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Semi-Supervised Clustering for Vigilance Analysis Based on EEG
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Abstract-Vigilance research is very useful and important
to our daily lives. EEG has been proved very effective for
measuring vigilance. Up to now, many researches mainly focus
on using supervised learning methods to analyze the vigilance.
However, the labelled information of vigilance is hard to get
and sometimes not reliable. In this paper, we proposed a semi-
supervised clustering method for vigilance analysis based on
EEG. This method uses the insufficient labeled information
to guide the vigilance related feature selection and uses prior
knowledge of vigilance state transform to guide the clustering
algorithm. The experiment results show that our method can
almost correctly distinguish the awake state and the sleeping
state by EEG, and can also represent the transform processes
of reasonable middle states between the awake state and the
sleeping state.

I. INTRODUCTION

During the past few decades, studies on vigilance have
shown that vigilance analysis is very useful to our daily lives
[1][2]. Vigilance, or sustained attention, refers to the ability
of observers to maintain their focus of attention and to remain
alert to stimuli for prolonged periods of time. For many
human machine interaction systems, the operators should
retain vigilance above a constant level. Otherwise, some
accidents may occur. In addition, with rapid development
and wide applications of robots, in order to offer high quality
of service, besides recognizing the object's expressions, the
robots also should be able to estimate the objects' vigilance
correctly. Therefore vigilance analysis is a very important
issue in human machine interaction study.

In the past several decades, various signals were used to
analyze the vigilance. Among them, EEG based vigilance
analysis is more accurate and faster. In EEG based vigilance
research, most existing methods have focused on using
supervised learning methods to analyze the vigilance [3]-
[9], such as using the evoked potential (EP) response to
analyze the vigilance, using group mean performance in a
testing environment to analyze the vigilance, and using prior
knowledge and experts experiences to analyze the vigilance.

However, till now, there is no uniform standard for vig-
ilance scale labeling, and the existing vigilance labelling
methods are complex, expensive and sometimes not reliable.
Based on these considerations, we choose clustering method
for vigilance analysis. Furthermore, semi-supervised cluster-
ing is more powerful than unsupervised clustering, as it can
use supervising information to guide clustering algorithms
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towards a reasonable grouping of data and to guide similarity
computing methods [10]-[12]. And in vigilance study, there
surely has some labelled information or prior knowledge
which can be used.
Many studies show that, the vigilance state transform

during a long term is a gradual changing process [2][6].
For example, vigilance states are divided into 4 states from
high level to low level. State 1 means clear-headed and state
4 means totally sleeping. The occurrence of vigilance state
transform from state 2 to state 3 is more possible than from
state 2 to state 4. In addition, the labelled data of clear-
headed (state 1) EEG and sleeping (state 4) EEG are easy
to be obtained. As a result, we can use these information to
supervise the clustering process.

In our study, we use EEG for vigilance analysis. We also
divide the vigilance into 4 states from high level to low level.
State 1 means clear-headed; state 4 means sleeping; and other
states mean middle states between clear-headed and sleeping.
Firstly, utilizing insufficient labelled EEG data, we mainly
use Common Spatial Patterns (CSP) [13][14] and mutual
information based feature selection methods [15] to select
the vigilance related features for indirectly guiding the simi-
larity computing. Then, considering the above vigilance state
transform property, we design a clustering method combining
with some prior knowledge of vigilance states transform
to analyze the EEG data. Experimental results show that
our method can almost correctly distinguish the awake state
and the sleeping state by EEG, and can also represent the
transform processes of reasonable and meaningful middle
states between awake state and sleeping state.

This paper is structured as follows. In section II, the
methods used for vigilance analysis are described. In section
III, experimental setup is briefly introduced. In section IV,
experimental results are presented. Finally, some conclusions
are drawn in section V.

II. METHOD

We use multi-channels EEG for vigilance analysis. Ex-
periments show that the changing of EEG during vigilance
state transform is a continuous process. For example, as
shown in Fig. 1, the energy of EEG around 3Hz from
clear-headed state to sleeping state is a gradual increasing
process. So we can select the features of EEG which can
well separate the labelled clear-headed and sleeping data
as the vigilance related features. As the features are the
inputs of the similarity computing algorithm, this strategy
is indirect to supervise the similarity computing, cluster the
related features and use the vigilance state transform property
to supervise the adjustment of the clustering results.
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Fig. 1. Distribution of EEG energy around 3Hz on the scalp

The whole process consists of three parts. Firstly, BEG sig-
nals are preprocessed for artifact reduction and decomposed
for extracting the vigilance related signals. Secondly, based
on the preprocessed BEG, related features are extracted,
and the appropriate features are selected by using mutual
information based method. Finally, by utilizing vigilance
states transform property, an extended graph factorization
clustering (XGFC) model is proposed for clustering the
vigilance states.

A. EEC Preprocessing

The original BEG signals contain a lot of artifacts or unre-
lated signals. For achieving the goal of analyzing vigilance
states correctly and reliably, the artifacts must be rejected
and the unrelated signals must be reduced maximally.

Generally speaking, there are two types of artifacts
[16]. The first type is extra cerebral source artifact which
is recorded together with BEG, such as electrooculo-
gram (BOG), electromyogram (BMG), and electrocardiogram
(EGG). The second type is technical artifacts which results
from the BEG recording system, such as signal drift and
decay.

In our experiments, a 128-channels NeuroScan system
was used to record BEG signals. The extra cerebral source
artifacts mainly consist of BOG and BMG signals induced
by movement. The BOG signals were removed by Scan4.3
software installed in NeuroScan System. And the obvious
BMG signals were rejected by hand. For the high perfor-
mance of NeuroScan system, the technical artifacts could be
ignored except the signal drift which could also be corrected
by Scan4.3 software.

Besides artifacts, there exist a lot of background signals
which are unrelated to vigilance change. Therefore. we need
a decomposition method which can minimize the amount of
background signals. Suppose we take the background signals
as noise signals. As we know, there are a lot of classical
or effective decomposition methods. But unfortunately, as
the energy of noise signals is much greater than the energy
of interested signals, most of them are unavailable for this
situation. Here we used a decomposition method based on
CSP [13][14] which is effective and specific for BEG signals
decomposition.
CSP can seem as a variation of Principal Components

Analysis (PCA). By using the CSP method, two kinds of
BEG signals are whitened and then projected to the common
spatial patterns. After that, the spatial patterns, to which the
corresponded variances of the two kinks of BEG signals are
most different, are chosen as the projection factors. Finally,

the EEG signals are decomposed using the projection factors.
CSP projection can be formulated as

Z =PV (1)
where V denotes the original signals, P denotes the pro-
jection matrix and Z denotes the decomposed signals. For
example, two kinds of EEG signals are expressed as X1 and
X2, respectively. Actually, Xi is the combinations of events-
related signals Si and background signals Sb, namely

Xi = [Ci, Ci ] b (2)

where [Ci, Cib] is the combination coefficients matrix, i C
{ 1, 2}. Assume Sb and Sb are the same background signals,
then CSP can be used to extract the events-related signals S1
and S2.
As we see, CSP is only available for labelled two-

category problem. However, the vigilance analysis is a multi-
category problem and the labelled information is insufficient.
To deal with this problem, we propose a new strategy as
follows. Firstly, we coarsely divide the EEG signals into
three categories, namely clear-headed, sleeping, and others.
Then, we use the labelled clear-headed and sleeping EEG
signals as two conditions to get the common spatial patterns.
Finally, we choose the common spatial patterns to form
projection matrix PCSP which optimally separates the clear-
headed and sleeping EEG signals as the projection factors to
transform the whole EEG signals. Let X and Y denote the
whole artifact rejected EEG signals and the projected signals,
respectively, then

Y = Pcspx (3)
where X is a matrix with dimension of k by 1, and Y is a
matrix with dimension of m (number of selected CSP) by 1.
As clear-headed state and sleeping state are two terminal

states of vigilance and the EEG changing during vigilance
state transform is a continuous process, the whole EEG
changing process should be reflected on these projected
spatial patterns and the middle states of vigilance should be
separated by projected to the selected spatial patterns of the
two terminal states.

B. Feature Extraction and Selection
Many vigilance researches show that vigilance changing is

mainly reflected by Power Spectral Density (PSD) changing
of EEG signals [4][9]. So firstly, we use discrete short time
Fourier transform to extract the PSD of each CSP projected
EEG signal Y and take the PSD bellow 50Hz as the feature
information with frequency resolution lHz.

Vpsd = STFT(Y) (4)
where STFT denotes short time Fourier transform, and Vpsd
is the PSD matrix with dimension 50m by n (number of time
window).

Then we use PCA to reduce the dimension of the feature
matrix

VR = PRVpsd (5)

clear headed middle state sleeping



where PR is the matrix of principal spatial patterns A

dimension u by 50m and VR is the dimension reduced feat
matrix with dimension u by n.

After performing PCA, we use a mutual information ba
feature selection method [15] to choose a subset Smi
the feature set S. This method selects feature subset
optimizing max-relevance between feature subset and tar
class, and min-redundancy among the feature subset. Den
the i-th feature of EEG signals by xi and the vigilance sta
by c. As we only have two types of labels: clear-headed
sleeping. We just use these labelled information to select
feature subset. The reason for doing like this is just like w
is for selecting the projection matrix mentioned above.
I(xi; c) denote the mutual information between xi and
Then the relevance between feature subset Sk and clas
can be defined as

D Sl IT (xi; C)
D Sk t u bsek

and the redundancy among the feature subset can be defii
as

RSk 2 .XI(Xsk

where I(xi; xj) is the mutual information between xi and
The criterion of mutual information based feature select
method is to maximize D -R. The criterion operator can
defined as

= D -R.
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denote the matrix of pairwise data relations with dimension
n by n, and B denote the matrix of relations between data

(6) and clusters with dimension n by k (number of clusters).
From the perspective ofMarkov Random Walks, the relations

ned among Vi can be expressed as

W = (BA-lBT), A = diag(Al,...,Ak) (9)

(7) whereAn= Bij. If we want to get an optimal
estimation of B, the divergence between W and W must

Xj, be minimized. To make the problem easy to be solved, we
ion replace BA -1 by H. Then the objective function is expressed
be

(8)

as

1 (10)

Thus, the selected feature subset should maximize Jb.
In practice, we choose the feature subset Sm1 by an

incremental search method as described in [15]. And adjust
feature subset Smi according the clustering results from next
part. Finally, we get a feature matrix Vf, with dimension ufs
by n, where ufs is the number of elements in Sm1i

C. Extended Graph Factorization Clustering Model

Proper clustering method can mine the intrinsic relations
of a given data set. Combined with some supervising in-
formation, clustering method can get even better results to
interpret the intrinsic relations of the given data set. Here,
we propose an extended graph factorization clustering model
(XGFC), which is based on graph-factorization clustering
method (GFC) [ 17]. After GFC, it uses vigilance states
transform property to adjust the clustering results.

Firstly, we briefly introduce GFC. GFC is based on the
pairwise data similarities which assigns data to clusters in a

probabilistic way. GFC can also afford the relations among

clusters in a probabilistic way. As illustrated in Figs. 2(a)
and 2(b), the main idea of GFC is that for any pairwise
data relations graph, there exists a latent bipartite graph
according to which the data were generated and the pairwise
data relations graph were formed. In Figs. 2(a) and 2(b),
vi denotes the observed data, ui denotes the latent cluster,
the edges between two nodes denote the relations of them.
The objective of GFC is to estimate the relations between vi

where l(., ) is a divergence operator. Let l(X, Y) =

Eij[Xij log(Xij Yij) -Xij +Yij], then the objective func-
tion in Equation (10) can be reduced by the following update
rule

Hip (x HipE (HAv j Aj EH SHip = 1 (1 1)

AP(APZ( )T) HipHjp ApH Wij. (12)
iF p ig

Finally, we get the data cluster relations

B = HA. (13)

Then the relations between data and clusters can be consid-
ered as the probability that the data belong to the clusters.
In Fig. 2(c), the relations W' among clusters can also be
estimated from the perspective of Markov random walks.

(14)

where di = Ej=l Bij. If we consider the above relations in
a probabilistic way, then we can get the following results

p(vi, uj) (x Bij
P(vi:j)xcWj

p(vi) c di

(15)

(16)

(17)

p(uj)x Aj. (18)

nT121
min{l (W, HAHT)}, s.t. E Hip

i=l

wc = (BTD-'B) . D = dt'ag (dl,..., d,)



Considering the vigilance state transform is a gradual chang-
ing process, we propose a state transform model which is
shown in Fig. 3. We divide vigilance into 4 states. The
edges in this model indicate whether there exists transform
probabilities between two states during a short time. For
example, in our assumption, there is no edge between state 1
and state 4, this means during a short time state 1 and state
4 can not directly transform to each other. If there exists an
edge, we directly use p(ui, uj) as the transform probability.

Fig. 3. Each node denotes a vigilance state, and each edge denotes there
existing direct transform between these two states

Yi Yk-1 Yk Yk+1 yj

Xi Xk-1 Xk Xk+ IX

Fig. 4. The final clustering label Yk is determined by Xk-1, XkZ and Xk+1,
where xi denotes observation, yi denotes clustering label of xi.

Based on the state transform model, we design a condi-
tional probability model which works after GFC. This model
uses the neighbor observations to help the current observation
adjust its clustering result as shown in Fig. 4. The detailed
algorithm is described as follows.

Let {xi} and {yi} denote the observation sequence
and the label sequence, respectively. Then the relevance
(xi- i,XX±i+1) for yi st is shown as follows.

R(st, xi) =P, (St lxi) (19)

R(st,xzi-1l) = EPu (st lsj )Pv (sj~i| 1I) (20)

R (st, xi+ l ) = E Pu (st sj )Pv (sj xi+ I ) (21 )

where P, is the conditional probability of data to clusters,
P,, is the conditional probability of clusters to clusters, and
{si} is the cluster set. P, and P,, can be calculated by
Equations (15-18). As there is no direct link from xi-, (or
xi+1) to yi, the revelance between them is taken by utilizing
the path xi-lyi-lyi (or xi+lyi+lyi). Then we define a
criterion function as

yi = argmaxs{D(st x) = a-iR(st,xi_i)
+cxoR(st, xi) + cxiR(st, xi+l)}

(22)

where aj is the coefficient which reflects the contribution of
each xk to the target label yi. This function considers neigh-
bors' contribution. And the coefficient aj can be adjusted to
get reasonable grouping of data. This process can be seen

as a local optimization of conditional random fields (CRF)
[19].

In summary, the whole processing of EEG signals can be
described as follows.

* Firstly, EEG preprocessing including noise reduction
and CSP processing is carried out.

* Secondly, EEG signals are transformed to the frequency
domain, then PCA and mutual information are used to
perform feature extraction and selection.

* Thirdly, GFC is used to cluster the EEG data so as to
get the probability information.

* Finally, conditional probability model (Equation 21-22)
is used to adjust clustering results.

III. EXPERIMENTAL SETUP

A total of 16 healthy volunteers whose ages are from 19
to 25 took part in our study. Each subject performed at least
four turns of experiments. The experiments were carried in
a small room with normally illuminated and insulated. The
temperature of the room was kept at about 24 degrees and
the humidity was kept between 20% and 40%.

During the experiment, the subject was asked to lie on
bed, close eyes and try to release until falling asleep. The
EEG signals were acquired though the NeuroScan System.
64 channels of signals including 62 channels of EEG and
2 channels of EOG are recorded. Electrodes are arranged
based on extended 10/20 system as shown in Fig. 5. Each
experiment lasts at least one hour. During this time, a period
of soft and short music was presented to the subject several
times. The music lasted 10 seconds and the volume of the
music was tuned such that the subject would not be disturbed
when the subject was sleeping. If the subject listens to the
music, the subject should open his or her eyes, which shows
that he or she is awake. If not, the subject just does nothing.
This means that he or she falls asleep. We also use a DV
camera to record the subject's face expressions.
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Fig. 5. Electrodes distribution of extended 10/20 system

After each experiment, we used the feedback of the
subjects combined with the facial expressions from the video
recorded to label the clear-headed EEG and sleeping EEG.
The EEG around the period when playing the music was
discarded. Only when both sides estimation of vigilance
states were the same, the EEG was labelled.
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IV. CLUSTERING RESULTS

After acquiring the EEG data, we use K-mean, normalized-
cut [18], GFC and XGFC to cluster the EEG data in different
situations, then compare and analyze the different clustering
results according to the subject's feedback, video and the
insufficient labelled data. During clustering the EEG data,
we make a decision on the current vigilance state of the
subject every 4 seconds. Fig. 6 shows the waveforms of the
original EEG data. The sharp peaks in the figure are the EOG
signals.
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Fig. 6. The original EEG data

A. Directly Clustering the Original EEG Data

We use K-Mean and Normalized-Cut to directly cluster
the PSD of the original EEG data into two states: wake (not
clear-headed state) and sleep. This EEG data is recorded in
one day from subject A. The results are shown in Figs. 7(a)
and 7(b). For the resolution limited, there are overlaps in the
figure. Here, overlaps do not mean that two states appeared
at the same time point. Instead, the two states just emerged
alternately during that period of time. From the figure we
may conclude that the subject is awake during the first 15
minutes and the last 10 minutes. This is also verified by
the subject after the experiments (wake: during the first 20
minutes and the last 10 minutes). However, there are many
overlaps. According to the subject's feedback some of them
are obvious wrong.

B. Using Vigilance Related Feature Selection

Here, we use the vigilance related features to cluster the
EEG data. Figs. 7(c) and 7(d) show the results of clustering
the data after vigilance related feature selection. Firstly, we
use K-Mean and Normalized-Cut as the clustering algorithms
to cluster the same EEG data in Fig. 7(a). Comparing with
directly clustering the original EEG data, we can see that
many overlaps disappeared. And the results are more close to
the subject's feedback and the observations from the recorded
video. Thus we can see that the feature selection process can
effectively improve the performance of clustering algorithm.

Nextly, we cluster the vigilance related features of EEG
data using GFC and XGFC. Figs. 7(e) and 7(f) show the
results. From these figures we can see that GFC gets a similar
result as K-Mean or Normalized-Cut, while XGFC gets even
better results which are almost consistent with the subject's
feedback and the observation from recorded video.

Although XGFC can greatly improve the grouping of
EEG data, carefully observation on Fig. 7(f) reveals a clear
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Fig. 7. Clustering results of vigilance states. 1) Cluster the PSD of
the original EEG data using (a) K-Mean algorithm; (b) Normalized-Cut
algorithm; 2) Cluster the data after vigilance related feature selection using
(c) K-Mean algorithm; (d) Normalized-Cut algorithm; (e) GFC algorithm;
(f) XGFC algorithm with a I = a -1 = 0.4, ao = 0.2

overlap around the time 20 minutes. This may be due to the
existence of middle states when falling asleep. To examine
this observation, we cluster the data around that particular
time into four vigilance states as shown in Fig. 8(a). These
four states can be easily distinguished. In order to verify
the legitimacy of the clustering result, we calculate the
average EEG spectrum of each states around 3Hz as shown
in Fig. 8(b). From this figure we can see that the average
energy from state 1 to state 4 is gradual increasing. This
phenomenon is consistent with physiological results.

Besides these, the feature patterns calculated from one
subject in one day combined with XGFC are also applicable
to cluster the EEG data from the same subject in other days
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Fig. 9. (a) Clustering result of EEG data from the same subject but in
another day. (b) Clustering result of EEG data from another subject

or even from different subjects. Fig. 9 shows the results,
which are close to the subject's feedback and the observing
results from the recorded video.

V. CONCLUSIONS

In this paper, we have proposed a semi-supervised clus-
tering method for vigilance analysis based on EEG signals.
Firstly, we used the insufficient labelled information to guide
the vigilance related feature selection indirectly supervised
the similarity computing. Then considering the vigilance
states transform property, we proposed the XGFC model for
EEG data clustering based on local optimization of CRF.
From the experimental results, we can see that vigilance
related feature selection process is very helpful to improve
the performance of clustering algorithms. In addition, by
using condition probability model, the XGFC model can get
even better and reasonable grouping of the EEG data. As
a result, although labelled information in vigilance studies
is very poor, proper semi-supervised clustering can still get
meaningful results. In the future, we will continue improving
the clustering algorithm and use the clustering results to
guide the vigilance labelling and vigilance estimation.
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