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Vigilance Estimation by Using Electrooculographic Features
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Abstract—This study aims at using electrooculographic
(EOG) features, mainly slow eye movements (SEM), to estimate
the human vigilance changes during a monotonous task. In
particular, SEMs are first automatically detected by a method
based on discrete wavelet transform, then linear dynamic
system is used to find the trajectory of vigilance changes
according to the SEM proportion. The performance of this
system is evaluated by the correlation coefficients between the
final outputs and the local error rates of the subjects. The result
suggests that SEMs perform better than rapid eye movements
(REM) and blinks in estimating the vigilance. Using SEM alone,
the correlation can achieve 0.75 for off-line, while combined
with a feature from blinks it reaches 0.79.

I. INTRODUCTION

Nowadays we are confronting a considerable amount of
accidents by the loss of vigilance. For many kinds of jobs,
especially for vehicle drivers, aeroplane pilots and crew,
security forces and high accuracy process controllers, losing
vigilance may cause serious accidents. In this case, it is
important to develop a method for continuously monitoring
people’s states in real time, thus to prevent the occurrence
of drowsiness, sleepiness or fatigue.

The research of sleep has a relatively long history, and
drowsiness also belongs to a part of it. In 1968, Rechtschaf-
fen and Kales proposed rules to classify the sleep stages
according to the features extracted from electroencephalo-
gram (EEQG), electrooculogram (EOG), and electromyogram
(EMG). They divide sleep into five stages (S1, S2, S3, S4,
and REM), plus the state of wakefulness (W). Drowsiness
occurs during the transition between W and S1. Estimating
the vigilance loss due to drowsiness is a similar process as
classifying the sleep stages. To solve this problem, EEG
power spectral density, and EOG features like rapid eye
movements (REM), slow eye movements (SEM), blinks, and
eyelid movements are widely used in many studies [1]-[6].

While there are different measurements for the validity
of the methods in these studies, it is a direct and objective
way to calculate the correlation coefficient between the
selected features and the subject’s local error rate during a
monotonous task. Local error rate is defined as the current
probability that the subject will fail to respond to a presented
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target within a time window with a constant width [7].
Recently, a method based on fractal dimension theory has
high correlation between EEG and local error rate [4].
Another example uses video equipment to detect blinks and
then calculates the correlation with local error rate [5].

In this research, we mainly evaluate our work by the corre-
lation between the vigilance and the SEMs. SEMs and EEG
have been found tightly related as indices of vigilance [8],
[9]. Although EEG is a relatively fast and direct functional
reflection and is the most promising item in the sleep related
studies, disadvantageously, it is easily corrupted by noises
originated by other simultaneously ongoing processes like
muscle movements. Since EOG signal is much more intense,
we can utilize it without de-artefact procedure which is
usually time-consuming. In addition, EOG needs much fewer
non-contactless electrodes (for detecting SEMs, two elec-
trodes are enough), and those electrodes would not disturbed
by hair on the scalp, which means lower requirements for the
signal gathering and amplifying device. Besides SEMs, we
also check the validity of some other features, like REMs
and blinks.

This paper consists of two parts. The first is SEM detection
based on the method proposed in [10], using discrete wavelet
transformation. The second part is smoothing by linear
dynamic system. All the processes can be done in real time.

II. MATERIALS AND METHODS
A. Experiment description

Seven sessions of EEG and EOG recordings from 4 men
and 1 woman aged around 20 were extracted using the
NeuroScan system.

Each subject underwent a lack of sleep during the last
night and was in a fatigue state, which was in order to
actually get the transition curve from wake to a sleepy state.
A total of 62 EEG channels and 2 EOG channels were
recorded from electrodes placed according to the extended
10-20 system with a reference on the top of the scalp. The
signals were recorded in 32-bit resolution, sampled at 5S00Hz,
and filtered between 0.1 and 100Hz.

The subjects sit in a comfortable chair, about 2 feet away
from an LCD screen in a room without noise. The screen
continuously displayed traffic signs of random colors, which
included red, yellow, blue and green, by the NeuroScan Stim?
software. There were more than 40 kinds of traffic signs in
each color. The sign was displayed for 0.5s, then the screen
turned black for a 5 ~ 7s interval before the next sign was
presented. Each subject had a pad with four buttons in his or
her hands. When a sign appeared, the subject was supposed
to push the button of the same color with the sign. At the
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same time, the system recorded subject’s reaction time and
correctness of each pushing. The whole procedure lasted for
more than 1 hour.

In our research, the EOG signal (vertical and horizontal)
were used for data analysis. The local error rate series
calculated by a 2-minute time window were used as the
vigilance index (with a step of 8.096s, which is consistent
with EOG features).

B. SEM detection algorithm

The SEM detection algorithm originally proposed by
Magosso et al. [10] is made up of three steps. (1) discrete
wavelet decomposition of EOG signals; (2) computation of
energy from wavelet coefficients; (3) a discriminant function
and a threshold used to calculate the final output. The authors
have used the algorithm in 24-h EOG recordings [11]. In our
application, we implement it feasible for on-line usage, thus
we can detect SEMs in real time. The details of the method
are as follows.

1) Wavelet decomposition: In the first step, discrete
wavelet transformation (DWT) is used to decompose the
input signal into components of different frequency bands.
The input signal is the difference between the right horizontal
EOG and the left horizontal EOG. We first down-sample the
500Hz original signal to 125Hz. Then the signal is processed
by a 10-level DWT by Daubechies order 4 (db4) wavelet.
This process divides the signal into 10 components of dif-
ferent scales that represent different frequency ranges of the
original EOG. Scale 1 principally encompasses frequencies
in the range 31.25 ~ 62.5Hz. Higher scales are centered at
half the frequency of the previous scale. While SEMs are
typically 0.2 ~ 0.6Hz, scale 7 ~ 10 are necessary to capture
the band of SEMs.

2) Energy computation: Wavelet coefficients can be used
to compute energy associated with each components. The
general idea of the method is to compute the energy of scale
7 ~ 10, to divide it by the total energy of the signal, and
to get the energy ratio of the SEM band. If the result is
higher than a threshold, the corresponding time interval is
considered as an SEM period.

In order to compute the energy, we introduce the wavelet
energy function as follows,

M/2
Ei=Y |dyj|* fori=1,2,..,10, (1)

j=1
where E; is the total energy of the component of ith scale,
and d;; is the wavelet coefficient of ith scale and jth instance.
Generally, for an input discrete signal with a length M, the
number of wavelet coefficient in each scale is approximately
equal to M/2!. When we compute the energy in a fixed time
interval, it is necessary to unify the coefficient resolution of
each scale. Here we use scale 6 as the standard. For i < 6,
the coefficients are closer in time so they need to be grouped,
and for i > 6, the coefficients are sparse in the time axis so
they need to be scattered.

3) The discriminant function: After we get the energy of
each scale, there is a discriminant function judging whether
the energy ratio is larger than a threshold,

Y0 WiE;

f= :
Y3 A WiEi+ Y10 WiE;

2

where W; is the weight of scale i. In this formula scale 1,
2, and 6 are discarded because scale 1 and 2 include high
frequency noises, and scale 6 is ambiguous in its behavior.
The weights in this function and the threshold were trained
through a number of subjects in the original method, by
comparing with visually inspection and validation. In this
paper, we directly adopt the trained weights and the threshold
in [10].

In order to process the signal on-line, we execute the
DWT on a fixed length of time with a fixed step, instead
of executing it on the whole signal. The length is 128 x 32
points, which is 32.384s, and the step is 128 x 8 points,
which is 8.096s. Since in scale 10 the number of coefficients
is supposed to be M/1024, 32.384s just contain 4 wavelet
coefficients and 8.096s contain one, so we use these time
lengths. Also note that for short signal section, the number
of coefficients is not approximately equal to M /2’ but
larger than this because the coefficients are calculated by
convolution. Therefore, we only keep M /2" coefficients in
the middle, and discard the other.

The output of this algorithm is the SEM proportion within
each time window, 8.096s in this case, ranged from O to 1.

C. Dynamic model for smoothing

Since normally used moving average is not suitable for
on-line processing, we introduce the linear dynamical system
(LDS) for off-line and on-line vigilance estimation to process
the SEM proportion curve and to replace the original smooth
procedure. Its details can be found in our another work [12].

Assume that the input signal consists of two parts, which
are vigilance-related and vigilance-unrelated. LDS can re-
duce the influence of vigilance-unrelated part. It finds out
the vigilance trajectory from the index space without any
label information. Compared with static methods, LDS can
utilize the time dependency of vigilance changes. Table I lists
the correlation coefficients between error rates and SEMs,
which processed by off-line LDS, on-line LDS, and moving
average, respectively.

TABLE I
PERFORMANCE COMPARISON OF LDS AND MOVING AVERAGE

Session | Off-line LDS | On-line LDS | Moving average

1 0.72 0.68 0.65

2 0.59 0.54 0.61

3 0.92 0.84 0.86

4 0.74 0.66 0.56

5 0.85 0.76 0.77

6 0.66 0.56 0.48
Average 0.75 0.67 0.65
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Fig. 1. Comparison of local error rate and SEMs with different smoothing

methods, Session 3. Here, (a) is the local error rate; (b) is SEMs + off-line
LDS; (c) is SEMs + on-line LDS; and (d) is SEMs + 2min moving average.
Each output is properly re-scaled to a range of 0 ~ 1, the same below.

Fig. 1 illustrates the output of the algorithm. From the
figure we can see that the shape and the trend of (b) is similar
to (a), where the peaks and the valleys coincide very well in
these two figures. For on-line LDS the average correlation
is 7 percent lower than off-line LDS, but from the figure we
can see it reflects more details than off-line smoothing, and
its shape is not changed. For the moving average method,
although the correlation is a little higher than on-line LDS,
its actual result in this figure seems only worse since it
reflects few details. Overall, on-line LDS performs better
than moving average.
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Fig. 2. Comparison of local error rate (blue dash) and SEMs + oft-line
LDS (red solid), Session 2.

Fig. 2 is about session 2, where blue dash line is for local
error rate and red solid line is for off-line LDS. Its correlation
is only 0.59, the lowest among all the subjects. However,
we can see that the peaks and valleys of the two curves
also coincide well. The low correlation is mainly due to the

difference of the amplitude, and the sudden drop of SEM
curve when the local error rate reaches 1, which we will
discuss later.

D. Feature combination

Many studies use more than one feature for vigilance
estimation and get better results than using single feature.
Therefore, we also try to add additional features in our
research.

Blinks have been mentioned to be used to detect fatigues,
and six different features of blink are validated in [3], which
are blink duration, blink interval, positive and negative peaks,
closing time, and reopening time. The paper stated that blink
duration, positive and negative peaks, and reopening time
are useful for the fatigue detection. Also, various models
are used to combine blink duration and blink frequency [5].
Moreover, REMs are also reported as related to vigilance. In
[13], the author found the relationship between REMs and
EEG during the sleep onset.

In this research, we extract REMs and blink features from
EOG, then use off-line LDS to process those features, and
calculate the correlation coefficients. For REMs, we adopt
the automatic detection method in [13]; for blinks, we use
a simple threshold method. Results show that they does not
work as well as SEMs.
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Fig. 3. Comparison of local error rate, negative peak (blink), and REMs,
Session 3.

From Fig. 3, we can see that REMs seem not able to
match the trend and shape of the error curve. For blinks, we
find that negative peak is a usable feature for most of the
sessions, but it only reflect the general trend but not enough
details of the error rate curve. This means REMs and single
feature of blinks are not so reliable as SEMs.

Next, we linearly combine the negative peaks and SEMs.
For those subjects to whom the negative peak does not work,
we replace it by another feature. The results are shown in
Table II.

III. DISCUSSION AND CONCLUSION

Table I and Figs. 1 and 2 show that we can get satisfactory
results by using single SEM feature. Although the average
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TABLE I
PERFORMANCE COMPARISON OF SINGLE AND COMBINED

FEATURES

Session SEMs Negative peaks | Linear combination

1 0.72 0.76 0.84

2 0.59 0.49¢ 0.73

3 0.92 0.65 0.92

4 0.74 0.60 0.70

5 0.85 0.76° 0.86

6 0.66 0.48 0.69
Average 0.75 0.62 0.79

4 Blink duration.
b Reopening time.

correlation value seems not so high, which is 0.75 for off-
line LDS, SEMs match the error rate of subjects very well.
Adding another feature makes the correlation increase to
0.79. Since we have not adjusted the parameters of the SEM
detection algorithm, we believe that if we have trained the
weights and threshold on our samples, the result will be
better.

Among all the subjects in our experiments, only one is
excluded from our results, since that subject has a very low
correlation. The reason is highly probably due to that he has
fallen asleep during the experiment, whereas others have not.
However, it does not mean that SEMs do not work properly
in this case. From Fig. 4, we can see that there are two
periods where his error rate reaches 1, which means he is
in a state of sleep. Correspondingly, the SEM curve has a
sudden drop, to a level of near zero. This phenomenon may
indicate that the subject has entered the S2 sleep, because in
this stage SEMs are greatly decreased. From this figure we
can conclude that SEMs can work as an error rate indicator
only before the subject enter S2 sleep. But it does not matter
since we only consider the W and S1 stages in the vigilance
related research.
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Fig. 4. Comparison of local error rate (blue dash) and SEMs with off-line
LDS (red solid), the subject who fell asleep.

An EEG experiment is also executed on these subjects in
[12], in which principal component analysis is used on EEG
and some predominant components are combined to get the
result. Compared with EEG, the EOG correlation is lower
and has a larger variance. This result is predictable since

we believe that EEG reflects the most direct information
of people’s state and is more reliable especially in an
undisturbed experiment environment. In addition, the time
window and step used in EEG feature can be shorter than
that used in EOG. In our research we use a 8.096s step and
many EOG related studies use 10s since a short step for EOG
will cause the result lack of statistical significance. On the
contrary, in the EEG test, the step can be 2s. Which means
faster response to the vigilance changes of subjects.
However, EOG, especially SEM feature is still useful in
vigilance estimation because of the reasons mentioned in
Part I. The experiment results also show that SEMs can best
match the error rate curve among all the EOG features tested.
In our following studies we will test more subjects and try to
build a robust model. Also we would like to combine EEG
and EOG features for the application on vigilance estimation.
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