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Abstract. Support vector machines (SVMs) have been accepted as a
fashionable method in machine learning community, but they cannot be
easily scaled to handle large scale problems because their time and space
complexities are around quadratic in the number of training samples. To
overcome this drawback of conventional SVMs, we propose a new con-
fident majority voting (CMV) strategy for SVMs in this paper. We call
the SVMs using the CMV strategy CMV-SVMs. In CMV-SVMs, a large-
scale problem is divided into many smaller and simpler sub-problems
in training phase and some confident component classifiers are chosen
to vote for the final outcome in test phase. We compare CMV-SVMs
with the standard SVMs and parallel SVMs using majority voting (MV-
SVMs) on several benchmark problems. The experiments show that the
proposed method can significantly reduce the overall time consumed in
both training and test. More importantly, it can produce classification
accuracy, which is almost the same as that of standard SVMs and better
than that of MV-SVMs.

1 Introduction

In recent years, there are many very large-scale data sets like public-health
data, gene expression data, national economics data, and geographic informa-
tion data. Using these very large data sets, researchers can get higher accuracy,
discover infrequent special cases, and avoid over-fitting. However, most of ex-
isting machine learning methods are hard to be used to deal with these very
large data sets because a very long training time and huge space are required.
Therefore, one of the most challenging problems in machine learning commu-
nity is to develop new learning model to efficiently handle these large data
sets.

Today, support vector machine (SVM) [1] has been widely used in the field of
pattern recognition for its strong theoretical foundations and good generalization
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Table 1. The contingency table

label y = 0 label y = 1
prediction h(x) = 0 Tp Fp

prediction h(x) = 1 Fn Tn

performance. However, both its training time complexity and space complexity
are O(N2), where N denotes training set size. The reason is that training SVMs
is to solve a quadratic programme problem in essence. Many efforts are made to
scale SVMs, such as choosing representative samples by preprocessing training
data [2] [3] [4] [5], avoiding to solve the quadratic programme problem [6] [7] [8],
and using geometric algorithms [9] [10].

The divide-and-conquer principle has been applied to scale SVMs. The SVMs
using the divide-and-conquer principle in a serial way include the standard SVMs
training method SMO [11], SVMlight, and libSVM, as well as using boosting to
scale SVMs [12]. The SVMs using the divide-and-conquer principle in a parallel
way, which will be named as parallel SVMs later on, include support vector mix-
tures [13], bayesian committee support vector machine (BC-SVM) [14], min-max
modular SVMs (M3-SVM) [15], and parallel mixture of SVMs [16]. Between se-
quential and parallel implementation, there are hierarchical and parallel methods
[17], [18], [19], which filter non-support vectors in a cascade way.

From the point of view of parallel learning, parallel SVMs have many merits
over monolithic SVMs. The first is that parallel SVMs can be benefited from
cheap clustering systems by MPI, PVM, and the current grid computing [20].
The second is their reliability that parallel SVMs will still work even though some
of their components fail. The third is their speedup, which can bring convenience
to parameter selection.

In this paper, a confident majority voting (CMV) strategy is proposed to
scale SVMs, which is inspired by an ensemble learning approach [21]. We call
the SVMs using the CMV strategy CMV-SVMs. In CMV-SVMs, a large-scale
task is divided into many smaller and simpler sub-problems in training phase
and some confident component classifiers are chosen to vote for the final outcome
in test phase. The experiments show that the proposed method can significantly
reduce the overall time consumed in both training and test. More importantly,
it produces classification accuracy which is almost the same as that of standard
SVMs and better than that of MV-SVMs.

This paper is organized as follows. Section 2 introduces the model of CMV-
SVMs, the definition of classification confidence, and the training and test
algorithms for CMV-SVMs. In section 3, some experiments and analysis are
presented for giving evidence of the advantages of CMV-SVMs. In section 4,
the bias-variance decomposition strategy is employed to explore the reason
why CMV-SVMs generalize better than MV-SVMs do. Finally, Section 5 is
conclusions.
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2 Confident Majority Voting

2.1 Definition of Classification Confidence

Given a problem with a training data set Str = {(x1, y1), ..., (xN , yN)}, where
xi ∈ X ⊆ Rn is an instance, yi ∈ {0, 1} is its class label, and N denotes the
training data set size. After training, a classifier h : X → {0, 1} will be obtained.
Given a test sample x, h(x) will output the class label of x. In order to evaluate
the performance of h(x), a contingency matrix is defined as in Table 1.

In real-world applications, the class label y of a test sample x is not known.
A good classifier should output a class label for x with high classification
confidence. Otherwise its output cannot be believed and used to handle real-
world problems. For example, in the field of medical diagnostics, the classifica-
tion confidence is very paramount. In this paper, the classification confidence
for a test sample x is used to choose the classifiers which can vote for the final
classification. The classification confidence for x that is classified as class ω is
defined as follows:

T (x) = P (y = ω|h(x) = ω) =
P (h(x) = ω|y = ω) ∗ P (y = ω)

P (h(x) = ω)
, (1)

where T (x) denotes the classification confidence for x.
Many work has been made to compute classification confidence [22]. As in

Proposition 1, after setting an appropriate neighbor size for a test sample x in
a validation data set, the performance of a classifier in the neighborhood of a
test sample x is used to evaluate the classification confidence of x. In addition,
it should be noted that the classification confidence has been defined as local
class accuracy in the work of Woods [21].

Proposition 1. Subscribing the size of neighborhood of a test sample x in a
validation data set. The performance of a classifier in the neighborhood of x is
evaluated according to Table. 1. If x is classified as class 0, then its classification
confidence can be computed as: T (x) = Tp

Tp+Fp . If x is classified as class 1, then
its classification confidence can be computed as: T (x) = Tn

Tn+Fn .

2.2 Training and Test Algorithms

CMV-SVMs can be regarded as a parallel implementation of the divide-and-
conquer principle and a mixture of ensemble and modular learning.

The training algorithm for CMV-SVMs can be described as follows:

1. Initiation: constant M , i.e., the number of the repeat of training data set par-
titioning, the value of partition K, and the appropriate parameters for SVMs.

2. For n = 1, 2, ...M
Partitioning: the training data set Str is randomly partitioned into K subsets
with almost the same size, i.e. ∪j=n∗K

j=(n−1)∗K+1S
j
tr =Str and ∩j=n∗K

j=(n−1)∗K+1S
j
tr =

Φ, where Φ denotes an empty set. The aim of making equal sizes of subsets
is intended to keep load balance, although the training time of SVMs does
not only depend on the training data size.
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3. Training: M ∗ K support vector machines as component classifiers, hj , 1 ≤
j ≤ M ∗ K, are trained on the corresponding subsets Sj

tr, 1 ≤ j ≤ M ∗ K.
Because no communication is required in the training phase among the com-
ponent classifiers, they can be trained in a parallel way.

4. Validating: Use training data set Str as a validation set to evaluate each
component classifier hj, 1 ≤ j ≤ M ∗ K and save the examination results.
The validation results are used to evaluate the classification confidence for
a test sample.

The test algorithm for CMV-SVMs can be described as follows:

1. Initiation: given a appropriate neighborhood size q, a classification confi-
dence threshold ε, 0 ≤ ε ≤ 1, and a test sample x.

2. Classifying: Compute hj(x), 1 ≤ j ≤ M ∗ K in parallel. If all the hj(x), 1 ≤
j ≤ M ∗ K are the same, any hj(x) can be used as the final class label of x,
then return. If not, goto next step.

3. Calculate all the classification confidence of x, i.e. Tj(x), 1 ≤ j ≤ M ∗ K.
Find the largest classification confidence: imax = argmaxM∗K

j=1 Tj(x).
4. Find the set ∇ = {j|(Timax(x) − Tj(x) ≤ ε, 1 ≤ j ≤ M ∗ K}.
5. Confident combining: If |∇| = 1, where |∇| denotes the size of the set ∇,

then use himax to classify, else choose classifiers hj , j ∈ ∇ to vote.

3 Experiments and Results

In order to evaluate the performance of the proposed method, some experiments
are performed to compare our CMV-SVMs with standard SVMs and MV-SVMs.
The experimental platform is PC with 1G RAM and 3G CPU. The training
algorithm used is libSVM with cache of 40M and kernel function of RBF. Three
data sets are used in the experiments, the first two are artificial data and the
last is a real data set. The statistics of all the classification problems and the
parameters used for SVMs are shown in Table. 2.

The artificial data sets include two-spirals data and checkboard data. The data
of the two-spirals are uniformly chosen from two curves of ρ = θ and ρ = −θ,
where (ρ θ) means polar coordinates. The data of checkboard problem are chosen
from a 2D checkboard that divides a 200 × 200 square into four quadrants in
which the points are uniformly distributed [18]. Forest coverType data set comes
from UCI [23], and only the samples of its second and sixth classes are chosen,
in which one half of the data are used as test data and the rest data are used
for training.

In order to get reliable experimental results, 100 training sets and a common
test set are randomly generated for the two-spirals and the checkboard probelms,
respectively. For the Forest coverType classification task, 100 training sets are
randomly generated and each of them contains two-thirds of the whole training
data. As a result, the experiments are performed in 100 times and the average
results are presented. In order to systematically evaluate the proposed method,
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Table 2. Problem description and the parameters used in SVMs

Problems #attributes #training data #test data c σ neighbor size q

Two spirals 2 3000 20000 128 2 5
Checkboard 2 32000 80000 1000 31.62 90

Forest coverType 54 28132 28132 128 0.25 90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.7

0.75

0.8

0.85

0.9

0.95

1

Partition K

A
cc

ur
ac

y

CMV

MV

HC

LC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Partition K

A
cc

ur
ac

y

CMV

MV

HC

LC

(a) (b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Partition K

A
cc

ur
ac

y

CMV

MV

HC

LC

(c)

Fig. 1. Classification accuracy comparison with M = 1. (a) Two-spirals, (b) Check-
board, and (c) Forest coverType. Here HC means the component SVM classifier with
the highest classification accuracy, and LC means the component SVM classifier with
the lowest classification accuracy

the value of K is set to 2, 3, ..., 20 in the experiments. K = 1 means that the
classifier is trained by the entire training data, i.e. standard SVM is used.

From Fig. 1, we can see firstly that the generalization ability of CMV-SVMs is
almost the same as standard SVMs in case of different partitions and sometimes
better than standard SVMs. Secondly the generalization accuracy of CMV-SVMs
is higher than all its component SVM classifiers. This demonstrates that the
confident combining can efficiently make the component SVM classifiers work
cooperatively. In addition, considering Table. 3, it seems that CMV-SVMs can
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Table 3. Comparing the accuracy of CMV-SVMs with the accuracy of Knn

Problems Knn CMV-SVMs
neighbor size accuracy K = 1 K = 2, 3, 4, ..., 20

mean variance
Twospirals 5 1.000 1.000 1.000 0.00007
Checkboard 90 0.995 0.999 0.999 0.00012

Forest coverType 90 0.989 0.999 0.998 0.00061
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Fig. 2. The average number of confi-
dent SVMs for one test instance
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Fig. 3. The speedup, here the CPU
time includes both training and test
time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.9975

0.998

0.9985

0.999

0.9995

1

Partition K

A
cc

ur
ac

y

M=1

M=5

M=15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.997

0.9975

0.998

0.9985

0.999

0.9995

1

Partition K

A
cc

ur
ac

y

M=1

M=5

M=15

Fig. 4. Large values of M can improve classification accuracy. The left is on checkboard
data set, and the right is on Forest coverType data set.

get higher accuracy than k-NN does. Therefore, k-NN cannot substitute CMV-
SVMs even CMV-SVMs use the information of the nearest neighbor of a test
instance. Thirdly the generalization accuracy of CMV-SVMs is higher than that
of MV-SVMs.

Fig. 2 illustrates the average number of classifiers for one test sample when all
hj(x), 1 ≤ j ≤ M ∗K are not the same. From Fig. 2, we can see that classification
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Fig. 5. Comparison of the variance of MV and CMV in case of different partitions: (a)
Two-spirals, (b) Checkboard, and (c) Forest coverType

confidence requirement filters some component SVMs. It is like that for a given
question only experts with richer experience can be selected to take part in
decision-making. Therefore, the confident combining strategy can improve the
generalization accuracy. The deeper reason is explored again by bias-variance
decomposition [24] strategy in the next section.

In Fig. 3, the CPU time considered includes both training and test time. It
can be seen that CMV-SVMs can significantly reduce the overall time. Fig. 4
shows that the larger the value of M the higher the accuracy. It seems because
the larger M will lead to more diverse SVM classifiers and so more confident
classifiers can be found to combine for classifying a test sample.

4 Bias-Variance Decomposition

Zhou et al . proposed an approach GASEN, which selects some neural networks
based on the evolved weights to make up the ensemble, to show many could be
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better than all in neural networks ensembling [25]. By the bias-variance decom-
position, it was explored that GASEN can significantly reduce both the variance
and the bias simultaneously. Liking GASEN, CMV-SVMs selects some confident
classifiers to make up the ensemble. In order to further explore the reason why
CMV-SVMs generalize better than MV-SVMs do, the bias-variance decomposi-
tion is also employed in this paper.

4.1 Bias and Variance

Bias-variance analysis provides a powerful tool to study learning algorithms. By
it, one can get insight into the error production of an algorithm and find the
ways to improve the algorithms. According to Dietterich [26], the statistics bias
of a learning algorithm is the persistent or systematic error that the learning
algorithm is expected to make when trained on training sets of size N . Given a
set S of training examples, algorithm A outputs a hypothesis A(S) = ĥS . It is
convenient to define p̂S(x) to be the probability that ĥS misclassifies test point
x. This probability is 1 if ĥS misclassifies x, and 0 otherwise.

p̂S(x) =
{

1, if ĥS(x) 
= y,

0, if ĥS(x) = y.
(2)

Based on the above definition, given a sequence of training sets S1, S2, ..., Sl,
each of size N , and a common test set Sts, applying learning algorithm A to
construct hypotheses ĥS1 , ĥS2 , ..., ĥSl

, the averaged probability of error can be
defined to be the average of these p̂S ’s, where the average is taken over all
possible training sets:

¯̂p(A, N, x) = lim
l→∞

1
l

l∑
i=1

p̂Si(x). (3)

The expect error rate of A for a test point x is

E(A, N, x) = ¯̂p(A, N, x). (4)

The definition of Bias and Variance is like below:

B(A, N, x) =
{

0, if ¯̂p(A, N, x) ≤ 0.5,
1, if ¯̂p(A, N, x) > 0.5. (5)

V (A, N, x) =
{ ¯̂p(A, N, x), if ¯̂p(A, N, x) ≤ 0.5,

¯̂p(A, N, x) − 1, if ¯̂p(A, N, x) > 0.5. (6)

So, the variance is the increase in the error rate at x relative to the bias.
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4.2 Result Analysis

With the experimental methodology illustrated in Section 3, the bias and vari-
ance of CMV and MV are computed according to Dietterich’s method. Fig. 5
shows that the variances of CMV are smaller than the variances of MV in case
of different partitions in all the classification tasks, the only exception lies in
the case of Checkboard data classification when K = 2. The biases of CMV and
MV are zero in all cases and are not displayed. These evidences can explain why
CMV-SVMs can generalize better than MV-SVMs do.

From Fig. 5, we can see that the variance of CMV keeps stable while the variance
of MV gets bigger with increasing the number of partitions. These evidences can
explain why MV-SVMs generalize worse and worse with increasing the number of
partitions, while CMV-SVMs maintain their generalization accuracy.

5 Conclusion

In this paper, we have proposed a novel support vector machine called CMV-
SVM to scale SVMs. Comparison with other parallel SVMs, CMV-SVMs are
more easily to be implemented. Several experimental results indicate that the
proposed confident majority voting strategy can get higher accuracy than major-
ity voting does and the proposed CMV-SVMs can not only significantly reduce
the overall time consumed in training and test, but also produces classification
accuracy that is almost the same as standard SVMs do.

The limitation of the proposed CMV-SVMs lies in the necessity of storing all
the training samples to evaluate the classification confidence for novel inputs.
However, choosing the confident components can ensure better performance for
modular learning system. The future work includes to modify the method of
computing classification confidence and compare CMV-SVMs with other parallel
SVMs on large-scale problems systematically.
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