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The similarity of two gene products can be used to solve many problems in information 
biology. Since one gene product corresponds to several GO (Gene Ontology) terms, one 
way to calculate the gene product similarity is to use the similarity of their GO terms. 
This GO term similarity can be defined as the semantic similarity on the GO graph. 
There are many kinds of similarity definitions of two GO terms, but the information 
of the GO graph is not used efficiently. This paper presents a new way to mine more 
information of the GO graph by regarding edge as information content and using the 
information of negation on the semantic graph. A simple experiment is conducted and, as 
a result, the accuracy increased by 8.3 percent in average, compared with the traditional 
method which uses node as information source. 

Keywords: Gene Ontology; Semantic Similarity; Information Content. 

1. Introduction 

1.1. Gene Ontology 

Gene Ontology (GO)' was created to describe the attributes of genes and gene 
products using a controlled vocabulary. It is a powerful tool to support the research 
related to gene products and functions. For example, it is widely used in solving the 
problems including identifying functionally similar genes, and the protein subcellu- 
lar or subnuclear location prediction. GO has not been completed and the number 
of biological concepts in it is still increasing. As GO puts its primary focus on 
coordinating this increasing number of concepts, at the risk of losing the character- 
istics of formal ontology, it has some differences from the ontology in Philosophy or 
Computer S ~ i e n c e . ~ ~ ~  Gene Ontology Next Generation (GONG)4 was established to 
solve this problem and discuss the maintenance of the large-scale biological ontology. 
Recently, as the use of similarities on GO is increasing, some convenient databases 
and soft ware^^-^ are developed and freely available, which makes it easier to use 
GO semantic similarity. 

'To whom correspondence should be addressed. 
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Fig. 1. Example of ontology 

The Gene Ontologyg is made up of three ontologies: Biological Process, Molec- 
ular Function and Cellular Component. On May 2007, there are 13,552 terms for 
Biological Process, 7,609 for Molecular Function and 1,966 for Cellular Component. 

From the graph point of view, each of these ontologies is a connected directed 
acyclic graph (DAG), with only one root node in that ontology. It is also true that 
a special node can be set to  combine these three ontologies into one, i.e., the special 
node has the three root nodes of each ontology as its children. 

Each node represents a concept, or an ontology term. If two concepts have some 
relationship, an edge is drawn from one to  the other. Gene Ontology only has 
%-a” relationship and “part-of” relationship. %-a” relationship indicates that the 
concept in the in-node of the edge contains the concept in the out-node. The example 
in Figure 1 is not Gene Ontology, but just an ordinary ontology for explanation. 
In the ontology, edge 3 means that “Truck” is a kind of “Car”. LLis-a” relationship 
can also be regarded as a standard that distinguishes a concept from other concepts 
contained in the parent concept. Here, “Truck” is distinguished from “Hovercraft” 
by the standard the edge 3 provides. “part-of” relationship denotes that the in-node 
concept has the out-node concept as one of its parts. 

If a concept is contained in another concept, then this information is considered 
positive information. On the other hand, when a concept is NOT contained in 
another concept, this information is considered negative information. In Figure 1, 
edge 4 is negative information for “Truck”. 

1.2. GO and Similarity between Gene Products 

The final aim of this research is to define the similarities between gene products using 
GO information. Since each gene product has several GO terms, the similarity of 
gene product can be calculated from the similarities of these GO terms. There are 
two steps in this process. 

The first step is to obtain the similarity of two GO terms from the GO graph. 
This is the main focus of this paper. 

The second step is to  get the gene product similarity from the GO term simi- 
larities. Let g1 and 92 be the GO term vectors of two gene products A and B, in 
which 1 means the gene product has the GO term, while 0 means it does not. In 
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Fig. 2. Example of gene products and their corresponding GO term. 

the example of Figure 2", g1 and 92 will be as follows. 

91 = (o , l , l l l , o ,o )T  g2 = ( O , l , O , O , l , O ) T  

Also, let M be a square matrix, in which the value of the ith row and the j t h  
column represents the similarity of the ith and the j t h  GO terms, obtained in the 
first step. Then the similarity of two gene products Sim(A, B )  ,or Sirn(g1, g2), can 
be defined as follows. 

Sim(g1,92) = g1'1Mg2 (1) 
This research is conducted to fully mine the information in GO graph and define 

similarities between GO terms. In other words, to get a better similarity matrix M .  

There are many semantic similarity definitions of GO terms. Some representative 
ones can be classified by two kinds of standards (Table 1). 

The first standard is to divide the definitions into probability-based and 
structure-based ones. The probability-based methods depend on the occurrence fre- 
quency of each GO term in some database. Resinik," Jiang and Conrath,ll and 
Lin12 provided their definitions from this point of view. Lord13 introduced these 
definitions into Gene Ontology. Later, Couto14 proposed a method to better apply 
them to DAGs rather than trees. This kind of methods is based on information 
theory, and seems to be reasonable. However, it relies on a particular database, 
SWISS-PROT. On the other hand, another idea is developed to define the simi- 
larity from the structure of ontology. The definitions proposed by Rada1l5 Wu,16 
Zhang,6 and Gentleman? are examples of this idea. They made it possible to reason- 
ably obtain the similarity of two GO terms in any database, even if the distribution 
of the data is highly unbalanced or the size of the database is quite small. 

aPicture source is [http://lectures.molgen.mpg.de/ProteinStructure/Levels/index.html] 

1.3. Related Work
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Table 1. Similarity definition methods. 

Probability-based Structure-based 

Distance Jiang and Conrath Rada 
Info content Resinik Zhang, Wu 
Content ratio Lin Gentleman 

The definition measures can also be classified by another standard into three 
groups. The first group is to define the similarity of two nodes by the distance 
between them. Rada15 proposed the original framework of this idea. Jiang and 
Conrath” investigated the weights of the edges to make it more reasonable. The 
second group of definitions is to calculate the shared information content of two 
nodes. ResiniklO first proposed the using of information content. Zhang6 and Gen- 
tleman7 provided similar definitions based on the structure of ontology. The third 
group of definitions is to compare the shared information of the two concepts and all 
the information needed to describe both of these concepts. Lin12 and Gentleman7 
did some work concerning this idea. 

2. Method 

2.1. Notations 

c denotes a term, or a node, in an ontology graph. An edge e fluxes into c means 
that there exists a path from the root node to c which contains e. The induced 
graph V(c) of c is the graph made up of all paths from the root node to c. IVI, and 
]Vie denote the number of nodes and the number of edges in V .  

In Figure 1, for example, if c is “Hovercraft”, the edge e = 4 fluxes into c, be- 
cause there exists a path { {  “Transportation”, “Car”, “Hovercraft”}, (1, 4)) from 
the root node “Transportation” to c, which contains e (Figure 3(a), left). The in- 
duced graph V(c) is {{ “Transportation”, “Car”, “Ship”, “Hovercraft”}, (1, 2, 4, 
5}}(Figure 3(b)). IV(c)l, = I{  “Transportation”, “Car”, “Ship”, “Hovercraft”}I = 4 
and IV(c)le = 1{1,2,4,5}1 = 4. 

(a) Two paths from “Transportation”to “Hovercraft” (b) The induced graph of “Hovercraft” 

Fig. 3. The paths and the induced graph of “Hovercraft”. 
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2.2.  Traditional Definition 

The idea of Gentleman7 is used as a traditional definition. The similarity is defined 
as the number of nodes that the two induced graphs share in common, divided by 
the number of nodes contained in at least one of the two induced graphs. 

In the example of Figure 1, the similarity of “Truck” and “Hovercraft” is 0.4 
since they have 2 nodes in both induced graphs and 5 in at least one induced graph. 

The basic idea is similar to that of Lin. Here, the information content of a node 
is regarded as being represented by its ancestor nodes. The shared information of 
two nodes is the intersection of their ancestor node sets. All information needed to 
describe the concepts of two nodes is the union of their ancestor node sets. 

The ideas proposed in this paper can be considered as the counterparts of this 
method, and one of the differences is that the proposed ideas use edges, instead of 
nodes, to calculate information content. Therefore, SimUI should be chosen as a 
traditional method to be compared with the new ones. 

2.3. Proposed Similarity Definitions 

The first new method provides the positive similarity of two nodes c1 and c2. It is 
similar to SimUI, but edges are used instead of nodes. 

Since GO is a DAG, unlike tree, edges contain more information than nodes 
(SEE 4.1). In Figure 1, the induced graphs of “Truck” and “ Hovercraft” have one 
edge in common and 5 different edges altogether. Therefore the similarity is 0.2. 

On the other hand, for a node c and an edge e, if e has its in-node as an 
ancestor of c, but e does not flux into c, it means that the node c does not meet 
the standard provided by the edge e. To define the negative similarity, the negative 
edge set should be defined first. The negative edge set of c, NES(c), denotes the 
set of edges that have in-nodes in the induced graph of c, but not their out-nodes. 
This consideration of out edges of each node can also be found in the local density 
introduced by Jiang and Conrath.ll 

NES(c) = {< Cinr Cout >E Elcin E V(C),Cout $ V(C)) (4) 

Here, E is the set of all edges in the GO graph. Then the negative similarity can 
be defined as follows. 
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Here, the numerator means the size of shared negative information of both nodes, 
i.e., the number of the standards that c1 and c2 both do NOT meet. And the 
denominator indicates the number of standards that at least one of the nodes does 
NOT meet. In Figure 1, the similarity of “Truck” and “Hovercraft” is 0. 

To combine these two similarities, the easiest way is to multiple them together. 

SimEG(c1, ~ 2 )  = SimPE(cl,  ~ 2 )  . SimNE(c1, ~ 2 )  (6) 
For an edge e that has both its in-edge and out-edge NOT in V(c), whether 

c meets the standard provided by e is unknown, or meaningless. In Figure 1, the 
standard of edge 3 makes the concept “Truck” different from the concept ‘T!ar”. But 
this standard is meaningless when applied to the concept “Tanker”, since “Tanker” 
is not a “Car” at all. Therefore, such edge is not considered to contain either positive 
or negative information of c. 

3. Results 

To evaluate the methods UI, PE and EG, an experiment of protein subcellular 
location prediction was conducted. The experiment was composed of several steps. 
Firstly, the proteins were randomly chosen, and the corresponding GO terms were 
found. Secondly, the chosen proteins were divided into training and test samples. 
Thirdly, a classifier was used to predict the subcellular locations of test samples 
from the subcellular locations of the train samples, using their similarities. 

3.1. Dataset 

The Gene Ontology structural data are from the Gene Onto10gy.~ As the whole 
ontology contains 32,297 of %-a” relationships, but only 4,759 of “part-of” rela- 
tionships, all “part-of” relationships are ignored to make the problem simple. 

The training and test data were obtained by choosing from the dataset created by 
Park and Kanehisa.l8 The GO terms corresponding to these proteins were obtained 
through the InterPro. i.e., corresponding InterPros were first found from the protein, 
and then the GO terms of the InterPros were marked to the protein. If one protein 
was marked by more than one exactly the same GO terms, only one of them was left. 
In the experiment, several large classes (Table 2) of subcellular locations were used. 
To avoid the unbalance between the classes, 600 samples were randomly chosen for 
each of these classes. Each of these samples had at least one GO term so that the 
similarity of any two chosen proteins could be found via their GO term similarities. 

%fold cross validation was used to assess the performances of the definitions. 
Each class was divided into three sets of samples randomly. Then, two of these sets 
in each class were chosen and mixed as a training set and the one left over was used 
in a test set. Consequently, three groups of training and test sets were preparedb. 

[http://bcmi.sjtu.edu.cn/~liyuanpeng/APBC2008/{train,test}{ 1,2,3}.txt]. 
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Table 2. Number of samples in each class. 

Class Subcellular location # of Samples 

1 Chloroplast 
2 Cytoplasmic 
3 Extracellular 
4 Mitochondria1 

600 
600 
600 
600 

5 Nilclear 600 
Total 3000 

3.2.  Classifier 

k-Nearest Neighbor (k-NN) classifier was designed to predict the subcellular loca- 
tions, or classes, of the test samples. The distance of two samples was defined as the 
minus value of their similarity, and majority voting method was used. If two classes 
appeared the same number of times in the k-nearest neighbors of a test sample, one 
of them was selected randomly as the predicted class of that test sample. 

3.3. Tables and Graphs 

The prediction accuracies of the experiments are listed on Table 3 as percentages, 
followed by the corresponding k values that brought the best results. The three 
graphs in Figure 5 demonstrate the accuracies for each group as the change of k 
values. In each of these graphs, the horizontal axis represents the value of k and 
the vertical axis represents the accuracy percentage. The accuracies of each class, 
corresponding to the best k values, are listed on Table 4, for each group and the 
average. Their increases are plotted in Figure 6 .  In all tables and graphs, Yncrease” 
means the difference between the values of the EG and UI methods. 

4. Discussion 

4.1. The Use of Edges and Negative Information 

From the results, it is obvious that PE has advantage over UI, and EG has advantage 
over PE. The reason can be found in information gain. Consider a small ontology 
example in Figure 4, SimUI(B,D) will not change even if the edge from A to D 
is deleted. In other words, the information of the edge is ignored. SimPE(B,D) 
can contain this information, but the information of the edge from A to C is not 

Fig. 4. Example of ontology structure. 
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Table 3. The accuracies of each group (%) 

group UI (k) PE (k) EG (k) Increase 
1 63.5 (40) 69.0 (21) 71.1 (5) 7.6 
2 59.6 (8) 65.8 (6) 68.1 (7) 8.5 
3 60.5 (47) 67.6 (23) 69.2 (3) 8.7 

average 61.2 67.5 69.5 8.3 

9 W P  1 
7 5 . , r , , , , ,  

, . . . . . . , . 

0 10 20 So 40 60 W 70 KO 90 1W 
15' ' " " " ' ' 1 

0 10 20 90 40 50 W 70 SO 90 1W 
45' " " " " " 

k value k value 

0 10 M So 40 50 KO 70 80 90 1W 
k vdua 

Fig. 5. The relationship of total accuracies and values of k for each group and method. 

included. And when SimEG(B,D) is used, this edge information can also be included. 
Therefore, more information can be used in PE than in UI, and in EG than in PE. 

4.2. The Difference among Classes 

Table 4 and Figure 6 show that different classes prefer different methods of classi- 
fication. For class 5, the accuracy was already close to 100% when the UI method 
was applied, and this could be the reason for the less change of the accuracies when 
the PE and EG methods were used. 

4.3. More Comparison Results 

An experiment, without cross validation, was conducted for each kind of structure- 
based methods. The results were 65.2% for method of Rada,15 61.4% for Wu,16 
66.0% for Zhang6 and Gentleman,7 64.5% for UI, 69.4% for PE  ,and 70.8% for EG. 
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Table 4. Class accuracies corresponding to the best k values (%), 

group 1 group 2 

Class UI PE EG Increase Class UI P E  EG Increase 

1 28.5 39.0 40.0 11.5 1 35.0 38.0 45.0 10.0 
2 62.5 71.0 77.0 14.5 2 58.0 64.0 65.0 7.0 
3 70.5 83.5 83.5 13.0 3 56.5 71.0 74.0 17.5 
4 60.5 57.0 60.5 0.0 4 54.5 61.5 61.5 7.0 
5 95.5 94.5 94.5 -1.0 5 94.0 94.5 95.0 1.0 

group 3 average 

Class UI PE EG Increase Class UI PE EG Increase 

1 44.5 43.0 47.5 3.0 1 36.0 40.0 44.2 8.2 
2 58.5 74.5 73.5 15.0 2 59.7 69.8 71.8 12.1 
3 62.0 75.5 81.5 19.5 3 63.0 76.7 79.7 16.7 
4 41.0 50.0 47.5 6.5 4 52.0 56.2 56.5 4.5 
5 96.5 95.0 96.0 -0.5 5 95.3 94.7 95.2 -0.1 

25 

20 

I5 

10 

5 

0 

-5 

Fig. 6. Increases in each class and group. 

5. Conclusions 

From the experiment, it can be concluded that the use of edges as information 
carriers is better than the use of nodes, and that negative information, combined 
with positive information, provides further support for better predictability. 
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