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Abstract

Multiple instance (MI) learning is a recent learning
paradigm that is more flexible than standard supervised
learning algorithms in the handling of label ambiguity. It
has been used in a wide range of applications including
image classification, object detection and object tracking.
Typically, MI algorithms are trained in a batch setting in
which the whole training set has to be available before
training starts. However, in applications such as track-
ing, the classifier needs to be trained continuously as new
frames arrive. Motivated by the empirical success of a
batch MI algorithm called MILES, we propose in this pa-
per an online MI learning algorithm that has an efficient
online update procedure and also performs joint feature se-
lection and classification as MILES. Besides, while existing
online MI algorithms lack theoretical properties, we prove
that the proposed online algorithm has a (cumulative) regret
of O(NT), where T is the number of iterations. In other
words, the average regret goes to zero asymptotically and
it thus achieves the same performance as the best solution
in hindsight. Experiments on a number of MI classification
and object tracking data sets demonstrate encouraging re-
sults.

1. Introduction

In traditional supervised learning, each training pattern
is associated with a known class label. However, in many
real-world applications, the available label information is
often weak and ambiguous. In this paper, we focus on a re-
cent machine learning paradigm known as multiple instance
(MI) learning. Here, concepts are learned from collections
(called bags) of instances rather than from instances. Only
the bags, but not the instances, have known labels. The so-
called MI assumption then relates the bag labels to the un-
known instance labels: A bag is labeled positive when at
least one of its instances is positive; and a bag is negative
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when all its instances are negative.

The most famous MI application is drug activity predic-
tion, which is introduced in the seminal work of Dietterich
et al. [6]. Each drug molecule (considered as a bag) has
multiple low-energy conformations (instances), and is con-
sidered useful as a drug if one of its conformations can
bind to the targets. Another well-known MI application
is content-based image classification and retrieval [7, 14].
Each image (bag) has a number of local patches (instances)
and is considered relevant to the user query when at least
one of these patches is relevant. Recently, Viola et al. [13]
pioneered the use of MI learning in object detection, and
obtained significantly improved detection rate. Here, a pos-
itive bag contains image patches that are near the labeled
object. Very recently, Babenko et al. [3] further extended
this for learning the appearance model in object tracking.
Other MI applications include computer hard-drive failure
prediction [8], protein classification [12], and text catego-
rization [2].

Dietterich et al. used axis-parallel rectangles for MI
learning in their seminal work. Following this, a wide
range of approaches, including decision trees, Bayesian
methods, ensemble methods and kernel methods, have
emerged. In this paper, we will focus on a recent algorithm
called MILES (Multiple-Instance Learning via Embedded
Instance Selection) [5]. It maps each bag to a feature space
defined by all the instances in the training bags, and then
performs joint feature selection and classification by using
the 1-norm SVM [15]. Empirically, it is highly efficient,
accurate and robust to label noise.

Typically, MI algorithms are trained in a batch setting, in
which the whole training set has to be available before train-
ing starts. However, in applications such as tracking, the
classifier needs to be trained continuously as new frames
arrive. Very recently, Babenko et al. [3] proposed an on-
line MI algorithm based on boosting, and obtained encour-
aging object tracking results on several challenging video
sequences. However, in training its weak classifiers during
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the boosting process, it imposes a strong assumption that
all the instances in a positive bag are positive. This is of-
ten violated in many MI applications. Moreover, the weak
classifiers are trained based only on the current frame and is
thus susceptible to over-fitting.

Besides, for online algorithms in general, one of the most
important quality metrics is the (cumulative) regret, which
measures the gap between the cumulative loss of the online
algorithm and that of the optimal solution in hindsight. In
particular, if the regret is o(T"), where T is the number of
iterations, the average regret becomes o(1) and the online
algorithm is thus guaranteed to be asymptotically optimal.
However, though the MI learning algorithm proposed in [3]
is an online algorithm, it does not have any known regret
bound. Indeed, there has been no theoretical study even on
assuring its convergence.

In this paper, we adopt the algorithmic framework for on-
line learning in [11] and extend this for online MI learning.
The proposed algorithm is motivated from MILES because
of its empirical superiority. However, the ¢; -regularizer un-
derlying the 1-norm SVM in MILES does not satisfy the
strong convexity requirement in [11]. Thus, we propose in-
stead the use of the elastic net regularizer [16]. We develop
an efficient and general online MI learning algorithm with
a regret bound of O(v/T). Besides, because of the feature
map construction method in MILES, its feature vectors be-
come variable length in an online setting. This also has to be
adapted in order for the theoretical development to proceed.

The rest of this paper is organized as follows. Section 2
first gives brief introductions on MI learning and online
learning. The proposed online MI learning algorithm is pre-
sented in Section 3. Finally, experimental results are pre-
sented in Section 4, and the last section gives some con-
cluding remarks. All the proofs are in the appendix.

Notation For any vector x, its transpose is denoted x’,
and its ith component by x[i]. The 1-norm of x is ||x||; =
> lx[d]], and its 2-norm is ||x|l2 = />_,(z[i])2. The
thresholding function is defined as (z)4 = max(0, z). For
notational simplicity, we use operations between vector and
scalar to mean operating the scalar on each element of the
vector. For example, “w + ¢” means “w][i] + ¢ for each
component of w”. Similarly, (w); means thresholding w
component-by-component with the (-) function.

2. Previous Works
2.1. Multiple Instance Learning using MILES

In MI classification, we are given a set of training bags
{(B1,y1),- -+, (Bm,ym)}, where B; is the ith bag contain-
ing instances X;i,...,X;n,, and y; € 1. Unlike super-
vised learning, only the bag labels, but not those of the in-
dividual instances, are available in MI learning.

MILES [5] converts a MI learning problem to a stan-

dard supervised learning problem as follows. First, a sim-
ilarity measure s(-,-) between two instances is defined.
For example, s(x,xp) = exp (—Zz|[x — xi]|3) has
been commonly used. Then, one can define the similar-
ity between an instance x; and a bag B; as s(xg, ;) =
max;—1,.. n, S(Xg,X;;). By using the set of all instances
in the training bags ¢ = {xi,...,xy} (where N =
Z;i1 n;), bag B; is then mapped to the feature vector

z; = [s(x1,B;),8(x2,B:), -+ ,s(xn, Bi)]. (1)
Intuitively, each instance in C represents a candidate con-
cept in the MI problem, and the kth element of z; represents
the similarity between concept xj and bag B;.

Since the feature vector z; in (1) is potentially very long,
MILES uses the 1-norm SVM to perform feature selec-
tion and classifier construction simultaneously. The 1-norm
SVM can be formulated as the following optimization prob-
lem:

min af[wli+ ) gi(w), )
=1

where

, _J G —yw'z)y yi=1
9i(w) = { Co(l —yiw'zi)y  yi=—1

is the hinge loss for the ith bag, and C, C are regulariza-
tion parameters used to penalize errors on the positive and
negative bags, respectively. Moreover, it is well-known that
the ¢1-regularizer in (2) encourages sparsity.

2.2. Online Learning

In online learning, we minimize the regularized loss over
aperiod of T', i.e.,

T
i?vf <cf(w) + th (W)> , 3

where f(w) is the regularizer (e.g., {2-regularizer), g:(w) is
the loss function (e.g., hinge loss) at time ¢, and ¢ > 0 is the
regularization parameter. We assume that both f and g¢,’s
are convex, and that infy, f(w) = infy, g;(w) = 0. Usu-
ally, these are satisfied by typical regularizers and losses. It
can be shown that the dual objective can be obtained as [11]

1 T T
DAL, ,Ar) = —cf” (czkt> —th*(&), “4)
t=1 t=1

where \; is the vector of Lagrangian multipliers at time ¢,
and f* (g* resp.) is the Fenchel conjugate of f (g resp.):

fH(A) = sup(w'A = f(w)).

w
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To maximize the dual objective, Shalev-Shwartz and
Singer [11] proposed the following online learning algo-
rithm when f is strongly convex'. Let the estimate of \;
at time ¢ be )\gt). Initially, all the {)\EO)}?:l are set to 0.

Then, at time ¢, {)\EHl)}iT:l are updated such that
35‘ € agt(wt)? s.t. D(Agt+1)? e 7)‘§t+1)a 07 U aO) (5)
>pAY, - AP Xo,--,0).

Moreover, the solution of (3) is obtained as

1 T
w; = Vf* <_C 3 Aﬁ”) . (6)
=1

The quality of an online learning algorithm is usually
measured by its regret, which is the loss for not consistently
using a vector w. As shown by the following theorem, this
algorithm achieves O(v/T)) regret.

Theorem 1. [11] Suppose that the regularizer f is p-
strongly convex. Let L = %Z;‘;l IA¢]|?, where A\; €
0gi(wy) for all t. Then, for any w,

D giwe) =Y gr(w) < cf(w) + 2%;
t=1 t=1

In particular, on setting ¢ = /T,

T T
th(wt) - ZQt(W) < (f(w)+ L/u)VT. ()
=1 t=1

Consequently, the average regret for each step is
O(T/T) = O(1/v/T), and thus goes to zero as T' — oo.

3. Online MI Learning
3.1. Elastic Net Regularizer

Recall from Section 2.2 that the regularizer f(-) has to
be strongly convex. However, for the 1-norm SVM used in
MILES (Section 2.1), its ¢;-regularizer is not. In the fol-
lowing, we will use instead the elastic net regularizer [16],
which is a combination of the ¢;- and ¢5-norms:

F(w) = allwil + 5wl ®

with @ > 0 and 8 > 0. Itis easy to see that f is S-strongly
convex. Moreover, similar to the ¢;-regularizer, the elastic
net regularizer can also lead to a sparse solution [16].

Recall that the online learning algorithm in [11] requires
F*(A), Vf*(X) and g* (). These can be readily computed
by using the following two propositions.

A function f(w) is u-strongly convex if f(v) > f(u) 4+ g(u)’ (v —
u) + 4||v — u]|3 for any u, v and subgradient g(u) € 9 (u).

Proposition 1. For the elastic net regularizer in (8),

Al = )+ [13 sgn(A) (Al = )+
28 B '

Proposition 2. For g(w) = C(1 —yw'z), where C > 0,

FN = SAZRCVE

0  X=0yz, where 0 c [-C,0],

00 otherwise.

o ={ ©)

Their proofs are in the appendix.

3.2. Efficient Update of )\EHI) ’s

We adopt the algorithmic framework of [11] in Sec-
tion 2.2. Since the regularization parameter c in (3) has been
absorbed into the elastic regularizer of (8), we can simply
set ¢ = 1. In general, there are various ways of finding
{)\Etﬂ)}f:l that satisfy (5). For example, as suggested in
[11], one can set

(t+1) A 1=1,
A = { AD izt (10)

where A € dg;(w,). However, a faster increase in the dual
objective value D(Aq, -+, Ar) will lead to a more aggres-
sive update and thus possibly faster convergence. Hence,
we will obtain A" = Xin (10) as

)\,Et—i—l) = argmf'XD(Agt)f" 7>‘1§):)17A’07.“ 70)
= argm/{ix—f* (me +A) — g7 (A), (In
where
i<t

Obviously, this also satisfies (5). By using Proposition 2,

and define
—C1 Yt = 1
f— ’ 13
K { -Cy yr=—1, (13
we obtain )
AT = by 2, (14)
where

0 = arg max —f* (@, + Oysz,) — 0
0€[n,0]

= arg min = ||(|m; + Oyrz¢| — @) 1|3 + B6,(15)

1
6€[n,0] 2 ”
on using Proposition 1.

This minimization problem can be solved efficiently as
follows. Denote the objective in (15) by Q(6), which can
be rewritten as

QO) = 2 S (Imli] + Owezlil — )% + 0. (16

%
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(b) 6 is between b; and b;.

= \%%
>

(a) A term inside the summation.

Figure 1. The objective Q(6) in (16).

Note that each term in the summation is of the form shomn
[t

in Figure 1(a) and has two breakpoints, 7\%%[1’“ ~ e
and —o  — Tl

lyeze[i]l  yrzeld]”
Lemma 1. 0 is piecewise linear and non-decreasing in 6.

By usmg this lemma, (15) can be reduced to mlmmlz—
ing |9<| over § € [,0]. If the curve of | | is en-
tirely above/below zero for § € [n,0], then § is simply
equal to elther n or 0, depending on which one has the
smaller | T ] value. Otherwise, # must lie between two
breakpomts b; and b;, such that n < b; < b; < 0 and

fg b, d9 | b, < 0 (Figure 1(b)). By interpolation, we have

9:(1d0|b+bﬂd0’b)/( +d9’b)

3.3. Variable-Length Feature Vectors

Recall that the feature map of MILES in (1) is defined
in terms of the similarities with all the instances in all the
training bags. In a batch setting, this whole set of instances
is known and fixed before training starts. However, in an
online setting, both the set of bags and the set of instances
increase with time. Hence, the feature vectors at different
t’s are of different sizes. Specifically, z; € RNt where
N, = Zl 1 ns. This poses a problem on attempting to use
the algorithmic framework of [11].

To alleviate this problem, we extend all the feature vec-
tors to some fictitious length N by appending zeros at the
end. Note that this is only needed for the theoretical devel-
opment, and N does not need to be known in practice. The
following proposition shows that at time ¢, the last (N — N;)
elements of \; and w; are also 0.

Proposition 3. The last (N — N) elements of )\Etﬂ) and
W are zero.

Hence, this is consistent with the construction that these
entries are not needed at time ¢. With this appending of
zeros, we can regard the feature vectors to be of fixed length.

3.4. The Complete Algorithm

The proposed online learning algorithm, which will be
called MIO (“Multiple Instance Online”), is shown in Al-
gorithm 1. Note that in step 3, w; is computed from V f*(+)

in Proposition 1. This involves a soft-thresholding opera-
tion (- — «)+, and hence the w; obtained is sparse.

Algorithm 1 MIO (“Multiple Instance Online”).

I: mp =0€ R™.

2: fort =1to T do

3:  Compute w; + V f*(m;) to predict on input z;.
Receive the label y;.
0, < argmingepy o) 1(|m + Oyuze| — )4 [3-+256,
where 7 is as defined in (13).
6: At — thtzt.
7: T4l < |:7r6+At:|

8: end for

AN~

Nt41

3.4.1 Regret Guarantee

Recall from Section 3.1 that the elastic net regularizer f(-)
is 3-strongly convex. By applying Theorem 1, we have

T T
Yo gt (We) = >0, ge(w) < f(w) + % for any w. In
particular, on setting & = ag\/T and § = Fy\/T for some
a0, B € R,

T
th(wt) -

where fo(w) = aollw|y + |wll3.
O(V/T) regret is also obtained. Asymptotically, the aver-
age regret w.r.t. the best w in hindsight goes to zero.

ET:gt(W) < (fo(W) + 2;()) VT,

In other words,

3.4.2 Time Complexity

Observe that wy, \; and 7r; are vectors in R™Vt. At time ¢,
steps 3, 6, and 7 all take O(N;) time. As for the minimiza-
tion problem in step 5, the procedure in Section 3.2 involves
sorting all the 2N, breakpoints (O(Ny log(V;)) time), and
computing the gradients on all the breakpoints (O(N;) time
by a proper arrangement of the computations). Therefore,
each update at time ¢ takes a total of O(NV; log(V;)) time.

4. Experiments
4.1. Synthetic Data

We first experiment with a two-dimensional synthetic
data set used in [5]. Each instance is generated from one of
the five normal distributions: N ([5,5]’,I), N ([5, =5, 1),
N([0,0]", 1), N([-5,5]',T), and N ([-5, —5]', I), where I
is the identity matrix. Each bag has at most 8 instances. A
bag is labeled positive if it contains instances from at least
two of the first three distributions.

We compare MIO with MILES? on a data set with 4,000
positive bags and 4,000 negative bags. Figure 2(a) shows

2The code is downloaded from http://cs.olemiss.edu/
~ychen/MILES.html

1398



the resultant hinge loss values in log-log scale. Since the op-
timal weight cannot be explicitly determined, we regard the
MILES solution as optimal. As can be seen, for sufficiently
large T, the average regret of MIO decreases towards O at
arate of 1/+/T, which thus agrees with the regret bound in
Section 3.4.1. Figure 2(b) shows the proportion of nonzero
features in z; that are selected by the classifier. As can be
seen, the resultant feature representation is sparse and so
MIO can also perform feature selection as MILES. How-
ever, it is not as sparse as MILES, which is also consistent
with the observation that the elastic net tends to select more
features than the ¢;-regularizer [16].

10" 10

=
i = ==MILES

average hinge loss
3
/
sparsity
a\ a\

1 3 4

10° 10° 10 10° 10
time time

(a) Hinge loss values. (b) Sparsity of features.
Figure 2. Performance of MIO on the synthetic data set. Note that
both the abscissa and ordinate are in log-scale.

10

4.2. Drug Activity Prediction

In this section, experiments are performed on the popular
Musk1 and Musk?2 data sets from the UCI repository. The
task is to predict if a drug (bag) is musky. The Musk1 data
set contains 47 positive and 45 negative bags, with an aver-
age of 5.17 instances per bag; while the more challenging
Musk? data set contains 39 positive and 63 negative bags,
with an average of 64.69 instances per bag. The experimen-
tal setup follows that in [5]. Fifteen runs of 10-fold cross-
validation are performed and then the averaged performance
reported. Since both musk data sets are small, MIO is cy-
cled through the training data multiple times in each run to
ensure sufficient convergence.

Figures 3(a) and 3(b) show the testing accuracies with
different numbers of passes over the training data. As can
be seen, MIO only requires a small number of passes to out-
perform MILES?. Table 1 also shows that it is competitive
with other MI learning methods. Figures 3(c) and 3(d) show
that the runtime of MIO increases linearly with the number
of passes as expected. Note in particular that MIO is much
faster on the larger Musk2 data. This is in line with the
observation that online algorithms which sweep repetitively
over the entire training set can be more computationally ef-
ficient than traditional batch learning algorithms [4].

4.3. Tracking

In this section, we follow [3] and use MI learning to
adapt the appearance model for object tracking. Each pos-

3The improvement is statistically significant (at the 5% level using the
paired ¢-test) on Musk1, but not on Musk2.
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(c) Muskl. (d) Musk2.
Figure 3. Performance of MIO on the musk data sets.

o

Musk1 Musk2

MIO 88.3: [86.5,90.2] | 87.7:[85.8,89.6]

MILES 85.5 : [83.0,88.0] | 87.1:[82.3,91.9]
APR 92.4 89.2
Bagging-APR 92.8 93.1
DD 88.9 82.5
DD-SVM 85.8 91.3
EM-DD 84.8 84.9
mi-SVM 87.4 83.6
MI-SVM 77.9 84.3

Multinst 76.7 : [73.6,79.8] | 84.0: [81.4,86.6]
RELIC 83.7 87.3

Table 1. Accuracies (in %) of the various MI learning algorithms
on Muskl and Musk2. Following [5], we report both the mean
and 95% confidence interval for MIO (with 10 passes over training
data) and MILES. Results for the other algorithms are from [5].

itive bag contains a set of image patches that are close to
the predicted object location; while each negative bag con-
tains a patch that is unlikely to contain the object. As in
[3], we represent each patch as a vector of Haar-like fea-
tures [13]. Let the feature vector for patch p be v(p) =
[v;(p)]. The similarity between patches p and p’ is defined
as exp (— > (vi(p) — vi(p'))?/0?), where the summation
is over the subset of ¢’s with the k smallest |v;(p) — v; (p)|
values. Intuitively, this means two patches are similar if
they have k similar Haar features [1]. In the experiments, k
is set to 30.

Experiments are performed on the eight video sequences
used in [3]. MIO is compared with MILTrack* [3] and
FragTrack® [1], which is a very efficient algorithm using
a static appearance model. Due to randomness in selecting

4Both the MILTrack code and videos are from http://vision.
ucsd.edu/~bbabenko/project_miltrack.shtml.

Shttp://www.cs.technion.ac.il/~amita/fragtrack/
fragtrack.htm
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Figure 4. Errors plots for the video sequences.

(c) Coke Can.

same frames as in [3] are used.

the Haar-like features, each video clip is run five times as in
[3] and then the averaged result reported.

Results are shown in Table 2 and Figure 4. Screenshots
for some of the clips are also shown in Figure 5. As can be
seen, MIO is competitive with and often better than MIL-
Track. FragTrack also performs particularly well on “Oc-
clude Face” and “Occlude Face 27, as it is specifically de-
signed to handle occlusions. However, sometimes it may
completely lose track of the object (e.g., when the object
performs a 180° rotation during frames 20-50 of the “Girl”
sequence).

5. Conclusions & Future Work

In this paper, we proposed an online MI learning algo-
rithm that is motivated from the MILES algorithm. It uses
the strongly convex elastic net regularizer, instead of the
{1 -regularizer, in the underlying classifier. We developed
an efficient online update procedure and showed that it per-
forms joint feature selection and classification as in MILES.

(d) Sylvester.
Figure 5. Screenshots of the tracking results (MIO —; MILTrack - - -; FragTrack -.-.). For “David Indoor” and “Occluded Face 2”, the

video clip FragTrack | MILTrack | MIO
David Indoor 46 23 15
Sylvester 13 11 13
Occluded Face 6 27 14
Occluded Face 2 13 20 13
Girl 22 32 31
Tiger 1 56 15 24
Tiger 2 39 17 23
Coke Can 38 21 22

Table 2. Average center location errors (pixels).

Besides, we proved that the resultant online algorithm has a
(cumulative) regret of O(+/T), and thus achieves the same
performance as the best solution in hindsight.

While the algorithmic framework in [11] leads to a re-
gret of O(+/T), recent research shows that it can be further
accelerated to O(log(T")/T') [10]. Preliminary results show
that this can also be used to improve the proposed MIO al-
gorithm, and will be further explored in the future.
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A. Appendix
A.1. Proof of Proposition 1

Proof. First, consider the case where w is a scalar. (8) then
reduces to f(w) = a|w| + ng, and

r) = max <)\w — alw| — §w2>

= max (sgn(w))\|w| — alw| — §|w|2)

— (Aol — afu - 5ol
|w]

(Blw[+a = AD* | (Al =)
= max— +
Jw] 28 26
0 ifa—|A >0 (]A-a)?
= 2 = 4@7
{“';;) ifa— [\ <0 25 0

For the general case where w € R",

POy = max (Xw = alwl - 5 wi)

zi:%?ﬁ‘ (WWM —alwli]| - gw[z‘P)

_ (XL —)d _ [[(A = @)+13
_ Z 5 +_ 5 2.

i

on using (17). Finally, V f*(X) can be obtained from f*(\)
by straightforward differentiation. O

A.2. Proof of Proposition 2

Proof. For the hinge loss h(w) = (1—yw’z), h*(X) =0
if A =60yzand 0 € [—1,0]; and h*(A) = oo otherwise [9].
Using the property that the Fenchel conjugate of ah(w) is
ah*(A/a) [9], we can then obtain (9). O

A.3. Proof of Proposition 3

Proof. Since the last (N — N,) elements of z; are zero, it

is clear from (14) that the last (N — NN;) elements of )\gtﬂ)
are also zero. Consequently, from (12), the last (N — V)

elements of 7r; are also zero. In the following, we use the
superscript o to denote the part excluding the last (N — Ny)
elements. From (6) and Proposition 1, we have

\ <— ZAZ) =V (= — )
=1

Wy =
= V(=7 =A%, 0nv_n,))])
_ { VI (= = A9) }
Ov—ny) '
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