
STRING KERNELS WITH FEATURE SELECTION
FOR SVM PROTEIN CLASSIFICATION

WEN-YUN YANGl and BAO-LIANG LU’i2,*

Department of Computer Science and Engineering, Shanghai Jiao Tong University
Laboratory for Computational Biology, Shanghai Center for System Biomedicine

Shanghai 200240, China
E-mail: {ywy, blb} Qsjtu.edu.cn

We introduce a general framework for string kernels. This framework can produce various
types of kernels, including a number of existing kernels, to be used with support vector
machines (SVMs). In this framework, we can select the informative subsequences to
reduce the dimensionality of the feature space. We can model the mutations in biological
sequences. Finally, we combine contributions of subsequences in a weighted fashion to get
the target kernel. In practical computation, we develop a novel tree structure, coupled
with a traversal algorithm to speed up the computation. The experimental results on a
benchmark SCOP data set show that the kernels produced by our framework outperform
the existing spectrum kernels, in both efficiency and ROC50 scores.

Keywords: kernel methods, SVMs, homology detection, feature selection

1. Introduction

Kernel methods and support vector machines (SVMs) have been proved to be highly
successful in machine learning and pattern classification fields. In computational bi-
ology community, SVMs have also been widely used to yield valuable insights into
massive biological data sets. However, since biological data, such as DNA, RNA,
and protein sequences, are naturally represented as strings, one needs to convert
string format of biological data into a numerical vector, which is the standard in-
put format for SVMs. However, this additional conversion could brings additional
computational cost and even unexpected results. Fortunately, this conversion can
be avoided by using kernel methods. The key advantage of kernel methods is that
they depend only on the inner products of the samples. As a result, we can calculate
the inner products directly from the sequences instead of calculating the numerical
vectors. In other words, the n x n matrix of inner products between each two sam-
ples is the so-called kernel of SVMs. We define the kernels of SVMs directly upon
strings, which are also called “string kernels” .l

The pioneering work on convolution kernels and dynamic alignment kernels
for discrete objects, such as strings and trees, was conducted by Haussler’ and

‘To whom correspondence should be addressed

9

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

10

W a t k i n ~ , ~ respectively. Thereafter, a number of string kernels have been extensively
studied. In general, those kernels take the same idea as the convolution kernels. They
all define some kinds of “sub-structures” and employ recursive calculation over all
those “sub-structures” to get the kernels. For example, Leslie et al. proposed spec-
trum string kernels,’ mismatch string kernel^,^ and a series of inexact matching
string kernel^,^ all of which are based on the “sub-structures” called “k-mers” (k-
length subsequences). The only difference among those kernels relies on the specific
definition for each mapping function. Moreover, Vishwanathan and Smola6 pro-
posed another type of fast string kernels based on weighted sum for inner products,
each of which corresponds to one of the exact matching subsequences. Those above
two kinds of string kernels were both applied to a protein classification problem,
called remote homology detection. Besides, string kernels have also been successfully
applied to natural language processing (NLP) task^.^-^

We introduce a framework to reconstruct string kernels to be used with SVMs.
This framework is rather general that the string kernels aforementioned can be
regarded as specific instances of it. We also develop a tree data structure and an
algorithm for the computation of these string kernels.

2. A string kernel framework

2.1. Notations

We begin by introducing some notations. Let A be the alphabet and each element
in A is called character. Then we denote the whole string space as P (d) = U k A‘“,
where Ak denotes the k-spectrum set containing all the k-length strings produced
by character concatenation from A. At the next step, we make use of feature groups
to take the biologically mutation effect into account. Each feature group is a subset
of the string space, containing certain number of relatively similar strings. Formally,
we use I = {T, P(A)Il 5 z 5 m} to denote the set of all the feature groups and
P (7) = U, T, to denote all the strings contained in these feature groups. For each
feature group T,, we use IT,I to denote its size, and t , for j = 1 to IT,I to index its
elements.

In the following section, “none of two feature groups are identical” means that
T, # T3 if i # J for all i and j. “All the feature groups cover the set S” means
U,T, = S.

1

2.2 . Pramework definition

We propose a string kernel framework as follows. First, we define the sub-kernel
between strings x and y for each feature group Ti,

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

IT I where numTz (z) = Cj2, numtzJ (z) counts the total numbers of occurrences of Ti's
members in x. Then we combine all the sub-kernels in a weighted fashion to obtain
the target kernel, formally,

m

k (z, Y) = C wT, kT, (x, Y) (2)
i= 1

where each WT, is the weight used to measure the significance for the corresponding
feature group Ti. Following this construction framework, we can derive various kinds
of string kernels. Several typical string kernel instances are given below as examples:

Setting 'WT~ = 1 and ITiI = 1 for all i = 1 to m. None of two feature groups
are identical and all the feature groups cover the k-spectrum set. I t yields the
k-spectrum string kernel.'
Setting ITiJ = 1 for all i = 1 to m. None of two feature groups are identical and
all the feature groups cover the string space P(d). It yields the family of kernels
proposed by Vishwanathan and Smola.G
All the kernels using inexact matching proposed by Leslie and Kuang5 can be
regarded as specific cases of ITi I > 1.
If we can customize the members for each feature group Ti, then we will achieves
a new family of string kernels which has never been studied.

2.3. Relations with existing string kernels

Roughly speaking, existing string kernels can be divided into two categories, kernels
using exact matching and using inexact matching. Kernels using exact matching1vG-*
only take the perfect matching subsequences into account and design optimal algo-
rithms for the computation. However, the kernels using inexact matching can model
mismatches, gaps, substitutions and other wildcards. Such kernels are more suitable
for biological data. Conceptually, it is clear that the kernels using exact matching
are specific instances of the our string kernel framework. Since we can assign only
one feature to each feature group then produce those kernels. However practically,
we note that the kernels using exact matching have been computed using various
optimal algorithms.G-8

On the other hand, all the kernels using inexact matching5 can be constructed
equally by feature re-mapping as follows,

where R-'(s) = {s' : R(s', s)} defines the set of substrings that have specific rela-
tions with substring s, for example, at most rn mismatches and at most g gaps. s is
used to enumerate the k-spectrum set A'". Comparing this definition with Equations
(1) and (2), we could immediately find that the kernels using inexact matching can
be constructed by /Ak[feature groups, each of which corresponds to one k-length

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

12

substring s, containing the set R-l(s). Conceptually, the only difference among all
these kernels depends on the specific relation R.

3. Efficient computation

Instead of calculating and storing the feature vectors explicitly, we develop an algo-
rithm based on a novel tree data structure to efficiently compute the kernel matrix,
which can be used with the SVM classifier.

3.1. Tree data structure with leaf links

This tree data structure shown in Fig. 1 is similar to a suffix tree or mismatch
tree used b e f ~ r e . ~ The different part is that we add leaf links to generalize the
algorithm. The calculation of the kernel matrix can be summarized as follows: firstly
we construct the tree based on given feature groups. Note that the tree structure
is determined only by the given feature groups. Then we use an essentially sliding
window to perform lexical traverse of all the substrings occurring in the data set.
As a result, in each leaf we store the number of the leaf substring occurring in each
sample string. Finally we calculate the kernel matrix in one traversal for all the
leaves of the tree.

3.2. Leaf traversal algorithm

The leaves of this tree represent all the substrings occurring in the feature groups,
so the number of these leaves is IP(7)I. Accordingly, all the leaves are indexed by
s, for i = 1 to IP(7)I. The tree is organized like a trie: the concatenation of the
edge labels from root to leaf interprets the string of the leaf. Unlike the standard
tree structure, we add links between two leaves if they are contained in the same
feature group T, (probably not only one). Formally we define the whole set of links
as,

Then we define the set of leaves, with links to leaf si as L [s i] = {jl l i j E L} . For
each linked leaf pair, we can define the weight of that link as

In the following part, we use wtj as a shorthand for ~ (1 % ~) . The kernel matrix
calculation within the traversal of all the leaves is summarized in Algorithm 3.1.

The correctness of this algorithm follows from the analysis of how many times
the term nums, (x) . numsJ (y) is added up to the kernel value k (z , y). I t can be
observed from Equations (1) and (2).

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

13

w11= w1 t w2

w22 = w2
w33 = w3

w12 = w21= w2

w34 = w43 = w4

w44 = w3 + w4 .--’
Fig. 1. An example of the tree structure and leaf links: (a) 4 feature groups with weights from
w1 to w4, respectively; (b) The tree constructed for the given feature groups. Here, a total of 6
links are connected. Note that for clarity, we omit the self links for each leaf node and only draw
the leaf links between leaves.

Algorithm 3.1 The calculation of the kernel value Ic(z, y)
1: Ic(z,y) +- 0
2: for all leaf si do
3:

5: end for
6: end for

for all j E L[si] do
4: k(z, y) + k (z , y) + wij ‘ nums, (.) ’ numsj (Y)

4. Selecting feature groups and weights

The feature group aforementioned is a new concept for string kernels. Immediate
extension can also be made for other kinds of machine learning methods. Actually
we extend the notion of “feature” to “feature group” to let string kernels be more
suitable to biological data. Meanwhile, it makes the construction procedure more
flexible to produce various kinds of string kernels. In this section, we will develop
several new approaches to demonstrate the effectiveness of the proposed framework.

Existing string kernel methods usually use the whole set of Ic-length subsequences
as the feature set, and treat them equally in the kernel constructions. Unluckily,
i t leads not only to the loss of discriminative ability of significant subsequences,
but also to the increase of computational cost. Apart from those, we start from
learning the distribution of subsequences. Then we extracts statistically significant
subsequences or groups of subsequences, which are then combined in a weighted
fashion to reconstruct the string kernels.

To simplify this discussion, we restrict ourselves to two-class classification prob-
lems. Without loss of generalization, we explain our methods by using the following

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

14

BW criterion, which is based on the ratio of between-class scatter to within-class
scatter. However, we also note that there are many types of statistical metrics that
can be used in our proposed method.

Im+(s) - m-(s) (2

a + (s) + a - (s)
BW(s) =

where m+(s) and a+(s) denote the mean composition and standard variance for
subsequence s in the positive class, respectively, and m-(s) and cr-(s) are for the
negative class. Usually, the numerator is called between-class scatter and the divisor
is called within-class scatter.

To measure the statistical significance of a feature group, we also extend the
definition of BW(s) in Equation (6) to BW(Ti), just by naturally defining the
number of occurrences of feature group Ti as the sum of those of its members.

By using our framework, we propose two kinds of new string kernels in the
following sections. Essentially, one is the reduced version of Ic-spectrum string kernel,
and the other is the reduced version of (I c , m)-mismatch string kernel.

4.1. Reduction of spectrum string kernel

We reconstruct the spectrum string kernels in two respects, the number of feature
groups and the weights. Corresponding to the spectrum string kernel definition in
Section 2, the number of feature groups is denoted by Idk/ and the weights are
denoted by WT, for i = 1 to Idkl. For sake of computational efficiency and per-
formance, we try to reduce feature groups ldkl using two thresholds, minimum
occurrence Omin and minimum score BWmin. Since we assume that the subse-
quences with low occurrences are either non-informative for discrimination or not
influential in global performance. Similarly, the subsequences with low BW scores
are also regarded with low discriminative ability.

For a proof of concept, we simply use the power of BW score, WT, = [BW(Ti)]’
to weight each of the feature groups, where the exponent X is a parameter used to
control the scale of weights.

4.2. Statistically selecting feature groups

How to choose the most discriminative feature groups and weights is at least as hard
as the feature selection problem, which has 2n subsets to be tested. This is clear
since we can regard the feature selection as a specific case of feature group selection.
Hence, we do not have an optimal solution for it. As an alternative approach, we
propose a heuristic method to construct feature groups, each of which contains
multiple members.

This method can be summarized as two steps: selecting the base subsequences s
and then using a greedy expansion. The greedy expansion is an iterative process. At
each iteration, the subsequence s’ that lets R(s’, s) hold and maximize the BW(T.)
score among the candidate subsequences, is selected into the feature group. This

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

15

d(A A A A A , C A A A A)
0.1

,**I ,I(A A A A A , A C A A A) ,,{AAAAA, A A C A A , C A A A A)
,/' 0.3 * .* 0.2 * . .. : .*....

~ (A A A A A , A A C A A J A A C A A , A C A A A J
0.8 ..v

*.A

(A A A A A) <:
0.5 ..

I *.
.& '.

* '. 0.2 . -.
I .

'*.% ~ { A A A A A , A A A C A) A A C A A , AAACA).>:--------+
0.3 0.7

~ (A A A A A , A A A A C J * (A A A A A , A A C A A , A A A A C J
0.3 0.5

T = (A A A A A) T' = (A A A A A , A A C A A) T" = (A A A A A , A A C A A , A C A A A)

BW(T) = 0.2 BW(T') = 0.5 BW(T") = 0.8

Fig. 2. An example of the greedy expansion in (5, 1) mismatch set.

process ends when no such s' is found. We give a simple example in Fig. 2. In
this figure, for simplicity, we assume that the alphabet contains two letters, 'A'
and 'C'. At the first iteration, AACAA is selected into the feature group, since it
increases BW score more than other candidates. Then ACAAA is selected. Finally
this greedy expansion terminates when there are no any features that let the BW
score increase.

5. Experiment

We report the experiments on a benchmark SCOP data set (SCOP version 1.37)
designed by Jaakkola et al.," which is widely used to evaluate the methods for
remote homology detection of protein sequence^.'?^-^ The data seta consists of 33
families, each of which has four sets of protein sequences, namely positive training
and test sets, and negative training and test sets. The target family serves as the
positive test set. The positive training set is chosen from the remaining families in
the same superfamily. The negative training and test sets are chosen from the folds
outside the fold of the target family.

We use ROC50 score" to evaluate the performance of homology detection. The
ROC50 score is the area under the receiver operating characteristic curve (the plot
of true positives as a function of false positives) up to the first 50 false positives.
A score of one indicates perfect separation of positives from negatives, whereas a
score of zero indicates that none of the top 50 sequences selected by the algorithm is
positives. This ROC50 score is the most standard way to evaluate the performance
of remote homology detection methods in computational biology.1i6i11

aData is available at www . cse . ucsc . edu/research/compbio/discriminative

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

16

I

Fig. 3. Comparison of four kinds of kernels.

Table 1. The numbers of used subsequences in four kernels.

3-spectrum 3-spectrum reduced 5-spectrum 5-expanded
(mean/ f SD) (mean/ f SD)

8000 27061 f 865 3.2 x lo6 449261 f 20508

We give a performance overview in Fig. 3 for the four kinds of kernels. Table
1 shows the number of used subsequence for each kernel. The 3-spectrum and 5-
spectrum kernels are the existing methods developed by Leslie et al.' We reduce the
3-spectrum kernel according to reduction techniques of spectrum kernels (see Section
4). The experimental result shows that better performance could be obtained even
with much fewer 3-length subsequences, about 33.4% of the 3-spectrum set. This
result strongly suggests that only a small portion of k-spectrum features could
hold the discriminative information for remote homology. We would like to note
that it is possible to further reduce the number of subsequences with comparative
performance, providing that a more powerful feature selection technique is used.

We compare the kernels based on greedy expansion called 5-expanded kernel
(see Fig. 2) with the existing 5-spectrum kernel. Our 5-expanded kernel can also be

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

17

0.8-

0.6-

5-expanded kernel

Fig. 4. Family-by-family comparison of spectrum string kernels and their reduced versions. Here,
the coordinates of each point are the ROC50 scores for one SCOP family, corresponding to the
two labeld kernels, respectively

regarded as a reduced version of (5,l)-mismatch string kernel, since we reduce the
5-spectrum set and the members of each R-l(s). From the experimental result, we
can observe that this kind of greedy expansion leads to a slight improvement upon
5-spectrum kernel. But our method uses only about 1.4% of 5-spectrum set, which
is a significant feature reduction.

We should note that the (5,l)-mismatch kernel proposed by Leslie et al.4 per-
forms comparably with 3-spectrum kernel. On one hand, it means that our reduction
of each R-l(s) leads to the performance decline compared with (5,l)-mismatch ker-
nel. On the other hand, we obtain computational efficiency by reducing the feature
number as a compensation.

We give in Fig. 4 a family-by-family comparison between the existing spectrum
string kernels and our methods. I t is clear that our methods perform slightly better
than the existing spectrum kernels, especially for relatively hard-to-recognize fami-
lies. This result suggests that carefully selected subsequences benefit hard detection
tasks. However, for easy-to-recognize families, it seems always relatively easy to
recognize no matter which kinds of features are used.

We select Omin from {5,10,20,50}, BWmin from {0.5,0.8,1}, and X from
{1,2,4,8}, respectively. Then the best results are reported. The 3-reduced kernel
is obtained by using Omin = 20, BWmin = 0.5, and X = 2. The 5-expanded kernel
is constructed by using greedy expansion (see Fig. 2) with parameters Omin = 5,
BWmin = 0.8, and X = 1.

6. Discussion and future work

In this research work, we have proposed a general framework for string kernels,
coupled with a general algorithm to naturally combine string kernels with feature

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

18

selection techniques. This framework is applicable to almost all the kernel-based
methods in biological sequence analysis. We make experiments on a benchmark
SCOP data set for protein homology detection. The experimental results demon-
strate that a large number of features can be reduced without any performance
reduction, but conversely with improvement. We believe that this kind of string
kernels, in conjunction with SVMs, will offer a more flexible and extendable ap-
proach to other protein classification problems.

For the further research, we plan to apply these string kernels to the prediction
of protein subcellular locations and other biological problems. Meanwhile, we are
still interested in developing new approaches to combining of feature selection and
string kernels. We hope eventually this method could facilitate protein classification
problems with both effectiveness and efficiency.

Acknowledgments

The authors thank James Kwok and Bo Yuan for their valuable comments and
suggestions. They also thank National Institute of Information and Communications
Technology, Japan, for their support with computational resources. This research
is partially supported by the National Natural Science Foundation of China via the
grant NSFC 60473040.

References

1. C. Leslie, E. Eleazar and W. S. Noble, The spectrum kernel: a string kernel for SVM
protein classification, in Proceedings of the Pacific Symposium on Biocomputing, 2002.

2. D. Haussler, Convolution kernels on discrete structures, tech. rep., UC Santa Cruz

3. C. Watkins, Dynamic alignment kernels, tech. rep., UL Royal Holloway (1999).
4. C. Leslie, E. Eskin, J. Weston and W. S. Noble, Mismatch string kernels for svm

protein classification, in Advances in Neural Information Processing Systems 15, (MIT
Press, Cambridge, MA, 2003) pp. 1417-1424.

5. C. Leslie and R. Kuang, Journal of Machine Learning Research 5, 1435 (2004).
6. S. Vishwanathan and A. J . Smola, Fast kernels for string and tree matching, in Ad-

vances in Neural Information Processing Systems 15, (MIT Press, Cambridge, MA,

7. H. Lodhi, J. Shawe-Taylor, N. Cristianini and C. Watkins, Text classification using
string kernels, in Advances in Neural Information Processing Systems 13, (MIT Press,
Cambridge, MA, 2001) pp. 563-569.

8. M. Collins and N. Duffy, Convolution kernels for natural language, in Advances in
Neural Information Processing Systems 14, (MIT Press, Cambridge, MA, 2002) pp.

9. J. Suzuki and H. Isozaki, Sequence and tree kernels with statistical feature mining,
in Advances in Neural Information Processing Systems 18, (MIT Press, Cambridge,

10. T. Jaakkola, M. Diekhans and D. Haussler, Journal of Computational Biology 7, 95

11. M. Gribskov and N. L. Robinson, Computeres and Chemistry 20, 25 (1996).

(1999).

2003) pp. 569-576.

625-632.

MA, 2006) pp. 1321-1328.

(2000).

 P
ro

ce
ed

in
gs

 o
f

th
e

6t
h

A
si

a-
Pa

ci
fi

c
B

io
in

fo
rm

at
ic

s
C

on
fe

re
nc

e
D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

05
/0

9/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

