
Real-Time Head Detection with Kinect

for Driving Fatigue Detection

Yang Cao1 and Bao-Liang Lu1,2

1 Center for Brain-like Computing and Machine Intelligence
Department of Computer Science and Engineering

2 MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems
Shanghai Jiao Tong University

800 Dongchuan Road, Shanghai 200240, P.R. China

Abstract. Nowadays, depth cameras such Microsoft Kinect make it eas-
ier and cheaper for us to capture depth images. It becomes practical to
use depth images for detection in consumer-grade products. In this paper,
we propose a novel and simple real-time method to detect human head
in depth image for our driving fatigue detection system, based on the
elliptical shape of human head. Experiments show that our method can
successfully detect human head in different light conditions and across
different head poses. We integrate this detection algorithm into our driv-
ing fatigue detection system, and see remarkable improvements both in
detection rate and detection speed.

Keywords: Head Detection, Depth Image, Kinect, Fatigue Detection.

1 Introduction

Human head detection is often the fundamental step in many computer vision
applications, such as head or face tracking, face recognition, face expression
analysis and gender classification. Given a color image, an infra-red image, a
depth image or a combination of them, the goal of head detection is to find the
locations and sizes of all human heads in the image. Head detection is difficult if
different light conditions and different head poses are taken into consideration.

Traditionally, human head detection is accomplished on color images. Since
human face has the most significant features in head, we often do face detection
as a way of head detection. Face detection has been studied for decades. In [2]
face detection methods before year 2000 are nicely surveyed. In the 2000’s, Viola
and Jones made a great contribution to this field by their excellent work in [1].
Many later works are based on or inspired by the approach in [1]. Works after
year 2000 are surveyed in [3].

Human head detection on depth image has also been studied for a long time,
which can be broadly classified into two types. One type of head detection meth-
ods on depth images tries to detect features of faces such as nose tips, eyes and
cheeks. For example, Colombo et al. [4] proposed to detect human face on depth
image through an analysis of the curvature of face. Chew et al. [5] proposed to

M. Lee et al. (Eds.): ICONIP 2013, Part III, LNCS 8228, pp. 600–607, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Real-Time Head Detection with Kinect for Driving Fatigue Detection 601

detect nose tips in a depth image by calculating effective energy. For this type
of head detection methods, the advantage is that organs on faces are detected
directly, which provides us more information such as locations of each organ
instead of just head location and size. The disadvantage is that detection rate
often decreases dramatically for depth image with moderate noise. The other
type of head detection methods on depth images tries to detect human heads
using general information such as the elliptical shape of head. Xia et al. [7] used
2D chamfer distance matching to find candidate head locations according to the
contour of head and shoulder, and then used a hemisphere to fit the head. Suau
et al. [8] first extracted foreground pixels in the depth image, and then used
a binary elliptical template to search for the head location. This type of head
detection methods can tolerate moderate noise in the depth image, and is often
more robust to different head poses.

Our driving fatigue detection system operates according to the facial expres-
sion of the driver, so accurate and fast head detection is an important step.
Generally speaking, color image can provide more information than depth image,
but is more sensitive to light condition. Considering the complex light condition
during driving, the head detection method proposed in this paper utilizes depth
information only. We ignore facial details in the depth image, and use the ellip-
tical shape of head as a clue. Methods proposed in [7,8] also use the same clue
to detect human head. The difference between their methods and our method
is that, their methods both include a matching stage, i.e. shifting a template in
the depth image pixel by pixel to find a best match, which greatly slow down the
speed of head detection. For example, the method in [8] can only do real-time
tracking at resolution 160× 120. However, combined with a tracking trick, our
method can achieve real-time tracking at resolution 640× 480.

Our method contains three key steps: depth image split, contour extraction
and ellipse fitting. Section 2 describes our method in detail. Section 3 evaluates
our method on the Kinect face database proposed in [6]. Section 4 shows the
integration of our driving fatigue detection system and the method proposed in
this paper, followed by the conclusion and discussions in section 5.

2 Method

2.1 Assumptions

In our head detection method, we make two heuristic assumptions about human
head.

a) Approximately, human head has an elliptical shape.
b) The depth values of human head are continuous.

Strictly speaking, these two assumptions doesn’t hold for every people every
time. For example, if a person has very bushy hair or wears accessories such as
caps, his/her head may not have an elliptical shape in depth image. However,
we find these two assumptions do hold in most cases. In fact, both [7] and [8]
make assumptions which are similar with ours.

602 Y. Cao and B.-L. Lu

2.2 Work-Flow

Fig. 1 illustrates the overall process of our head detection method.

Depth Image Split

Regions whose sizes are too large or
too small for human head are ignored

Contour Extraction

Ellipse Fitting
Regions which don’t have elliptical
shape are ignored

Further processing

Input depth image

Fig. 1. The work-flow of our head detection method

First, we split the depth image into regions according to the depth value of
each pixel. Because we assume the depth values of human head are continuous,
we can set a threshold and split depth image at locations where the change of
depth is larger than the threshold. Regions whose size is much larger or much
smaller than normal human head will be ignored. Second, we extract the contour
of each region. For the extraction step, we use an algorithm which ‘walks’ along
the contour of each region. Third, after we get the contour of each region, an
ellipse fitting algorithm will be used and the similarity between the region and
an ellipse will be calculated. Regions with an elliptical shape will be returned
for further processing.

2.3 Depth Image Split

Image split is a kind of image segmentation. According to [9] there is quite
a number of image split algorithms. Considering effectiveness, simplicity and
speed, we choose image split based on computing connected components which
is enough for our method.

In our design we use breadth first search to compute connected components.
Neighboring pixels whose difference of depth is less than threshold will be treated
as connected pixels. Fig. 2 is an example of image split. Here different regions
are colored with different colors. We can see that the region of head has been
split out. Notice that regions much larger or much smaller than normal human
head will be removed.

Real-Time Head Detection with Kinect for Driving Fatigue Detection 603

Fig. 2. An example of image split result (The right color image is for reference)

2.4 Contour Extraction

After the depth image is split into different regions, contour extraction is per-
formed. Contours are expressed by contour points. Fig. 3 gives an example of
a region (left figure) and it’s corresponding contour points (right figure). One
pixel in depth image is represented by one block in Fig. 3.

Fig. 3. A region in depth image and it’s corresponding contour points

We use an contour extraction algorithm which ‘walks’ along the boundary of
each region.

To represent contour points, a corresponding format is defined. This format
contains not only the location of the point (i.e. the coordinates), but also the
normal direction (i.e. the direction pointing to the ‘outside’ of the region). For
example, if we express contour points in Fig. 3 using this format, we will have a
list like this (starting from the top-left point)

〈2, 0,UP〉〈2, 0,LEFT〉〈1, 1,UP〉〈1, 1,LEFT〉〈1, 1,DOWN〉〈2, 2,LEFT〉 . . .
Each contour point is represented by three elements. The first two elements

are the coordinates of the contour point, and the third element shows the normal
direction of the contour point. Using this format, we can easily find and express
the contour of a region.

The ‘walking’ procedure is a procedure of state transition, i.e. transition from
a contour point to another contour point. The algorithm starts at a contour
point of the region (top-left point of the region in our system), and ‘walks’ along
the contour as the state transiting. When we get back to the start contour point,
we know that we have found all the contour points of this region.

State transition depends on current contour point. We have four normal di-
rections (UP, DOWN, LEFT, RIGHT), each direction has 3 situations, so we

604 Y. Cao and B.-L. Lu

have 12 situations to consider in total. Fig. 4 gives us an example of the UP
situation. DOWN, LEFT, RIGHT are very similar.

Current Contour Point Next Contour Point Current and Next Contour Point (same position)

Fig. 4. Three cases of finding next contour point if current normal direction is UP

Notice that a certain location (coordinates) may contain more than one con-
tour point. Fig. 5 is the contour extraction result of Fig. 2.

Fig. 5. An example of contour extraction result

2.5 Ellipse Fitting

Having found the contour of each region, we can use any ellipse fitting algorithm
to fit an ellipse for the contour points. In our system, we choose the algorithm
in [10]. We calculate fitness for each region using the formula below (less fitness
value means higher fitness degree):

∑n
i=1 δi
n · h (1)

Here n is the number of contour points of the region, δi is the offset of the
contour point to its corresponding point in the fitted ellipse (draw a line cross
ellipse center and the contour point, the nearer intersection with the ellipse),
and h = max{height of region,width of region}. In conclusion, we calculate the
normalized average offset of every contour points.

After we get the fitness of each region. We return the region whose fitness is
less than a certain threshold as the human head we detected.

Real-Time Head Detection with Kinect for Driving Fatigue Detection 605

3 Experiments

We test our head detection method on a public available face database provided
by Hg et al. [6]. In this database there are 31 persons, and each person has 17
poses (sitting in front of Kinect and looking at different positions with different
facial expressions). For each pose, color image and depth image are taken at the
same time for three times, so there are 31×17×3 = 1581 color images and 1581
depth images. Both color images and depth images are taken using Microsoft
Kinect, with a resolution 1280× 960 for color images and a resolution 640× 480
for depth images.

The test result is shown in Table 1. The detection rate is satisfying for most
persons, and is not sensitive to head pose. But for persons with very bushy hair
or beard, the detection rate drops heavily (boldface items in Table 1).

Table 1. Detection rate for each person in the database

Id Detection Rate Id Detection Rate Id Detection Rate Id Detection Rate

1 88.24% 9 88.24% 17 23.53% 25 98.04%
2 90.20% 10 84.31% 18 100.00% 26 100.00%
3 100.00% 11 100.00% 19 7.84% 27 100.00%
4 100.00% 12 84.31% 20 100.00% 28 100.00%
5 64.71% 13 100.00% 21 100.00% 29 90.20%
6 0.00% 14 70.59% 22 100.00% 30 100.00%
7 100.00% 15 92.16% 23 94.12% 31 100.00%
8 9.80% 16 88.24% 24 100.00% Average 83.05%

For detection speed, it takes about 170ms in average to do detection for an
depth image of resolution 640× 480 in my computer1. Compared with method
proposed in [8], our method is about 2 times faster. The reason is that there are
no template matching procedure in our method, which can greatly slow down
the speed.

4 Integrate with Driving Fatigue Detection System

Fig. 6 shows the work-flow of our driving fatigue detection system. Here, head
detection in depth image is an important step which speeds up the whole system.
Originally, we detect human face in color image using Viola-Jones algorithm [1]
directly, which requires about 1800ms for an image of resolution 1280 × 960.
Now, we first detect human head in depth image, which requires about 170ms
for an depth image of resolution 640× 480, and then use traditional algorithm
to detect face in the head region, which requires about 70ms.

1 CPU: Pentium T4400 2.2GHz, RAM: 4GB

606 Y. Cao and B.-L. Lu

Image
Capture

form Kinect

Head
Detection
in Depth

Image

Face
Detection
in Color
Image

Face
Alignment

by ASM

Feature
Extraction

Fatigue
Level

Output

Fig. 6. The work-flow of our driving fatigue detection system

After we get the accurate location of the driver’s face, we use ASM (Active
Shape Model) to determine the location of each organ on the face. This is done
on color image. Then the appearance of each organ on the face can help us
determine the facial expression of the driver. Currently, we use the shape of
driver’s mouth as a fatigue feature, which is expressed by a value:

d = min{100, h
w

× 100} (2)

Here h is the height of mouth, and w is the width of mouth. Therefore d increases
as the driver opens his/her mouth. After we calculate d for each frame, we use
formula below to calculate fatigue degree:

f = min{100,
∑n

i=1 di
n

+ 20t} (3)

Here n is the number of frames in 3 minutes, t is the number of yawns. For the
calculation of t, we set a threshold for d. If d is larger than the threshold, we add
1 to t, and wait 10 seconds (we assume that yawn will not happen twice within
10 seconds or last for more than 10 seconds).

5 Conclusion and Future Work

In this paper, we proposed a novel human head detection method for depth im-
age, which is both simple and robust. From the experiments, we can see that our
method can achieve comparable detection rate and can reduce detection time.

This method utilizes depth information only, so it is not sensitive to light
condition. The validity of the method is demonstrated by integrating the head
detection method into our driving fatigue detection system. In the future, we
plan to improve our method so that it can deal with very bushy hair and beard.
For the driving fatigue detection system, we will add more features to get more
accurate result.

Acknowledgements. This work was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 61272248), the National Basic
Research Program of China (Grant No. 2013CB329401) and the Science and
Technology Commission of Shanghai Municipality (Grant No. 13511500200).

Real-Time Head Detection with Kinect for Driving Fatigue Detection 607

References

1. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Com-
puter Vision 57(2), 137–154 (2004)

2. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)

3. Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Microsoft
Research (2010)

4. Colombo, A., Cusano, C., Schettini, R.: 3D face detection using curvature analysis.
Pattern Recognition 39(3), 444–455 (2006)

5. Chew, W.J., Seng, K.P., Ang, L.M.: Nose tip detection on a three-dimensional face
range image invariant to head pose. In: Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists, vol. 1 (2009)

6. Hg, R.I., Jasek, P., Rofidal, C., Nasrollahi, K., Moeslund, T.B., Tranchet, G.: An
RGB-D Database Using Microsoft’s Kinect for Windows for Face Detection. In:
International Conference on Signal Image Technology and Internet Based Systems,
pp. 42–46 (2012)

7. Xia, L., Chen, C.C., Aggarwal, J.K.: Human detection using depth information by
Kinect. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, pp. 15–22 (2011)

8. Suau, X., Ruiz-Hidalgo, J., Casas, J.R.: Real-time head and hand tracking based
on 2.5 D data. IEEE Transactions on Multimedia 14(3), 575–585 (2012)

9. Szeliski, R.: Computer vision: algorithms and applications. Springer (2010)
10. Fitzgibbon, A.W., Fisher, R.B.: A buyer’s guide to conic fitting. In: Proceedings

of the 6th British Conference on Machine Vision, vol. 2, pp. 513–522 (1995)

	Real-Time Head Detection with Kinect for Driving Fatigue Detection
	1 Introduction
	2 Method
	2.1 Assumptions
	2.2 Work-Flow
	2.3 Depth Image Split
	2.4 Contour Extraction
	2.5 Ellipse Fitting

	3 Experiments
	4 Integrate with Driving Fatigue Detection System
	5 Conclusion and Future Work
	References

