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Abstract— For many human machine interaction systems, to
ensure work safety, the techniques for continuously estimating
the vigilance of operators are highly desirable. Up to now,
various methods based on electroencephalogram (EEG) are
proposed to solve this problem. However, most of them are
static methods and are based on supervised learning strategy.
The main deficiencies of the existing methods are that the label
information is hard to get and the time dependency of vigilance
changes are ignored. In this paper, we introduce the dynamic
characteristics of vigilance changes into vigilance estimation
and propose a novel model based on linear dynamical system
and manifold learning techniques to implement off-line and on-
line vigilance estimation. In this model, both spatial information
of EEG and temporal information of vigilance changes are
used. The label information what we need is merely to know
which EEG indices are important for vigilance estimation.
Experimental results show that the mean off-line and on-line
correlation coefficients between estimated vigilance level and
local error rate in second-scale without being averaged are
0.89 and 0.83, respectively.

I. INTRODUCTION

In the past few decades, studies have shown that vigilance
estimation is very useful to our daily lives [1], [2] . Especially
for many human machine interaction systems, to ensure
work safety, the techniques for continuously estimating the
vigilance of operators are highly desirable. Various signals
are used for analyzing vigilance. Among them, electroen-
cephalogram (EEG) has been proved very effective, and
many important observations have been pointed out [3].
These include the positive correlation of vigilance and the
P300 ERPs amplitude, the negative correlation of vigilance
and theta rhythm activity, and the similarity between vigi-
lance and the principal component of EEG spectrum. Based
on EEG, various methods are proposed [4]–[6]. However,
most of them are static supervised learning models. Task
performance in a testing environment is usually used as
the label information to tag the current vigilance stage.
To overcome the fluctuations of EEG features, these static
models adopt minute-scale average approach to smooth the
EEG features, while the label information in some tasks is
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hard to get and sometimes not reliable. The on-line time
delay for vigilance estimation is minute-scale.

Considering the factors mentioned above, we propose a
novel dynamic model for vigilance estimation to improve our
previous work [7], [8]. In this model, the accurate label infor-
mation is not needed. What we need is merely to know which
EEG indices are important for vigilance estimation. Then a
dynamic model is designed by combining the spatial infor-
mation of EEG and the temporal information of vigilance
changes in second-scale. This is a data driven model. All
of the parameters are estimated without label information.
Our method has the following three main advantages over
the existing approaches: a) What we need is merely to know
which EEG indices are important for vigilance estimation,
not including the accurate vigilance label information of
EEG; b) Time series information of vigilance changes is
adopted to improve the vigilance estimation accuracy; and c)
Reliable second-scale vigilance estimation without any more
time delay can be achieved.

This paper is organized as follows. In Section II, vigilance
experimental setup is described. In Section III, the proposed
models and data analysis process are presented. In Section
IV, experimental results are described. Finally, some conclu-
sions are given in Section V.

II. MATERIALS

A. Procedure and Subjects

This is a monotonous visual task. Subjects sit in a com-
fortable chair, two feet away from the LCD. There are four
colors of traffic signs being presented in the LCD randomly
by the NeuroScan Stim2 software. There are more than 40
different traffic signs for each color. Each trial is 5.5∼7.5
seconds long, including 5∼7 seconds black screen and 500
millisecond traffic signs presented. The subjects are asked
to recognize the sign color, and press the correct button on
the response pad. There are 4 buttons on the response pad
corresponding to the 4 different colors of traffic signs. A total
of 7 healthy subjects of 19 to 28 years old have participated
in this experiment. After training, each subject has finished
at least one session, which is carried out in a small sound-
proof room with normal illumination. Each session continues
for more than one hour, during 13:00∼15:00 after lunch.

B. Data Collection

For each session, the visual stimulus sequence and re-
sponse sequence are recorded by the NeuroScan Scan soft-
ware sampled at 500Hz. Meanwhile, a total of 62 EEG
channels are recorded by the NeuroScan system sampled at
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500Hz synchronously, and filtered between 0.1 and 100Hz.
The electrodes are arranged based on extended 10/20 system
with a reference on the top of the scalp. Finally, 7 subjects
have been recorded.

C. Vigilance Measurement

To evaluate the performance of our proposed model, a
reference vigilance index is necessary. In our experiments,
the local error rate of the subject’s performance is used as
the reference, which is defined as the current probability that
the subject will fail to respond to a presented target within
a time window with a constant width [9] [10]. Because the
fluctuations of vigilance level with cycle lengths are usually
longer than 4 minutes [9], the local error rate series are
derived by computing the target false recognition rate within
a 2-minute time window at 2-second step and the variance
at cycle lengths shorter than 2 minutes is eliminated in our
experiments.

III. METHODS

A. EEG-Vigilance Model

Based on some assumptions, we give a definition of the
EEG-vigilance model. If we take the EEG into two parts,
vigilance-related EEG, Ev , and vigilance-unrelated EEG,
Eo. Excluding the influence of vigilance-unrelated EEG, our
assumptions can be described as follows:
• Continuous bijective map from vigilance stage to

vigilance-relevant EEG, M : V 7→ Ev , where V means
vigilance level.

• Continuous mapping from EEG to EEG index, Fi :
Ev 7→ Xi, where Xi means EEG index, which is
used to reflect vigilance level. There is no guarantee
of bijection.

• For any different vigilance-relevant EEG, Evi , Evj ,
there at least exists one index, which can distinguish
them: ∀Evi

6= Evj
,∃Fk, s.t., Fk(Evi

) 6= Fk(Evj
).

• For any EEG indices subset {Xi}, a corresponding
index space, S = (XS1 , ..., XSn

) can be constructed.
Then, according the above assumptions, we can find
out an index space Y , and construct a continuous
bijective mapping from EEG to the index space, P :
E 7→ Y , where P (Ev) = (FY1(Ev), ..., FYm

(Ev)) =
(XY1 , ..., XYm

) = Y .
Then, it is easy to prove that there exists an index

space, Y , and a continuous bijective mapping from vigi-
lance to this index space, G: V 7→ Y , where, G(V ) =
(G1(V ), ..., Gm(V )) = (F1(M(V )), ..., Fm(M(V )) =
P (M(V )) = Y . And, this mapping is just the EEG-vigilance
model,

Y = {XY1 , ..., XYm} = (G1(v), ..., Gm(v)) = G(v). (1)

This EEG-vigilance model is based on no vigilance-
unrelated EEG assumption. However, in practice, the influ-
ence of Eo is very large. For this EEG-vigilance model, after
considering Eo, the EEG index, Fi(Ev) has been changed
to Xi = Fi(Ev + Eo), and the mapping G is no longer

satisfied. The differences between Fi(Ev) and Fi(Ev + Eo)
can be shown by Taylor expansion as follows,

Fi(Ev + Eo) = Fi(Ev) + DFi(Ev)Eo+
1
2
Eo

tD2Fi(Ev)Eo + ...,
(2)

where DFi and D2Fi are the first order and second order
derivatives of Fi. From Eq. 2, we can see that Eo and {Fi}
are the key disturbing factors of EEG index. To minimize the
effect of Eo, we can choose the most vigilance-related brain
regions to measure EEG, or use some spatial filter techniques
to filter them. To minimize the effect of {Fi}, we can design
some EEG indices functions, compared to Fi(Ev), which
have relatively smaller first order and high order derivatives
of Ev . The ultimate goal is to get an approximate Fi(Ev)
from Fi(Ev + Eo), and make Eq. 1 approximately satisfied.

In general, vigilance is considered as a continuous one-
dimensional psychophysiological variable [10]. Then, from
Eq. 1, vigilance can be seen as a one-dimensional manifold
embedded in a high-dimensional EEG index space. Since
G is a continuous bijective mapping, vigilance is the only
embedded manifold in the EEG index space. By using
nonlinear dimensionality reduction method, the vigilance can
be directly found out from the EEG index space without any
label information.

B. Dynamic Model For Vigilance Estimation

The vigilance-unrelated EEG influence minimization
methods above are all based on static method. Without being
averaged, the EEG indices generated by them are not good
enough to support second-scale vigilance information clearly.

Here, we propose a dynamic model, by making use of
the time dependency of vigilance changes, to further reduce
the influence of vigilance-unrelated EEG, and to find out the
vigilance trajectory from the EEG index space without using
any label information.

The first part of this model is to filter the EEG index,
which is based on linear dynamical system. After being
preprocessed by static methods, there still exist differences
between Fi(Evt) and Fi(Evt + Eot). If the differences are
considered as a gaussian noise, we can get

Fi(Evt
+ Eot

) = Fi(Evt
) + wt, (3)

where wt is the gaussian noise with mean w̄ and variance
Q. As mentioned before, the vigilance changes are time
dependent. If the dependence is considered as Gaussian, we
can get

Fi(Evt) = AFi(Evt−1) + vt, (4)

where A is a transition matrix and vt is a gaussian noise
with mean v̄ and variance R. Combining Eq. 3 and Eq. 4,
we can form a linear dynamical system (LDS) as follows,

xt = zt + wt,

zt = Azt−1 + vt,
(5)

where xt denotes Fi(Evt
+ Eot

), zt denotes Fi(Evt
), and

only xt is known. This equation can also be expressed
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in an equivalent form in terms of Gaussian conditional
distributions,

p(xt|zt) = N (xt|zt + w̄, Q),
p(zt|zt−1) = N (zt|Azt−1 + v̄, R).

(6)

The initial state is assumed to be,

p(z1) = N (z1|π0, S0). (7)

The above model is parameterized by θ =
{A,Q, R, w̄, v̄, π0, S0}. Just based on the observation
sequence {xt}, θ can be directly determined using
maximum likelihood through the EM algorithm [11].
To inference the latent states {zt} from the observation
sequence {xt}, the marginal distribution, p(zt|X) must be
calculated. Then the latent state can be expressed as,

zt = E(zt|X), (8)

where E means expectation. This marginal distribution can
be achieved by using messages propagation methods [11].
For on-line inference, X is set as {x1, ..., xt}, while for off-
line inference, X is set as {x1, ..., xn}, including the data
observed after xt.

The second part of this model is to reconstruct the vig-
ilance trajectory from the filtered EEG index space. Since
vigilance is the only embedded manifold. The vigilance
trajectory can be directly estimated by manifold learning
method. However, the nonlinear manifold learning methods
usually can not be used on on-line condition. To solve
this problem, we extend the landmark-isomap to an on-line
algorithm [12]. Isomap is a manifold learning algorithm,
which extends multidimensional scaling (MDS) by incorpo-
rating the geodesic distance. And landmark-isomap is the
accelerating algorithm for Isomap. This on-line algorithm
can be achieved by two step: First, on off-line condition, we
use the landmark-isomap algorithm to calculate the geodesic
distance D and the embedding coordinates, L, of the random
selected landmark points,

L =




√
λ1 · vT

1
...√

λm · vT
m


 , (9)

where λi and vi are the ith largest eigenvalues and the
corresponding eigenvectors calculated by MDS in landmark-
isomap, and m is the dimension number of the embedded
manifold. Second, on on-line condition, for a new sample z,
we assume this sample obeys the same distribution as the
landmarks points. Then we can use the Euclidean distance
between the new sample and its k nearest landmark points,
combined with D, to calculate the geodesic distance, d,
between the new sample and the landmark points. If the
landmarks points’ distribution are dense enough, the on-line
calculated geodesic distance is much close to the off-line
calculated geodesic distance. Then the embedding coordinate
of the new sample can be calculated by

l =
1
2
L#(∆̄−∆), (10)

where ∆̄ is the column mean of squared distance matrix S
(Sij = D2

ij), ∆ (∆i = d2
i ) is the column vector of squared

distances between new sample and landmark points, and L#

is the pseudoinverse transpose of L,

L# =




vT
1 /
√

λ1

...
vT

m/
√

λm


 . (11)

C. Data Analysis
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Fig. 1. Flowchart of data analysis for vigilance estimation.

20 EEG channels are used for vigilance estimation, which
are measured from the posterior regions of the scalp. The
flowchart of data analysis is depicted in Fig. 1.First, a band-
pass filter (1Hz-50Hz) is used to remove the low-frequency
noise and the high frequency noise. Then the power spectral
density (PSD) of EEG is calculated by every 2 seconds, and
the principal components of the PSD are calculated as the
EEG index. Next, select the EEG indices which have fewer
differences between Fi(Ev + Eo) and Fi(Ev), to construct
the index space. Finally, the selected EEG indices are sent
to the dynamic model, and the subject’s vigilance level is
estimated. In our experiment, the EEG indices are generated
from the principal components of the PSD, and the top
three most vigilance-related components from the first 10
principal components of the PSD, according to the reference
vigilance index, are selected out for index space construction.
However, in practice, the EEG indices can be generated by
other EEG features, and selected by prior knowledge.

IV. RESULTS AND DISCUSSIONS

To evaluate the performance of the dynamic model (DM),
the local error rate of task performance is used as reference
vigilance index. Besides, for performance comparison, the
other three kinds of methods, M1, M2, M3, are designed and
used for vigilance estimation. Each method consists of two
parts, EEG index filter, and vigilance trajectory detection.
The EEG index filter candidates are LDS-based filter used
for DM and M1, and moving-averaged filter within 2 minutes
used for M2 and M3. The vigilance trajectory detection
methods candidates are manifold learning used for DM
and M2, and EEG indices linear summation used for M1
and M3. The correlation coefficient between the estimated
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vigilance level and the reference vigilance index is calculated
to evaluate the model’s performance. Usually, long period of
repeated operations can easily cause dysphoric mood, which
will affect the subject’s performance. In order to reduce
these vigilance-unrelated disturbances of task performance,
only the first 40 minutes EEG and task performance of each
session are used for performance evaluation.

A. Results

After being properly scaled, the estimated vigilance level
by dynamic model and the reference vigilance index are
shown in Fig. 2. The performance comparison results be-
tween different methods are shown in Table I. For on-line
condition, without time delay, only DM and M1 combined
with on-line LDS-based filter are feasible, therefore, only
their performance comparison results are shown in the on-
line part of Table I.
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Fig. 2. Estimated vigilance level by dynamic model from session 2
against the reference vigilance index. The off-line and on-line correlation
coefficients between them are 0.92 and 0.82, respectively.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Session Off-line On-line
DM M1 M2 M3 DM M1

S1 0.93 0.83 0.75 0.67 0.86 0.79
S2 0.92 0.82 0.75 0.78 0.82 0.74
S3 0.88 0.87 0.86 0.87 0.81 0.79
S4 0.82 0.81 0.81 0.80 0.78 0.75
S5 0.85 0.78 0.81 0.87 0.80 0.76
S6 0.88 0.86 0.85 0.85 0.83 0.82
S7 0.93 0.92 0.92 0.92 0.93 0.90

Average 0.89 0.84 0.82 0.81 0.83 0.79

B. Discussions

As shown above, the following conclusions can be drawn.
1) LDS-based filter is better than moving-averaged filter.
Because DM performs better than M2, and M1 performs
better than M3. And whether using LDS-based filter is the
only different between each pair of methods. 2) Manifold
learning is better than linear summation, especially combined
with LDS-based filter. Because DM performs better than M1,
and M2 performs better than M3. At this time, whether using
manifold learning is the only difference between each pair of

methods. However, M2’s performance is close to M3’s. This
is mainly caused by information lost derived from moving-
averaged. 3) The off-line methods perform better than the
on-line methods, because they can use lots of information
after the current time. But, for real-time vigilance estimation,
only on-line methods are feasible. 4) Both for off-line and
on-line conditions, DM’s performance is the best, and the
estimated results match well with the reference vigilance
index. Therefore, vigilance is just the manifold embedded
in EEG indices space.

V. CONCLUSIONS

In this paper, an EEG-based dynamic model is proposed,
which assumes vigilance as a manifold embedded in the
EEG index space. The parameters of this dynamic model
can be determined directly from the EEG data without using
any label information. The label information used in this
model is merely to know which EEG indices are important
for vigilance estimation. In practice, these information can
be achieved by prior knowledge. Compared with the existing
methods, this dynamic model can achieve a reliable and high
accurate second-scale vigilance changes estimation without
time delay for both off-line and on-line conditions, and the
manifold assumption of vigilance is also verified in our
experiments. In the future, nonlinear dynamical model will
be explored for vigilance analysis.
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