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Abstract— Feature dimensionality reduction methods with
robustness have a great significance for making better use of
EEG data, since EEG features are usually high-dimensional
and contain a lot of noise. In this paper, a robust principal
component analysis (PCA) algorithm is introduced to reduce
the dimension of EEG features for vigilance estimation. The
performance is compared with that of standard PCA, L1-
norm PCA, sparse PCA, and robust PCA in feature dimen-
sion reduction on an EEG data set of twenty-three subjects.
To evaluate the performance of these algorithms, smoothed
differential entropy features are used as the vigilance related
EEG features. Experimental results demonstrate that the ro-
bustness and performance of robust PCA are better than other
algorithms for both off-line and on-line vigilance estimation.
The average RMSE (root mean square errors) of vigilance
estimation was 0.158 when robust PCA was applied to reduce
the dimensionality of features, while the average RMSE was
0.172 when standard PCA was used in the same task.

I. INTRODUCTION
Vigilance estimation is desirable in various human-

machine interaction systems to monitor the vigilance of the
operators in order to guarantee safety. Vigilance is defined as
the ability to maintain focus of attention and to remain alert
to stimuli for prolonged periods of time [1]. In our daily life,
the operators of many human-machine interaction systems,
especially vehicle drivers, should retain their vigilance at
a relatively high level. Therefore, research on vigilance
estimation has a practical significance for traffic safety. Elec-
troencephalogram (EEG) has proven a signal closely related
to vigilance, and various EEG-based estimating methods
have been proposed [2], [3], [4], [5], [6].

The dimensionality of EEG features is usually quite high,
increasing the complexity and reducing the operational ef-
ficiency of calculations based on the signals. Therefore, it
is necessary to reduce the dimensionality of the features
before we use them. Principal Component Analysis (PCA)
is a approach widely used for dimensionality reduction. The
classical PCA algorithm performs poorly in the presence
of noise, skewing the extracted principal components, and
therefore resulting in an inaccurate vigilance estimation.
To improve the results, outliers can be manually removed,
but this is a costly process for a large dataset. A noise
insensitive algorithm is therefore required for EEG feature
dimensionality reduction for vigilance estimation. In order
to solve this problem, a robust PCA algorithm is introduced.
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Robust PCA is often used in the field of computer vision
and image analysis. The robust PCA algorithm proposed
by Campbell can effectively reduce the influence of data
points with a lot of noise [7]. However, outliers in EEG
data often occur in some particular electrodes and some
particular frequency bands rather than all the features of the
data points. Applying Campbell’s approach to noisy EEG
signals results in some dimensions being abandoned directly,
therefore resulting in an undesirable amount of data loss. As
a result, a more accurate robust PCA is required to process
EEG features.

Experiments were carried out to collect EEG signals of
twenty-three subjects whilst they were doing a monotonous
visual task. Frequency-domain features were adopted to
present vigilance-related EEG characteristics, and the feature
sequence was smoothed before the dimensionality of features
was reduced using robust PCA. Support vector machine
(SVM) regression was applied to vigilance estimation. A
comparison between standard PCA, L1-norm PCA, sparse
PCA, and robust PCA proved that robust PCA was a suitable
method in the dimensionality reduction of EEG data.

II. DATA

A. Experiments

The experimental data used was collected from a
monotonous visual task. In the experiment, subjects were
asked to sit in front of a screen which displayed traffic
signs and was controlled by the NeuroScan Stim2 System.
The traffic signs were divided into 4 groups based on the
color, and each group contained 160 signs. A traffic sign
was displayed for 500 milliseconds, and there was a 5-7
seconds interval with black screen between two traffic signs.
The subjects were informed to recognize the color of the
sign and press the button of this color.

Twenty-three students were chosen as subjects, and each
of them participated in the experiment twice. The experiment
was conducted after lunch, between 13:00-15:00 and lasted
for 40-60 minutes.

During the experiment, responses of the subject were
recorded by NeuroScan Stim2 System, and a 62-channel
electrode cap was employed to record the EEG signals with
the sample rate 500Hz synchronously. The arrangement of
the electrodes was based on extended 10/20 system, and the
signals were filtered to 0.1-100Hz.

B. Vigilance Measurement

An index of vigilance level was needed to evaluate the
performance of the EEG-based vigilance estimation algo-

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 6623



rithm. Since the decrease of vigilance usually led to wrong
response, the local error rate of response was usually adopted
as the measurement of vigilance level [8]. Related research
had proven that the fluctuations of vigilance were with the
cycle lengths longer than 4 minutes [8], so the local error rate
was calculated using the average error rate within a 2-minute
window at 2-second step.

III. METHODS

A. Standard PCA Algorithm

PCA is a statistical algorithm which is widely used for
dimensionality reduction as well as many other applications.
PCA can be defined as a linear projection transforming the
original multivariate data set to a new data set of linearly
independent variables. The first principal component has
the maximum variance; and each succeeding component in
turn is orthogonal to the existing components and with the
maximum variance.

Equivalently, standard PCA can be defined as the linear
projection which minimizes the reconstruction error instead
of maximizing the variance. According to this definition, the
objective function of PCA can be expressed as follows,

J(U, V ) = min
U,V

||X − UV ||2 =
n∑

i=1

(xi − Uvi)
2, (1)

where U = (u1, ..., uk) is the first k projection vectors,
and V = (v1, ..., vn) is the data set after projection with
constraints, UTU = Ik and V = UTX .

B. L1-norm PCA Algorithm

Compared with the standard PCA algorithm, the basic
idea of L1-norm PCA algorithm is to replace the L2-norm
reconstruction error in Eq. (1) with L1-norm reconstruction
error. L2-norm is more sensitive to noise than L1-norm, so
the influence of noise decreased with the use of L1-norm.
Considering the characteristics of EEG features, an extended
L1-norm PCA algorithm firstly proposed by Kwak [9], is
applied.

C. Sparse PCA Algorithm

The principle of sparse PCA is to use the important
features of data when computing the principal components,
instead of reducing the effect of outliers on the principal
components projection matrix as L1-norm PCA does. Most
elements in the projection vectors of standard PCA and L1-
norm PCA are not zero, whereas the projection vectors of
sparse PCA contain many zero elements. Because of the
instability of EEG features and the differences between the
experimental environments and between the subjects, the
projection from the original EEG features to the principal
components varied in different experiments. As the PCA
algorithm can be seen as a minimization of the reconstruction
error, PCA is essentially a regression, and shrinkage methods
can be applied to increase the stability of the model.

Sparse PCA transforms the standard PCA to a regression
about the reconstruction error, and makes the projection
matrix sparse using loss functions. Zou et al. proposed a

sparse PCA algorithm with a relatively high efficiency [10],
and it is employed to reduce the dimension of EEG features.
This kind of sparse PCA converts the PCA to a regression
which is solved by using the elastic net algorithm [11].

D. Robust PCA Algorithm

Robust PCA can effectively remove the influence of out-
liers on the projection matrix. The main idea of robust PCA
is to solve PCA problem using a weight method. Taking
into account the issues of computational complexity and the
characteristics of EEG features, the robust PCA algorithm
proposed by Torre et al. [12] is adopted to reduce the
dimensions of the data.

The algorithm extends the objective function of robust
PCA, that the reconstruction error of weighted data points
given by Xu et al. [13] to the reconstruction error of weighted
features of each data point,

E(U, V, µ, L) =
n∑

i=1

d∑
p=1

(Lpi(e
2
pi/σ

2
p) + P (Lpi)), (2)

where epi = xpi − µp −
∑k

j=1 upjvji is the reconstruction
error of each feature, X = (x1, ..., xn) is a d dimensional
data set, U = (u1, ..., uk) is the projection matrix of the first
k principal components of the data set X , V = (v1, ..., vn)
is the data set after projection, µ = (µ1, ..., µd) is the mean
value of each feature, 0 ≤ Lpi ≤ 1 is the weight of each
feature, P (Lpi) is the penalty function, and σ = (σ1, ..., σd)
is the scale factor for calculating the reconstruction error of
each feature. In this algorithm, all the parameters need to be
estimated except σ.

Based on robust statistics [14], if robust function Geman-
McClure is used to express the reconstruction error of
features, minimizing Eq. (2) is equivalent to minimizing the
following formula,

E(U, V, µ) =
n∑

i=1

d∑
p=1

ρ(epi, σp), (3)

where ρ(epi, σp) =
e2pi

e2pi+σ2
p

.
According to the theory of robust statistics, Eq. (3) can

be converted into an objective function of linearly weighted
errors of all features as follows,

E(U, V, µ,W )
=

∑n
i=1 (xi − µ− Uvi)

TWi(xi − µ− Uvi)

=
∑d

p=1 (x
p − µp1n − V Tup)TW p(xp − µp1n − V Tup),

where Wi = diag(w1i, ..., wdi) is a diagonal matrix con-
stituted of the weights of the ith sample’s features, and
W p = diag(wp1, ..., wpn) is a diagonal matrix constituted
of the weights of the pth features in all the data.

Torre et al. designed a fast iteration algorithm based on
the method of gradient descent. σ in this algorithm is the
standard deviation of the pth feature in the data set, which
can be robust estimated using median absolute deviation.

This algorithm can effectively reduce the influence of
the outliers of EEG features when the projection matrix of
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principal components is calculated. Also it makes use of EEG
features as much as possible instead of abandoning EEG
samples which contain some abnormal feature values, at the
same time maintaining a relatively high efficiency for the
algorithm.

This robust PCA cannot guarantee the orthogonality of
the projection vectors during the solving process, so the
projection matrix should be orthogonalized by the Gramm-
Schmidt algorithm before it is used; standard PCA can also
be applied to decompose the dataset reconstructed by a
method based on robust PCA, and linearly transform the data
using the projection matrix.

E. Data Analysis

The preprocessing of the EEG signals includes the noise
reduction and artifact removal, which reduces the sampling
rate to 100Hz. Since the EEG signals sampled around occip-
ital lobe closely relate to the vigilance, data sampled from 9
electrodes (P1, Pz, P2, PO3, POz, PO4, CP1, CPz, CP2)
around occipital lobe are adopted. Features are extracted
every 2 seconds, and one experiment lasts for 40–60 minutes,
so 1200–1800 samples from each experiment are obtained.
The vigilance-related feature used is the logarithmic form of
the EEG spectral feature, which is given the name differential
entropy feature [15]. The frequency band of the features
distributed from 2Hz to 44Hz, and the frequency is divided
into 2Hz segments. The feature sequence is smoothed using
a moving average filter with the window length 2 minutes for
off-line method. For on-line vigilance estimation, a moving
average filter with the window length 1 minute is applied, as
well as a linear dynamic system (LDS) to smooth the feature
sequence [5]. The dimensionality of the feature vector is 189,
and reduced to 10 by PCA algorithm. The estimation method
employed was SVM regression with the kernel function RBF,
which generates the final vigilance estimation results of our
system. When evaluating the algorithm, the training data was
the EEG signal and the response collected from the first
experiment of one subject, and the test data was from the
experiment of the same subject the second time.

IV. RESULTS AND DISCUSSION

A. Results

The performance of different PCA algorithms are shown
in Figs. 1 and 2, and Table I and II. As we can see
from Figs. 1 and 2, in both off-line and on-line vigilance
estimation, the root mean square errors (RMSEs) of different
PCA algorithms are close to each other on most of the data,
while the RMSE of robust PCA is obviously lower than
that of other PCA on data containing much noise caused
by the face and neck movement, such as the data of subject
2 and subject 23. This result infers that the four kinds of
PCA algorithms have a similar performance, whereas the
outstanding robustness of robust PCA algorithm makes it
more suitable to process EEG data with much noise.

Table I and II show that both the average RMSE and the
standard deviation of robust PCA algorithm is the lowest. It
can be indicated from this result that the performance and

robustness of robust PCA is both better than those of L1-
norm PCA, sparse PCA, and standard PCA.
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Fig. 1. RMSEs of different feature dimension reduction algorithms for
off-line vigilance estimation
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Fig. 2. RMSEs of different feature dimension reduction algorithms and
different smoothing methods for on-line vigilance estimation

B. Discussion

The experimental results demonstrate the high accuracy
and robustness of robust PCA when coping with EEG
data with much noise no matter whether it is used in off-
line conditions or on-line conditions, and what smoothing
method is applied. Compared with standard PCA, robust
PCA constructs the reconstruction error of principal com-
ponents using the McClure robust function, and determines
the range of noise by calculating the distribution variance
of EEG features. Robust PCA can reduce the influence of
specific noise features in one data point, which will not
affect the other features. There is indeed some noise in the
EEG features before dimension reduction, so applying the
robust PCA will increase the performance when computing
principal components.
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TABLE I
RMSES OF DIFFERENT FEATURE DIMENSION REDUCTION ALGORITHMS

FOR OFF-LINE VIGILANCE ESTIMATION

Subject PCA algorithms
Robust L1-norm Sparse Std.

1 0.155 0.161 0.239 0.172
2 0.203 0.305 0.334 0.322
3 0.18 0.225 0.238 0.231
4 0.132 0.128 0.142 0.137
5 0.145 0.171 0.161 0.176
6 0.168 0.189 0.21 0.189
7 0.181 0.177 0.185 0.177
8 0.196 0.22 0.231 0.186
9 0.136 0.145 0.143 0.138

10 0.175 0.168 0.256 0.174
11 0.153 0.166 0.139 0.166
12 0.198 0.227 0.201 0.226
13 0.134 0.13 0.127 0.128
14 0.165 0.134 0.131 0.136
15 0.176 0.163 0.168 0.174
16 0.162 0.184 0.139 0.144
17 0.148 0.155 0.156 0.157
18 0.122 0.162 0.146 0.157
19 0.169 0.165 0.158 0.165
20 0.0824 0.0763 0.0708 0.0751
21 0.122 0.129 0.116 0.112
22 0.126 0.125 0.131 0.127
23 0.208 0.307 0.35 0.299

Average 0.158 0.175 0.181 0.172
±sd ±0.031 ±0.054 ±0.068 ±0.055

TABLE II
RMSES OF DIFFERENT FEATURE DIMENSION REDUCTION ALGORITHMS

FOR ON-LINE VIGILANCE ESTIMATION

Method LDS Moving Average
R. PCA Std. PCA R. PCA Std. PCA

Average 0.177 0.192 0.198 0.214
±sd ±0.035 ±0.055 ±0.049 ±0.066

L1-norm PCA obtains principal components by minimiz-
ing the L1-norm reconstruction error, which can help to re-
duce the influence of noise features on principal components.
However, it can not reduce the influence of specific noise
features but only all features on principal components. In our
experiment, the average RMSE of standard PCA is 0.172,
which means that EEG features are relatively steady after
feature smoothing. So using L1-norm to reduce the influence
of all features may affect the normal features, and it does not
necessarily increase the performance of PCA.

Sparse PCA is used to guarantee the reliability and
stability of the solution. It chooses the important features
from the original data to compose the principal components,
which may not extract the principal components accurately.
For the reason that most EEG features contain noise, the
importance of one feature in most data points will make
sparse PCA treat it as an important feature regardless of the
abnormality of the feature value in other data points. As a
result, the stability of sparse PCA decreases when computing
the principal components.

In all of the experiments, subjects were allowed to move

their face and eyes, which would introduce some noise data,
also the thinking activity or the change of resistance of
the electrodes would also produce noise features. In this
condition, robust PCA performs better than other algorithms.

V. CONCLUSION
In this paper, a robust PCA algorithm for vigilance estima-

tion is introduced and compared the performance of standard
PCA, L1-norm PCA, sparse PCA, and robust PCA in dimen-
sionality reduction on EEG data for both on-line and off-line
vigilance estimation. Experimental results demonstrate that
the performance and robustness of robust PCA are the best
among these four methods, which implies that robust PCA is
the most suitable method for reducing the feature dimension
of EEG data for vigilance estimation.
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