACY (%) COMPARISON BETWEEN THREE FEATURE

SELECTION METHODS WITH VARIANT N

Method Total accuracy (%)
N = 20 N = 50 N = 100 N = 200

Frequency 75.4 76.0 77.3 78.2
Fisher discriminant 75.7 76.4 77.6 78.6

χ2 statistics 75.3 76.2 77.8 78.8
Number of Features 100 220 420 820

IV. DISCUSSIONS

A. Discriminative ability of k-tuple features

The exponentially increasing feature amount along with k
inhibits us to further explore the predicting performance in
k-tuple space. But we have obtained preliminary results on
the relation of prediction accuracy to different k (for k =
1, . . . , 5) as shown in Fig. 2. From the figure, we can observe
that prediction accuracy increases with tuple length when k
is less than 4, however, suffers from a little drop when k
increases from 4 to 5. The performances of 6-tuple and 7-tuple
are also tested. 4-tuple has the highest prediction accuracy
according to our extensive experiments.
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TABLE III

COMPARISON OF SVM PREDICTION ACCURACY(%) USING k-TUPLE SPACES IN DIFFERENT k VALUES AND AMINO ACID COMPOSITION

Location AAC-I k-tuple space
k = 2 k = 3 k = 4 k = 5

R P F1 R P F1 R P F1 R P F1 R P F1

Chloroplast (671) 69.5 64.7 67.0 72.3 74.2 73.2 71.1 80.5 75.4 76.8 90.5 83.0 76.9 93.6 84.3
Cytoplasmic (1241) 66.8 65.4 66.1 70.1 69.3 69.7 72.6 66.7 69.5 78.4 71.1 74.6 74.1 79.8 76.8
Cytoskeleton (40) 48.0 91.0 60.2 53.1 100.0 68.6 43.0 100.0 58.9 63.1 100.0 75.7 66.0 100.0 77.9

ER (114) 56.2 71.6 62.8 58.7 88.6 70.4 59.7 94.5 73.1 65.8 96.3 78.1 64.1 94.8 76.3
Extracellular (861) 77.6 77.6 77.6 78.5 77.8 78.1 77.9 75.0 76.4 81.0 82.4 81.6 76.0 89.8 82.2

Golgi apparatus (47) 29.6 54.5 37.7 25.6 60.0 35.8 10.9 80.0 18.9 12.9 80.0 21.3 6.4 60.0 11.6
Lysosomal (93) 64.2 75.4 68.8 59.1 74.2 65.2 54.7 89.0 66.5 59.1 92.6 71.3 60.2 93.6 72.5

Mitochondrial (727) 45.4 60.1 51.7 56.8 62.8 59.6 48.4 64.5 55.2 50.6 79.9 61.8 59.0 70.8 64.1
Nuclear (1932) 86.1 73.4 79.2 87.9 77.6 82.5 87.5 76.0 81.3 90.7 79.4 84.6 92.8 74.8 82.8

Peroxisomal (125) 37.6 68.8 48.1 33.5 70.3 45.0 33.4 91.3 47.7 41.5 90.7 56.3 40.0 91.3 55.0
Plasma membrane (1674) 88.3 92.9 90.5 92.0 91.8 91.9 94.0 89.8 91.8 95.9 86.0 90.7 93.0 82.6 87.4

Vacuolar (54) 41.1 68.4 49.0 35.6 63.1 45.0 29.8 90.5 42.8 54.0 97.5 68.7 52.0 94.4 65.9
Total accuracy 74.7 77.8 77.4 81.2 80.5

Location accuracy 59.2 60.3 56.9 64.1 63.4

TABLE V

COMPARISON OF F1 VALUES (%) OBTAINED BY HYBRID FEATURE SET,

AMINO ACID COMPOSITION, AND 4-TUPLE FEATURES

Locations AAC-I Hybrid 4-tuple
features features

Chloroplast (671) 67.0 74.7 83.0
Cytoplasmic (1241) 66.1 69.9 74.6
Cytoskeleton (40) 60.2 65.1 75.7

ER (114) 62.8 73.4 78.1
Extracellular (861) 77.6 81.8 81.6

Golgi apparatus (47) 37.7 42.5 21.3
Lysosomal (93) 68.8 71.0 71.3

Mitochondrial (727) 51.7 61.4 61.8
Nuclear (1932) 79.2 82.8 84.6

Peroxisomal (125) 48.1 54.3 56.3
Plasma membrane (1674) 90.5 91.7 90.7

Vacuolar (54) 49.0 51.5 68.7
Total accuracy 74.7 78.8 81.2

Location accuracy 59.2 63.6 64.1

B. Comparison with other methods

In order to demonstrate the effectiveness of our proposed
methods including k-tuple prediction and voting scheme on
different k-tuple spaces, we made comparisons with the
method developed by Park and Kanehisa [7] because we used
the same dataset. The comparison results are summarized in
Table VI.

To the best of our knowledge, our method exhibits the best
performance among all existing prediction methods that do
not use the external information extracted from any database.
The improvement should owe to the discriminative ability
of k-tuple space which has not been found so far. On the
other hand, our experimental results also indicate that protein
sequence itself contains important information for subcellular
localization. This property is very useful when the predicting
protein is newly discovered and no function annotation and
other related information can be extracted from databases.

In the database annotation-based trend, some promising
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Fig. 2. Accuracy variance with tuple length across 5 folds

TABLE VI

COMPARISON BETWEEN OUR METHOD AND PREVIOUS METHODS (%)

Location Previous Method by Our Method
Park and Kanehisa

R R P F1

Chloroplast (671) 72.3 79.7 89.8 84.4
Cytoplasmic (1241) 72.2 77.8 75.0 76.3
Cytoskeleton (40) 58.5 55.9 100.0 69.7

ER(114) 46.5 68.4 94.3 79.1
Extracellular (861) 78.0 84.0 86.8 85.4

Golgi apparatus (47) 14.6 17.3 100.0 28.5
Lysosomal (93) 61.8 61.1 89.7 71.6

Mitochondrial (727) 57.4 58.3 78.4 66.8
Nuclear (1932) 89.6 92.6 78.0 84.7

Peroxisomal (125) 25.2 39.9 89.5 54.4
Plasma membrane (1674) 92.2 95.6 90.6 93.0

Vacuolar (54) 25.0 46.5 93.5 61.1
Total accuracy 78.2 82.8

Location accuracy 57.9 64.8
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prediction accuracies were also achieved, such as Chou and
Cai [18]. However, their method incorporated gene ontology
and function domain information for prediction. As a result,
improvement could be obviously obtained, since the gene
ontology [17] was partially comprised of the subcellular
localization annotation. However, it is not a general method
for large-scale and newly discovered protein sequences.

V. CONCLUSIONS

This paper focuses on a study of exploring the potential
discriminative ability of protein sequences. We carried out
the prediction without external information but only using
the amino acid sequences. The experimental results show
that amino acid tuples have even more information related to
subcellular localization than amino acid composition. This fact
has not been solidly validated by previous works. Furthermore,
we proposed a hybrid approach which combines different
length tuple together, that is, amino acid composition features
and characteristic tuple features obtained with feature selection
methods of text categorization. The experimental results show
that this hybrid method makes a tradeoff between feature
amount and prediction accuracy. It is also a good choice since
it retains the accuracy with a slight drop while significantly
reducing the number of features.

We conducted experiments on a dataset consisting of 7579
protein sequences [7]. The highest performance we obtained
using voting scheme among five classifiers is about 8.1%
higher than amino acid composition features, and 4.6% higher
than the previous highest accuracy achieved by methods based
only on protein sequences.
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[21] A. Höglund, P. Donnes, T. Blum, H. Adoplh, and O. Kohlbacher, “Using
N-terminal targeting sequences, amino acid composition, and sequence
motifs for predicting protein subcellular localization,” in Proceedings of
the German Conference on Bioinformatics (GCB ’05), 2005, pp. 45–59.
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