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Abstract. How to predict subcellular multi-locations of proteins with
machine learning techniques is a challenging problem in computational
biology community. Regarding the protein multi-location problem as a
multi-label pattern classification problem, we propose a new predicting
method for dealing with the protein subcellular localization problem in
this paper. Two key points of the proposed method are to divide a seri-
ously unbalanced multi-location problem into a number of more balanced
two-class subproblems by using the part-versus-part task decomposition
approach, and learn all of the subproblems by using the min-max mod-
ular support vector machine (M3-SVM). To evaluate the effectiveness of
the proposed method, we perform experiments on yeast protein data set
by using two kinds of task decomposition strategies and three kinds of
feature extraction methods. The experimental results demonstrate that
our method achieves the highest prediction accuracy, which is much bet-
ter than that obtained by the existing approach based on the traditional
support vector machine.

1 Introduction

The localization of a protein in a cell is very important for understanding its func-
tion. Due to the difficulties of conducting biological experiments to determine
the subcellular locations, a lot of efforts have been made to develop automatic
tools for localization. As the numbers of new genome and protein sequences in
the public databases have increased dramatically in recent years, methods based
on analyzing protein sequences have been largely developed. In 1994, Nakashima
and Nishikawa discriminated intracellular and extracellular proteins successfully
by amino acid composition and residue-pair frequencies [1]. Till now, many lo-
cations have been successfully discriminated and various pattern classification
and machine learning methods have been used, such as Mahalanobis distance
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[2], neural network [3], hidden Markov model (HMM) [4] and support vector
machine [5].

Most of these researches focus on mono-locational proteins, i.e., proteins ex-
isting in only one location. However, a lot of proteins bear multi-locational char-
acteristics. According to our statistics of Swiss-Prot database [8], there are more
than five thousands proteins locating in more than one location. Recently, Cai
and Chou first tackled the classification of multi-locational proteins in yeast [10].
They used GO-FunD-PseAA method, which hybridizes gene ontology, functional
domain composition and pseudo-amino acid composition approach. Although
this method improves the prediction accuracy a lot, it fails to give a general
classification method for this multi-location problem. In addition, there are a
large portion of proteins lack the information like GO and FunD.

In this paper, we apply M3-SVM to solve the problem. Several feature extrac-
tion methods are also discussed, including amino acid composition, amino acid
pair composition and segmentation method. A series of standard measures are
used to evaluate the classification performance. The experimental results show
that using M3-SVM and the part-versus-part strategy can get a much higher
prediction accuracy than traditional SVM and other classification methods.

2 Our Method

2.1 Min-Max Modular Support Vector Machine

The min-max modular network has been shown to be an efficient classifier, espe-
cially in solving large-scale and complex multi-class pattern classification prob-
lems [6]. It divides a complex classification problem into many small indepen-
dent two-class classification problems, which can be learned parallelly without
communication with each other. And then it integrates these modules to get
a final solution to the original problem according to two module combination
rules, namely minimization and maximization principles. The min-max modular
support vector machine [7], which use SVM as base classifier and M3 network
structure, has been successfully used in many pattern classification problems,
such as text categorization, human face recognition and industrial fault image
detection.

2.2 Part-Versus-Part Strategy

As for multi-class problems, one-versus-rest decomposition is usually used [9].
Given a K-class multi-label problem, its training set is as follows:

X = {(xm, tm)}l
m=1, tm = {tkm}, k = 1, ..., τm (1)

where xm ∈ Rn is the mth sample in the data set, tm is the label set of xm, tkm
is the kth label of xm, and τm denotes the number of labels of xm.

Decompose the K-class multi-label problem T to K two-class problems Ti, i =
1, ..., K. The training set of Ti is defined as

Xi = {(xi+
m , +1)}l+i

m=1 ∪ {(xi−
m , −1)}l−i

m=1 (2)
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Fig. 1. A multi-label problem di-
vided into several two-class subprob-
lems with the one-versus-rest strategy

Fig. 2. Decomposition of a seriously unbal-
anced multi-lable problem into a number
of balanced two-class subproblems with the
part-versus-part strategy for M3-SVM

where l+i is the number of positive samples of the two-class problem Ti, and l−i
is the number of the negative samples. For Ti, positive samples are those whose
label sets contain the label Ci and negative samples are the remaining ones.
Figure 1 depicts a multi-label problem divided into several two-class subproblems
with the one-versus-rest strategy and SVM as the two-class classifier.

Considering that many biological problems have unbalanced data distribution
for the classes, such as proteins occurring in Cytoplasmic, Nuclear and Plasma
membrane being much more than those in other locations, we adopt part-versus-
part strategy here [7]. An important advantage of the part-versus-part method
over existing popular pairwise-classification approach is that a large-scale two-
class subproblem can be further divided into a number of relatively smaller and
balanced two-class subproblems, and fast training of SVMs on massive multi-class
classification problems can be easily implemented in a massively parallel way.

The part-versus-part decomposition is straightforward which further decom-
poses the two-class problems to smaller ones as shown in Figure 2. For a two-class
problem Ti, its positive and negative training set X+

i and X−
i can be further

decomposed into N+
i and N−

i subsets, where 1 ≤ N+
i ≤ l+i , 1 ≤ N−

i ≤ l−i .

X+
ij = {(x+

m, +1)}l+ij

m=1, j = 1, ..., N+
i (3)

X−
ij = {(x−

m, −1)}l−ij

m=1, j = 1, ..., N−
i (4)

The l+ij and l−ij are numbers of samples in X+
ij and X−

ij , respectively.
After the original problem is divided into related balanced subproblems, each

of which can be handled by a SVM. And We use min-max modular network to
organize all the subproblem together.

2.3 Task Decomposition

Task decomposition is a key problem for M3-SVM. A good decomposition
method can maintain or even improve the generalization performance. In this
paper, we use two kinds of methods, namely random decomposition and hy-
perplane decomposition [13]. The former is simple and straightforward. Given a
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specific module size, it chooses samples randomly from the training set to form
a new smaller training set. This method can not obtain a stable performance
and may hurt the generalization ability sometimes.

As for the hyperplane decomposition method, a series of specific hyperplanes
are introduced and the training data are sorted according to their distances to
the hyperplanes. Then the ordered sequence of training data will be divided into
relatively balanced subsets.

3 Results and Discussion

3.1 Data Set

We conducted experiments on a data set collected from Swiss-Prot according to
the list of codes of the 4,709 budding yeast proteins given in [10]. None of the
proteins included here has 40% sequence identity with any other. Because some
sequences are absent in the database, the data set we used is 19 ones less than
theirs. But it would not has much impact on the overall accuracy. The distribu-
tion of the data set is listed in Tables 1 and 2. We adopted 10-fold cross-validation
test. All experiments were performed on a 3GHz Pentium 4 PC with 2GB RAM.

Table 1. Numbers of proteins for every class

Location Sequence No. Location Sequence No.
Actin 29 Lipid particle 19
Bud 23 Microtubule 20
Bud neck 59 Mitochondrion 491
Cell periphery 104 Nuclear periphery 59
Cytoplasm 1565 Nucleolus 156
Early Golgi 51 Nucleus 1323
Endosome 43 Peroxisome 20
ER 271 Punctuate composite 123
ER to Golgi 6 Spindle pole 58
Golgi 40 Vacuolar membrane 54
Late Golgi 36 Vacuole 129
Summation of all classes 4679
Number of different proteins 3536

Table 2. Distribution of multi-locational proteins

Number of Locations 1 2 3 4 5
Number of Sequences 2465 1007 57 6 1

3.2 Experimental Results

A proper representation for protein sequences is very important to the classifica-
tion of proteins. Researchers have developed a lot of features extraction methods
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for protein sequences. Here we experimented three approaches: amino acid com-
position (AAC), amino acid pair composition (AAP) and segmentation method
(SEG)[12]. Each protein in the data set of l proteins will be characterized by a
vector vi(i = 1, · · · , l), which represents sequence features.

AAC is a conventional method which converts a protein sequence S to a vector
v = {a1, a2, . . . , a20}, where ai(1 ≤ i ≤ 20) reflects the occurrence frequency of
one of the 20 amino acids ({A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, Y}) in a protein. AAP contains 400 components, each representing an amino
acid pair composition by counting two adjacent amino acids overlappingly. The
SEG method regards protein sequences as text and segment them nonoverlap-
pingly by match words in an established dictionary. The length of words used for
segmentation is not limited to two but determined according to need. Moreover,
it does not use all the k-mers but select informative ones by some criteria. Here
we establish a dictionary of 30 words, including 20 amino acid, 5 most frequent
amino acid pair and 5 3-kmers. The SEG method performs the best with tra-
ditional SVM. All of the three methods can obtain better prediction accuracy
using M3-SVM.

To evaluate the effectiveness of the multi-label classification comprehensively,
we use recall, precision and F1 measure for each class. We trained the classifier
with a RBF kernel and set the module size of M3-SVM to 100. Since the task

Table 3. Results by using SVM and M3-SVM

Location M3-SVM(R) M3-SVM(H) SVM
R P F1 R P F1 R P F1

Actin 13.8 4.1 6.3 17.2 13.9 15.4 0.0 0.0 0.0
Bud 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bud neck 76.3 3.5 6.7 54.2 5.3 9.7 1.7 33.3 3.2
Cell periphery 15.4 6.6 9.2 26.9 7.5 11.7 1.0 9.1 1.7
Cytoplasm 96.3 46.4 62.4 87.5 46.8 61.0 80.3 56.2 66.3
Early Golgi 33.3 7.8 12.6 35.3 7.7 12.6 0.0 0.0 0.0
Endosome 9.3 2.5 3.9 20.9 2.8 5.0 0.0 0.0 0.0
Endoplasmic reticulum 52.8 23.4 32.4 64.9 20.8 31.5 33.9 45.1 38.7
ER to Golgi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Golgi 10.0 2.9 4.5 5.0 3.9 4.4 2.5 50.0 4.8
Late Golgi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lipid particle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Microtubule 5.0 2.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0
Mitochondrion 75.4 23.9 36.3 69.5 31.8 43.7 40.5 55.3 46.8
Nuclear periphery 6.8 2.7 3.8 27.1 5.3 8.8 8.5 38.5 13.9
Nucleolus 61.5 8.7 15.2 58.3 9.8 16.8 1.3 28.6 2.5
Nucleus 46.3 44.5 45.4 86.3 40.9 55.5 41.2 57.1 47.8
Peroxisome 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Punctate composite 12.2 3.0 4.8 54.5 4.7 8.7 0.0 0.0 0.0
Spindle pole 31.0 10.3 15.5 51.7 10.0 16.7 1.7 100.0 3.4
Vacuolar membrane 11.1 4.0 5.9 14.8 5.7 8.2 0.0 0.0 0.0
Vacuole 41.1 11.9 18.4 63.6 10.7 18.3 3.9 17.9 6.4
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decomposition is one of the two key problems of M3-SVM, two kinds of task
decomposition methods were experimented. One is the random task decomposi-
tion strategy, the other is hyperplane task decomposition strategy. The detailed
values of recall, precision, F1 of 22 classes are given in Tables 3. Here amino acid
composition method is adopted. Let M3-SVM(R) stand for M3-SVM with the
random strategy, and M3-SVM(H) the hyperplane strategy.

From the experimental results, we can observe that M3-SVM(H) performs the
best among the three methods. And many small classes were successfully dis-
criminated by using M3-SVM with part-versus-part decomposition, while SVM
classified all the proteins to several big classes.

3.3 Comparison with Other Methods

Chou and Cai has reported that the likelihood of hitting the localization of a
protein in budding yeast could be as high as 90% [14] using GO-FunD-PseAA
method. In their method, gene ontology and functional domain knowledge are
used for prediction. Since we aim to propose a general classification method,
we make comparisons with other methods based on the same feature vectors,
i.e., the amino acid composition. The Least Euclidean Distance algorithm, Least
Hamming Distance algorithm and ProtLoc predictor obtained success rates of
13.89, 14.03 and 13.95%, respectively [10]. According to our experimental results,
traditional SVM obtained overall success rate of 46%. The M3-SVM(H) and
M3-SVM(R) obtained accuracies of 73% and 64%, respectively, which are much
higher than other classification methods.

4 Conclusions and Future Work

This study focuses on seeking efficient classification method to predict subcellular
locations for proteins existing in one or more locations. We apply M3-SVM and
part-versus-part strategy to solve this multi-label problem. And several feature
extraction methods for protein sequences are compared. The experiments were
conducted on a data set of yeast proteins. Results show that the classification
method we proposed is superior to other methods on a series of performance
measures and improves the accuracy significantly.

As a future work, we will consider referring other available field knowledge
to get more precise prediction results. And now we are constructing large-scale
data sets covering various species from Swiss-Prot. We believe that our methods
will be competent in solving new complex classification tasks.
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