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Abstract. Constructing an informative and discriminative graph plays
an important role in the graph based semi-supervised learning meth-
ods. Among these graph construction methods, low-rank representation
based graph, which calculates the edge weights of both labeled and un-
labeled samples as the low-rank representation (LRR) coefficients, has
shown excellent performance in semi-supervised learning. In this paper,
we additionally impose twofold constraints (local affinity and distant re-
pulsion) on the LRR graph. The improved model, termed structure pre-
serving LRR (SPLRR), can preserve the local geometrical structure but
without distorting the distant repulsion property. Experiments are taken
on three widely used face data sets to investigate the performance of
SPLRR and the results show that it is superior to some state-of-the-art
semi-supervised graphs.

Keywords: Structure preserving, Low-rank representation, Semi-
supervised learning, Face recognition.

1 Introduction

Recently, semi-supervised learning (SSL) has received increasing attention be-
cause it can utilize both limited labeled samples and rich yet unlabeled samples.
The currently available semi-supervised methods can be roughly categorized into
four groups: generative models, low-density separation models, heuristic models
and graph-based models. In this paper, we focus our work on graph-based SSL
due to its empirical success in practice and computational efficiency.
Graph-based SSL relies on using a graph G = (V, E, W) to represent data
structure, where V' is a set of vertices in which each vertex represents a data
point, £ C V x V is a set of edges connecting related vertices and W is an adja-
cency matrix recording the pairwise weights between vertices. Usually, the graph
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is constructed using relationship of domain knowledge or similarity of samples.
Upon the graph is constructed, each sample spreads its label information to
its neighbors until a global stable state is achieved on the whole data set. Thus,
both labeled and unlabeled samples remarkably affect the construction of graphs
and how to construct a good graph for representing the data structure is criti-
cal for graph-based SSL. Recently, some commonly used graphs have been well
investigated, such as k nearest neighbors graph [10], graph for label propagation
based on linear neighborhoods (LNP) [11], ¢! graph [5], sparse probability graph
(SPG) [6] and so on.

The ¢* graph is motivated by which each datum can be reconstructed by the
sparse linear superposition of the training data [5] and the sparse reconstruction
coefficients are derived by solving an ¢! optimization problem. Differing from
the sparse representation which enforces the representation coefficients to be
sparse, the semi-supervised low-rank representation graph (LRR) was proposed
for pattern classification [12]. However, the low rankness constraint can only cap-
ture the global mixture of subspaces structure while ignoring the local structure
of data. To compensate the drawback of LRR graph, we propose a structure
preserving low-rank representation based graph, which is imposed on twofold
constraints: local affinity and distant repulsion. Therefore, the proposed struc-
ture preserving low-rank representation can properly preserve the local affinity
structure without distorting the distant repulsion property.

The remainder of this paper is organized as follows. We present a brief review
of low-rank representation in section 2l In section 3, we propose the formulation
of structure preserving low-rank representation (SPLRR) model and its imple-
mentation which is based on the inexact ALM algorithm. Section [] shows the
semi-supervised classification method used in this paper. Experiments on three
widely used face databases for evaluating the performance of SPLRR are illus-
trated in section Bl Conclusion is given in section

2 Low-Rank Representation

Let X = [x1,X2, - ,X,] € R¥™ be a set of data points in d-dimensional
space. We try to represent each sample in X based on the dictionary A =
[ar,az, - ,a,] € R>X™ using X = AZ, where Z is the representation coef-

ficients matrix. When the dictionary A is over-complete, there will be many
solutions to this problem. LRR seeks a lowest-rank solution by solving the fol-
lowing problem [§] (we use the data matrix X itself as dictionary):

min rank(Z), s.t. X = XZ. (1)

The optimal solution to () is called the “lowest-rank representations” of data
X w.r.t. a dictionary X. However, this problem is NP-hard to solve due to the
discrete nature of rank function. Fortunately, we can convert () to following
convex optimization problem instead based on the work of [3]:

min ||Z]|., st X =XZ, (2)
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where ||-||+ denotes the nuclear norm of a matrix [2], i.e., the sum of the singular
values of the matrix.

In real-world applications, data points are often noisy or even grossly corrupted.
Therefore, the corrupted data can be separated to two parts, i.e., X = XZ + E.
Thus, the affinity matrix Z can be obtained by solving the following problem:

min ||Z[l. + A[E|le, s.t. X = XZ+E, (3)

where || - ||¢ can be the ¢2 1 or ¢; norm (in this paper we choose ¢1 norm). The
optimal solution Z* to problem (@]) can be obtained via the Inexact Augmented
Lagrange Multiplier Method (ALM) [7].

3 Structure Preserving Low-Rank Representation

In this section, we propose the structure preserving low-rank representation
(SPLRR) model as well as its solution based on Inexact Augmented Lagrange
Multiplier Method [7]. SPLRR can properly preserve the local affinity structure
without distorting the distant repulsion property. The local affinity indicates
the local neighborhood correlation, which means that if x; and x; are close in
the original data space, their corresponding representation coefficients z; and z;
should be also close in the transformed space. The distant repulsion property
is inspired by the elastic embedding [4], which enforces the corresponding rep-
resentation coefficients of distant data points in the original space to be kept
distant in the transformed space.

3.1 Formulation of SPLRR

We first introduce the two constraints: local affinity and distant repulsion.

e Local affinity. To preserve the local geometrical structure in the coefficient
space, one may naturally hope that, if two data points x; and x; are close in
the intrinsic manifold, their corresponding representation coefficients z; and z;
should also be close to each other. This can be viewed as manifold assumption for
smoothness transition. Several methods can achieve this manifold-like property
and in this work we choose the graph regularization term which is similar to
graph regularized non-negative matrix factorization (GNMF) in [1]):

) 1 n n n
mn, Z wij |z — 24 = Zd”zfzi - Z wij2; 7
1,j=1 i=1 1,j=1 (4)
=Tr(ZDZ") — Tr(ZWZ") = Tr(ZL, Z")
where D is a diagonal matrix whose entries are column (or row, since W is
symmetric) sums of W | d;; = > ; Wij- We can compute the graph Laplacian
L: = D — W, w;; is the measure of affinity between x; and x; in the original
space. Here, we use the ‘HeatKernel’ formulation:

wis exp(—||x: — Xj”2/2t2), if x; € Ni1(x;) or x5 € Nii1(xi),
R 0, otherwise,

()
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where N, (x;) denotes the set of p nearest neighbors of x;.

e Distant repulsion. This property enforces dissimilar data pairs in the orig-
inal space to be far apart in the embedded space. Here we use the identical
formulation with the ‘local affinity’ property as

1y
iy 3 sulls = 3| = Tr(2L2"), ©)
1,]=

where Loy has similar property as L; and

6 — { |lxi — x;1|* exp(—||xi — x;|?/2t%), if x;i € Nia(x;) or x; € Nya(x:), ™)
ij =

0, otherwise.

Integrating Eqs.( @), (6) into the low-rank representation model, we can get the
SPLRR model as follows:

min ||Z([. + A[El|: + aTr(ZLiZ") 4 BTr(ZL.Z") st. X =XZ+E. (8

3.2 Solution to SPLRR

Similar to [§], Eq.([) can be transformed into the following equivalent problem
by introducing the auxiliary variable J:
min [J|| 4Bl + aTr(ZLyZ7) + BTr(ZLLZ")

9)
st. X=XZ+E and Z=1J.

In order to efficiently solve the optimization problem (@), the ALM method [7]
is utilized. Thus, the Augmented Lagrange function w.r.t. (@) is:

min _ ||J||« + M|E|[1 + aTr(JL1J7) + fTr(JL2IT) + (Y1, X — XZ — E)
Z,E,J,Y1,Y2

(10)
+(Y2,Z = 3) + /2 (|[X = XZ - E[[p + [|Z - I|[%) -

Obviously, we need to optimize this problem over one variable with others fixed.
The subproblem w.r.t. each variable is convex and thus can provide correspond-
ing unique optimal solutions. The optimization method to SPLRR is summarized
in Algorithm[Il Note that, we give the relaxation of the objective when updating
variable J and the derivation of Eq.(I3)) is as follows:

£ = min ||J]|, + N|E||s + Tr (J(aL1 n ﬁLg)JT)
< min [[J[[, + A[[E[[s + [[J[[F - [|eLi + SLe||F - [|J]|r (11)
= min [|J[[« + Al[E[l1 +a(J,J) (a = |laLs + BLz||r).
For updating J while other variables fixed, we have
J = argmin ||J||x + a(J,T) — (Yo + pZ,J) + p/2(J3,J)
argmin ||[J||« + (a + p/2) (J,T) — w{Z + Y2 /u,J)

. 1 1 Iz Y2\ 2
= J||« J - Z .
argmin L yla =, (2 )

The SPLRR-based graph construction model is concluded in Algorithm

(12)
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Algorithm 1. Solving Problem (§]) via Inexact ALM

Input: Data matrix X; regularization parameters A\, o and (; parameters for con-
structing the affinity graph Laplacian and repulsion graph Laplacian.

Output: The affinity matrix Z.
Initialization: set Z=J =0, E=0, Y, =Y2 =0, p=10"% M =10'° p=1.1
and £ = 1078,
Construct the graph Laplacian Ly for local affinity and Lo for distant repulsion.
Repeat until converge:

e Updating J:

J = argmin

1 1 y Y2 2
I+ |13 = Z a=|laL, + AL
s I 5=y b (24 Y2 ) I o= oL + ALl

a+
(13)

e Updating Z: Z = I+ XTX) ' (XTX - XTE+ J+ (XTY1 - Y2) /1)

e Updating E: E = arg min Z IIEl[1 + LB — (X = XZ+Y1/p) |7

e Updating multipliers: Y1 = Y1+ pu (X —XZ—-E), Yo=Y+ u(Z-1J)
e Updating the parameter p by p = min (pu, M)

e Checking the convergence conditions

X —XZ-E||c <€ and ||Z—J|| <e

Algorithm 2. Graph construction based on SPLRR

Input: Data marix X, parameters for computing affinity graph Laplacian and repul-
sion graph Laplacian.

Output: The weight matrix of SPLRR based graph Z.
Normalize all the samples x; to 2 unit norm.
Solve problem (B) using Algorithm [Il and get the optimal solution Z*.
Normalize each column of Z* via z; = z]/||z]||2 and shrink entries in Z* by 0.
Construct the graph weight matrix W by W = (|Z*| + (|Z*])") /2.

4 Semi-supervised Classification

Denote Y = [(y1)T; (y?)T;- -+ ; (y")T] € R"*¢ as the initial label matrix. If x;
is the unlabeled data, then y* = 0. If x; is labeled data in class k, then the k-th
element of y* is 1 and the other elements of y* are 0. Generally, graph based
semi-supervised learning models solve the following problem [13]:

min Tr(Q'LQ) + Tr((Q - Y)"'U(Q - Y)), (14)

where L = D~1/2LD /2 is the normalized graph Laplacian, U is a diagonal
matrix with the i-th diagonal element to control the impact of the initial label
y' of x;, Q € R™*¢ is the label matrix to be solved. For fair comparison, we
simply set U;; = 1 for all algorithms in our experiments.

Taking the derivative of Eq.([I4) w.r.t Q and setting it to zero, we have:

LQ+U(Q-Y)=0= Q= (L+U) " (UY). (15)
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5 Experiments

ORL, Extended Yale B and CMU PIE data sets are used in our experiments.

e ORL: There are 10 gray scale images for each of the 40 subjects. They were
taken at different times, varying the lighting, facial expressions and facial details.
Each face image is cropped and resized to 32x32.

e Extended Yale B: This database has 38 individuals, each subject having
around 64 near frontal images under different illuminations. We simply use the
first 50 cropped images of the first 20 individuals, and then resize them to 32x32.
e PIE: It contains 41368 images of 68 subjects with different poses, illumination
and expressions. We only use their images in five near frontal poses and under
different illuminations and expressions. The first 50 images of the first 20 subjects
are selected. Each image is manually cropped and resized to size 32x32.

Fig. 1. Sample images from ORL, Extended Yale B and CMU PIE data sets

Some sample images from these three face databases are shown in Figure [I1
For evaluating the performance of proposed model, we compare SPLRR with
some state-of-the-art graph construction models listed as follows:

e knn-graph: The number of nearest neighbors for KNN1 and KNN2 are 4
and 8 respectively. The distance is measured using heat kernel and the kernel
parameter is the average of squared Euclidean distances for all edged pairs.

o LNP [I1]: We follow the pipeline of linear label propagation in to construct
the graph. The neighborhood size in LNP is set to 40 to achieve the best results.

o (! graph [5]: The ¢! regularization item \ is empirically set to 0.01. And the
0! regularized least square problem is solved by [1-Is package.

e SPG graph [6]: we implement the SPG algorithm by setting ngn,, as 10% of
the size of data set and A = 0.001.

e LRR graph [12]: the A in LRR is set to an near optimal value 0.1.

e SPLRR graph: The number of nearest neighbors for ‘local affinity’ and
‘distant repulsion’ constraints are 4 and 20 respectively. The kernel parameter is
empirically set as 0.1 x /—d/In{0.1/k} [9] (d is the average of squared Euclidean
distances for all edged pairs on the graph, k is the neighbor number to construct
the neighborhood graph). The hyper-parameters A, a and [ are empirically set
as 0.5, 0.9 and 0.1 for all data sets.

For each face data set, we randomly select 10% to 60% face images per subject
as labeled samples and the rest as unlabeled samples. Tables [l reports the face
recognition results on these three data sets.For each configuration, we conduct 50
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Table 1. Experimental results on ORL, Extended Yale B and PIE(mean+std-dev%)

ORL KNNI1 KNN2 LNP L1-Graph SPG LRR SPLRR
10% 64.98+2.07 53.47+2.80 71.21+2.30 61.89+2.69 65.92+2.42 71.63+£2.45 77.31+2.17
20% 74.07£2.71 63.974+2.69 82.014+2.20 76.164+2.73 78.74+1.98 83.67+2.12 87.73+2.17
30% 79.4242.24 68.931+2.72 88.0642.45 84.6142.32 86.241+2.36 88.66+1.79 91.66+1.67
40% 81.1642.43 71.6442.82 91.434+1.68 89.314+1.90 90.724+1.64 91.35+1.72 94.114+1.84
50% 82.76+2.41 72.83+2.44 93.154+1.74 92.474+1.69 93.204+1.64 93.54+1.41 95.93+1.51
60% 83.231+2.20 74.754+2.69 94.69+1.64 94.254+1.59 95.46+1.50 94.46+1.55 96.94+1.38
YaleB KNNI1 KNN2 LNP L1-Graph SPG LRR SPLRR
10% 73.04+1.62 55.82+£2.91 86.22+1.52 77.69+1.74 82.92+1.62 87.18+1.35 92.96+0.98
20% 77.13+£1.31 63.03+2.39 90.86+1.14 87.58+1.05 89.844+1.16 92.36+1.17 95.86+0.92
30% 80.1241.38 67.294+1.91 92.4540.72 92.134+1.15 92.754+0.99 93.984+0.99 97.31+0.65
40% 81.4941.35 69.8642.46 93.4240.86 94.3940.94 94.26+0.77 95.421+0.81 98.23+0.53
50% 83.50+1.43 72.2442.45 93.8540.82 95.904+1.03 95.59+0.72 96.131+0.82 98.75+0.42
60% 84.2542.03 74.7442.42 94.8940.98 97.2940.93 96.371+0.85 96.731+0.86 99.124+0.45
PIE KNN1 KNN2 LNP L1-Graph SPG LRR SPLRR
10% 49.38+2.83 40.09+2.11 67.50£2.77 63.60£2.35 65.29+2.16 75.93+2.05 77.07+£2.32
20% 59.2242.24 51.9941.93 79.114+1.47 76.434+1.18 77.80+1.70 87.00+1.42 88.11+1.65
30% 64.69+1.73 60.76+1.77 83.544+1.73 82.93+1.44 83.82+1.26 90.33+1.17 91.20+1.23
40% 67.124+1.91 68.561+1.45 87.024+1.35 86.994+1.25 87.234+1.25 92.39+1.05 93.56+1.09
50% 69.87+£2.09 75.11+1.10 89.08+1.38 89.34+1.02 89.354+1.41 93.79+1.11 94.60+1.04
60% 71.4942.04 81.154+1.11 90.074+1.53 90.964+1.32 91.60+1.63 94.79+1.02 95.47+1.34

independent runs for each algorithm. The mean accuracy as well as the standard
deviation of the performance are reported.

From the experimental results, we can observe that: 1) The LRR based meth-
ods, both LRR and SPLRR, perform consistently well on three data sets, which
suggests that the LRR induced affinity matrix is efficient for semi-supervised
learning. Generally, LNP, L1-Graph and SPG have similar performances while
the baseline KNN graph has the lowest accuracy. 2) SPLRR graph consistently
achieves the lowest classification error rates over other graphs even with low
labeling percentages which can be observed from results on ORL and Extended
Yale B data sets. When there are only 10% labeled samples, SPLRR can still
obtain very high accuracies. This means the structure information of data set,
which should be preserved in transformation process, is important when building
an informative graph for semi-supervised learning.

6 Conclusion

In this paper, we have proposed a new graph construction model for semi-
supervised face recognition, called structural preserving low-rank representation
(SPLRR). SPLRR constructs the graph with preserving the structure of data
set, which enforces the local affinity property to be preserved without distort-
ing of the distant repulsion property. As a result, the proposed model derives
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a informative graph and shows the best performance in the comparison with
state-of-the-art methods for semi-supervised face recognition.
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