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a b s t r a c t

Extreme learning machine (ELM) uses a non-iterative method to train single-hidden-layer feed-forward
networks (SLFNs), which has been proven to be an efficient and effective learning model for both
classification and regression. The main advantage of ELM lies in that the input weights as well as the
hidden layer biases can be randomly generated, which contributes to the analytical solution of output
weights. In this paper, we propose a discriminative manifold ELM (DMELM) by simultaneously
considering the discriminative information and geometric structure of data; specifically, we exploit
the discriminative information in the local neighborhood around each data point. To this end, a graph
regularizer based on a newly designed graph Laplacian to characterize both properties is formulated and
incorporated into the ELM objective. In DMELM, the output weights can also be obtained in analytical
form. Extensive experiments are conducted on image and EEG signal classification to evaluate the
effectiveness of DMELM. The results show that DMELM consistently achieves better performance than
original ELM and yields promising results in comparison with several state-of-the-art algorithms, which
suggests that both the discriminative as well as manifold information are beneficial to classification.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

SLFNs have been extensively studied during the past several
decades. The most popular algorithm used for training SLFNs is the
back-propagation algorithm [1], which adopts the gradient des-
cent methods to optimize the weights in neural networks. How-
ever, the gradient-based methods cannot guarantee the global
optima and they are often time-consuming due to the iterative
process in weight tuning.

As an alternate, ELM was proposed by Huang et al. [2,3] as a
new paradigm to train SLFNs in which only the output weights
between the hidden layer and output layer need to be optimized.
The main difference between ELM and existing approaches is that
the input weights and biases of the hidden neurons in ELM can be
randomly generated. The original ELM adopts the least square loss
to measure the prediction error, which causes that the output
weights can be solved analytically. Therefore, ELM can attain much
faster learning speed than gradient-based methods. The universal
approximation capacity is also maintained by ELM with fixed

hidden neurons and tunable output weights [4,5]. ELM provides us
a unified model for binary classification, multiclass classification
and regression [6], which can achieve comparable or even better
prediction error than support vector machine (SVM) [6,7]. ELM has
many similarities as well as several differences with SVM, which
were reviewed in detail by [8–10].

With the advance of ELM research, much efforts have been made
on it from both theoretical and application perspectives. Inspired by
the great success of deep learning models, Kasun et al. introduced a
building block, ELM autoencoder (ELM-AE), to represent features
based on singular values [11]. Several ELM-AEs can be stacked
together to form a deep architecture, namely multilayer neural
network. The ELM with elastic net regularization [12] was put into
EEG-based drivers' vigilance estimation. Wang et al. proposed a
parallelized ELM ensemble framework based on the min–max
modular network [13], which has great capacity to process big and
imbalanced data [14]. To emphasize the label consistency of training
examples, Peng et al. presented the discriminative graph regularized
ELM (GELM) [15], which enforces the ELM network outputs of
training samples from the same class to be similar. Though most of
the existing ELM variants focused on supervised learning tasks, Huang
and colleagues extended ELM into semi-supervised and unsupervised
learning based on the manifold regularization [16], which greatly
expands the applicability of ELM. Various improvements have been
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applied to the original ELM, rendering it more effective or suitable for
specific applications such as sequential online learning [17,7,18,19],
security assessment in power systems [20], no-reference image
quality assessment [21], remote sensing image classification [22],
medical related applications [23–25], and data privacy [26]. ELM has
been implemented by parallel techniques [27,28]. The hardware
technique-based implementation [29] makes ELM efficiently deal
with large data sets and real time reasoning. Detailed review on
ELM can be found in [30,31].

Though ELMs have become increasingly popular in diverse
fields, the objective of ELMs in least square form mainly pays
attention to the discriminative information of data. Recently,
various researchers [32–34] have considered the case when the
data is sampled from a probability distribution that has support on
or near to a submanifold of the ambient space. Here, a d-dimen-
sional submanifold of an Euclidean space Rm is a subset M�Rm

which locally looks like a flat d-dimensional Euclidean space [35]. In
order to detect the underlying manifold structure, various manifold
learning algorithms have been proposed such as locally linear
embedding [32], ISOMAP [33], Laplacian eigenmap [34] and local
tangent space alignment [36]. One of the key ideas in manifold
learning is the so-called locally invariant idea [37], i.e., the nearby
points are likely to have similar transformed representations.

The earlier research on manifold learning mainly focused on
nonlinear dimensionality reduction. In recent studies, manifold
assumption or locally invariant idea was extensively applied to
some popular learning models such as non-negative matrix
factorization [38–40], concept factorization [41], sparse coding
[42], low-rank representation [43], and Gaussian mixture model
[44]. All these studies demonstrated that learning performance
can be significantly enhanced if the geometric structure of data is
exploited and the local invariance is considered.

In this paper, we propose to improve the performance of ELM
by emphasizing both discriminative information and geometric
structure of data. Accordingly, a discriminative manifold extreme
learning machine is formulated, which can exploit the discrimi-
native information in the neighborhood around each data point.
Different from the existing several linear models which employed
the maximum margin criterion [45] and local manifold informa-
tion [40], the proposed DMELM has two different characteristics:
(1) random feature mapping from input layer to hidden layer and
(2) the output weights can be more efficiently obtained by solving
a regularized least square problem. As pointed by [16], generating
feature mapping randomly enables ELM the capacity of nonlinear
feature learning and alleviates the risk of overfitting.

The remainder of this paper is organized as follows. In Section 2,
we briefly review the ordinary ELM and the discriminative graph
regularized ELM. The model formulation of DMELM as well as some
discussions on it are introduced in Section 3. Experiments to show the
effectiveness of DMELM on image and EEG signal classification are
presented in Section 4. Concluding remarks are given in Section 5.

2. Preliminaries

2.1. Extreme learning machine

ELM was originally proposed for training SLFNs and was then
extended for training the generalized SLFNs where the hidden
layer need not be neuron alike. Considering the supervised
learning task, we are provided N training samples fxi; tigi ¼ 1;…;N

from C classes, where each sample and its corresponding network
target vector are respectively as xi ¼ ðxi1; xi2;…; xiDÞT and
ti ¼ ðti1; ti2;…; tiC Þ. In ELM, the network input weights WARL�D

and the hidden layer biases bARL are randomly generated.
Assuming that the number of hidden neurons is L, the output

function of ELM for SLFNs is

f LðxÞ ¼
XL
i ¼ 1

βihiðxÞ ¼ hðxÞβ; ð1Þ

where β¼ ½β1;β2;…;βL�T ARL�C is the output weights between the
hidden layer and the output layer, hðxÞ ¼ ½h1ðxÞ;…;hLðxÞ� is the
output row vector of the hidden layer w.r.t. the input x. hðxÞ
actually maps the data from the D-dimensional input space to the
L-dimensional hidden layer feature space, that is, ELM feature
space H. Therefore, hðxÞ is indeed a feature mapping.

The ordinary ELM aims to minimize the objective

min
β

JHβ�TJ2; ð2Þ

where H is the hidden layer output matrix as

H¼

hðx1Þ
hðx2Þ
⋮

hðxNÞ

2
66664

3
77775¼

h1ðx1Þ h2ðx1Þ … hLðx1Þ
h1ðx2Þ h2ðx2Þ … hLðx2Þ

⋮ ⋮ ⋮ ⋮
h1ðxNÞ h2ðxNÞ … hLðxNÞ

2
66664

3
77775:

Therefore, the output weight matrix β can be estimated analyti-
cally by

β̂ ¼ arg min
β

JHβ�TJ22 ¼H†T; ð3Þ

where H† is the Moore–Penrose generalized inverse of H. If HTH is
nonsingular, H† ¼ ðHTHÞ�1HT ; or when HHT is nonsingular,
H† ¼HT ðHHT Þ�1 [6].

In order to improve the stability and generalization perfor-
mance of the ordinary ELM, a small positive value can be added to
the diagonal of HTH or HHT . In this method, the solution of
regularized ELM can be expressed as

β̂ ¼ HTHþ I
λ

� ��1

HTT: ð4Þ

The solution shown in (4) can be obtained by solving the following
optimization problem:

min
β

J RLEM ¼ 1
λ
JβJ2þ

XN
i ¼ 1

Jξi J
2
2;

s:t: ξi ¼ ti�hðxiÞβ; i¼ 1;…;N ð5Þ
where JβJ22 ¼

PL
j ¼ 1 Jβj J

2
2 is regarded as the regularization term

and Jβj J
2
2 denotes the ℓ2-norm of vector βj. Moreover, λ denotes

the regularization parameter to balance the influence of error term
and the model complexity. It is a general method to make the least
square regression stable, which is called “ridge regression” [46] in
statistics.

As a whole, training a SLFN based on ELM rule can be
summarized in Algorithm 1.

Algorithm 1. Extreme learning machine.

Input: training set X ¼ fxi; tigi ¼ 1;…;N , activation function gð�Þ,
number of hidden neurons L and regularization parameter λ;

Output: Output weight matrix β;
1: Randomly assign input weights W and hidden biases b;
2: Calculate the hidden layer output matrix H;

3: Calculate the output weight matrix β̂ by (3) or (4).

2.2. Discriminative graph regularized ELM

As the label consistency property of training samples is not
considered in ELM, GELM [15] was proposed to enforce the output
of training samples from the same class to be similar. In GELM,
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label information of training samples was used to construct an
adjacent graph and the graph regularizer was formulated to
constrain the output. This constraint is imposed on the ELM
objective. In GELM, the output weights can be solved analytically.

In GELM, supposing that we have a training set with N samples
from C classes in which the c-th class has Nc samples, then the
adjacent matrix W would be defined as

Wij ¼

1
Nc

if both hðxiÞ and hðxjÞ belong to

the c�th class;
0 otherwise;

8>>><
>>>:

where hðxiÞ ¼ ½h1ðxiÞ;…;hLðxiÞ�9hi and hðxjÞ ¼ ½h1ðxjÞ;…;hLðxjÞ�
9hj are hidden layer representations w.r.t. two input samples xi

and xj, respectively. If we define a diagonal matrix D with column
sums of W as its entries, the graph Laplacian can be calculated by
LGELM ¼D�W. Denote the outputs w.r.t. hi and hj respectively by
yi and yj. On the basis of label consistency that when hi and hj are
from the same class, yi and yj should share similar properties, we
minimize the following objective:

XN
i ¼ 1

XN
j ¼ 1

Jyi�yj J
2Wij ¼ TrðYTLGELMYÞ; ð6Þ

where Y¼Hβ is the output of ELM. Therefore, the objective
function of GELM is defined as follows:

min
β

JHβ�TJ22þλ1 Tr ðHβÞTLGELMðHβÞ
� �

þ 1
λ2

JβJ22; ð7Þ

where Tr ðHβÞTLGELMðHβÞ
� �

is the graph regularizer.

3. Discriminative manifold ELM

3.1. DMELM model formulation

The graph regularizer in GELM tried to preserve the label
consistency of training samples. Roughly, GELM assumes the
samples from each class as one manifold, which considers the
manifold structure of data on the class level. However, in real
world applications, taking face recognition as an example, face
images with similar variations, such as illumination or expression,
often have higher correlation than those from the same subject.
This means that mining the discriminative information in a local
area is beneficial for classification. Therefore, in this section we
will present a new regularizer into ELM to let its output layer
(1) preserve the geometric structure of data and (2) maximize the
margins between different classes to incorporate the discrimina-
tive information. Specifically, both properties can be attained by
exploiting the discriminative information in the local neighbor-
hood around each data point.

Before introducing the regularizer, we first review the general
manifold regularization method [47]. Generally, manifold regular-
ization exploits the geometry of the marginal distribution PX ,
which ensures that the solution is smooth w.r.t. both ambient
space and the marginal distribution PX , resulting in the following
objective:

min
f AHK

1
N

XN
i ¼ 1

ℓðxi; yi; f ðxiÞÞþγA J f J
2
K þγI J f J

2
I ; ð8Þ

where the regularizer J f J2K controls the model complexity,
J f J2I is the manifold regularizer to control the complexity
measured by the manifold geometry of the sample distribu-
tion, and ℓ is the loss function. In ELM, the specific form of

objective (8) becomes

min
β

JHβ�TJ22þλ1Rdmþ 1
λ2

JβJ22: ð9Þ

The Rdm in (9) is expected to reflect the local discriminative
structure of data. Then, in the output layer of discriminative
manifold ELM, the learned representation can well preserve
the neighboring relationship of samples from the same class
while separate the nearby samples from different classes far
from each other. As a result, DMELM can further maximize the
margins among samples from different classes in local neigh-
borhood around each data point.

Based on the spectral graph theory [48] and the general graph
embedding framework [49], the geometric structure of data can be
characterized by a graph GðV ; E;WÞ, where V is a set of vertices in
which each vertex represents a data point, EDV � V is a set of
edges connecting related vertices and W is an adjacency matrix
recording the pairwise weights between vertices. To depict local
geometric structure, G is usually a sparse graph which means that
W only gives the nearest neighbors information of each data point.
In our discriminative manifold formulation of ELM, two graphs,
within-class graph Gw and between-class graph Gb, are con-
structed in the ELM input layer because the discriminative as well
as manifold information of data is fully given in the original
data space.

Concretely, for each data point xi, we first divide its k nearest
neighbors into two non-overlapping subsets according to their
labels. Then, we can construct graphs Gw and Gb for xi as

Ww;ij ¼
1 if xjAN kðxiÞ or xiAN kðxjÞ

xi and xj are from the same class;
0 otherwise:

8><
>:

Wb;ij ¼
1 if xjAN kðxiÞ or xiAN kðxjÞ

xi and xj are from different classes;
0 otherwise:

8><
>:

where N kðxiÞ denotes the set of k nearest neighbors of xi.
Obviously, in DMELM output layer, we need to (1) enforce the
output representations of neighboring samples on Gw to stay as
close as possible and (2) enforce the output representations of
connected samples on Gb to stay as far as possible. Denote these
two objectives respectively by O1 and O2 and we can simply
define them as

O1 ¼
1
2

XN
i ¼ 1

XN
j ¼ 1

Ww;ij Jhiβ�hjβJ22; ð10Þ

and

O2 ¼
1
2

XN
i ¼ 1

XN
j ¼ 1

Wb;ij Jhiβ�hjβJ22; ð11Þ

where hi and hjAR1�L are two rows in H, corresponding to the
two hidden representations of samples xi and xj.

The compact forms of O1 and O2 can be reached by respectively
imposing linear transformations on (10) and (11). Therefore, we
have

O1 ¼
1
2

XN
i;j ¼ 1

Ww;ij Jhiβ�hjβJ22

¼ 1
2

XN
i;j ¼ 1

Ww;ijTr ðhiβ�hjβÞT ðhiβ�hjβÞ
� �

¼ Tr
XN
i ¼ 1

ðhiβÞT
X
j

Ww;ij

2
4

3
5hiβ�

XN
i;j ¼ 1

ðhiβÞTWw;ijhjβ

0
@

1
A
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¼ Tr ðHβÞT ðDw�WwÞðHβÞ
� �

¼ Tr ðHβÞTLwðHβÞ
� �

;

where Dw is a diagonal degree matrix with entries Dw;ii ¼
P

jWw;ij

or Dw;ii ¼
P

iWw;ij since Ww is symmetric, Lw ¼Dw�Ww is the
Laplacian matrix of graph Gw. Similarly, we have

O2 ¼ Tr ðHβÞTLbðHβÞ
� �

;

where Lb ¼Db�Wb is the Laplacian matrix of graph Gb. Similar to
Dw, Db is also a degree matrix which has each diagonal entry
defined as Db;ii ¼

P
jWb;ij or Db;ii ¼

P
iWb;ij since Wb is symmetric.

Define F9Hβ, simultaneously minimizing O1 and maximizing
O2 lead to the following problem:

min
F

TrðFTLwFÞ
TrðFTLbFÞ

: ð12Þ

Based on the connection between Rayleigh quotient and eigen-
value decomposition, the above objective can be optimized by
solving the following eigenvalue decomposition problem:

Lwv¼ ηLbv; ð13Þ
which is equivalent to

LwL
�1=2
b u¼ ηu ð14Þ

by setting u¼ L�1=2
b v. Therefore, we have the transformed form as

L�1=2
b LwL

�1=2
b u¼ ηu; ð15Þ

which is corresponding to the objective as

min
F

Tr FTL�1=2
b LwL

�1=2
b F

� �
: ð16Þ

Accordingly, the Rdm in (9) has the following expression:

Rdm ¼ Tr ðHβÞT ðL�1=2
b ÞTLwðL�1=2

b ÞðHβÞ
� �

: ð17Þ

We add a tiny perturbation to the diagonal of the graph Laplacian
matrix Lb, i.e., ~Lb ¼ LbþζI, to make it always invertible. In all
experiments, we empirically set ζ as a fixed small value
10�6TrðLbÞ. In the rest of this paper, we still use the notation Lb
other than the perturbed matrix ~Lb for simplicity.

We define a unified graph Laplacian matrix as LDMELM9
ðL�1=2

b ÞTLwðL�1=2
b Þ for graphs Gw and Gb instead of individually

using two matrices Lw and Lb following the lines in [40]. As a
result, we can formulate the objective of DMELM as

min
β

JHβ�TJ22þλ1 Tr ðHβÞTLDMELMðHβÞ
� �

þ 1
λ2

JβJ22: ð18Þ

We can easily find that the objective of DMELM shares the
same form as that of GELM [15]. However, the difference between
them is obvious; the Laplacian matrix LDMELM characterizes mani-
fold as well as discriminative information of data, which contains
more information than LGELM in GELM. Objective (18) is a quadratic
form w.r.t. β. By setting its derivative w.r.t. β to be zero, we can
obtain the estimated output weight matrix of DMELM as

β̂ ¼ HTHþλ1HTLDMELMHþ 1
λ2
I

� ��1

HTT: ð19Þ

3.2. Discussion

We give some discussions on the connection between DMELM
and related studies.

Yan and colleagues [49] proposed a general framework for
dimensionality reduction based on graph embedding in which the
statistical or geometric properties of a data set were characterized
by constructing different graphs. This work is closely related to

DMELM in constructing the two different types of graphs Gw and
Gb. However, there are several differences between them. Firstly,
Yan's work directly operates samples in the raw feature space; in
DMELM, we use the representation in ELM feature space, whose
rationality has been extensively studied in [50–52]. Secondly, Yan's
work mainly works on dimensionality reduction which can be
seen as feature transformation. In DMELM, we aim to let its output
layer (1) preserve the geometric structure of data and (2) maximize
the margins between different classes to incorporate the discri-
minative information.

The motivation of the GELM [15] model aims to preserve the
local consistency of data; however, such geometric property is
hard to explore after the nonlinear mapping of ELM hidden layer.
Therefore, GELM tried to preserve the label consistency of training
samples. Generally, GELM assumes the samples from each class as
one manifold, which considers the manifold structure of data on
class level. In DMELM, we try to exploit the discriminative
information in local neighborhood around each data point, which
explicitly considers the local manifold structure and discriminative
information of data. We can view DMELM as a refinement of GELM
by emphasizing the local geometric property.

4. Experimental studies

In this section, we evaluate the performance of DMELM on two
types of classification tasks, image classification and EEG-based
emotion recognition. In both experiments, the activation function
of the hidden layer is the ‘sigmoid’ function. To help reproducing
the experimental results described in this work, the source code
will be available from http://bcmi.sjtu.edu.cn/�pengyong.

4.1. Image classification

Four representative data sets, ORL, PIE, COIL20 and USPS, are
used in image classification. The properties of these four data sets
are briefly described below (see also Table 1).

4.1.1. Data sets

� ORL1: There are 40 subjects and each subject has 10 different
face images in ORL database. For some subjects, the images
were taken at different times, varying the lighting, facial
expressions (open/closed eyes, smiling/not smiling) and facial
details (glasses/no glasses). All the images were taken against a
dark homogeneous background with the subjects in an upright,
frontal position (with tolerance for some side movement). Each
image was normalized to 32�32 pixel array and reshaped to a
long vector.

� PIE2: It contains 41,368 face images of 68 subjects, each subject
under 13 different poses, 43 different illumination conditions
and with 4 different expressions. We choose the five near

Table 1
Statistics of the four data sets.

Data set Size (N) Dimensionality (D) #Class (C)

ORL 400 1024 40
PIE 11 544 1024 68
COIL20 1440 1024 20
USPS 9298 256 10

1 http://www.uk.research.att.com/facedatabase.html
2 http://www.ri.cmu.edu/projects/project_418.html
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Fig. 1. Sample images of ORL, PIE, COIL20 and USPS. (a) Sample images of 2 subjects in ORL. (b) Sample images of 2 subjects in PIE. (c) Sample images of 20 objects in COIL20.
(d) Sample images of 10 digits in USPS.

Table 2
Results (%) of ELM variants on ORL.

ORL 2 Train 3 Train 4 Train 5 Train

ELM 79.69 84.64 89.17 94.50
RELM 83.44 87.86 95.83 96.50
GELM 87.19 90.71 96.25 96.50
DMELM 89.38 91.79 97.50 97.50

Table 3
Results (%) of ELM variants on PIE.

PIE 5 Train 10 Train 15 Train 20 Train

ELM 69.27 78.93 83.90 87.49
RELM 73.85 86.32 90.72 92.82
GELM 78.10 88.47 92.11 93.83
DMELM 79.19 88.90 92.41 94.01

Table 4
Results (%) of ELM variants on COIL20.

COIL20 2 Train 4 Train 6 Train 8 Train

ELM 71.50 84.34 87.05 89.77
RELM 72.43 84.71 87.12 89.84
GELM 73.64 85.29 87.65 91.33
DMELM 75.29 87.35 89.77 92.89

Table 5
Results (%) of ELM variants on USPS.

USPS 3 Train 5 Train 10 Train 15 Train

ELM 71.47 81.08 84.22 88.15
RELM 72.31 82.29 84.95 88.61
GELM 72.32 82.58 85.01 88.87
DMELM 73.94 84.22 86.82 89.60
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frontal poses (C05, C07, C09, C27, C29) and use all 11,544
images under different illuminations and expressions where
each person has about 170 images except for a few bad images.

� COIL203: It is a data set of gray-scale images of 20 objects. The
objects were placed on a motorized turntable against a back-
ground. The turntable was rotated through 3601 to vary the
object poses with respect to a fixed camera. Images of the
objects were taken at pose intervals of 51, which corresponds to
72 images per object. For experiments, we have resized each of
the original 1440 images down to 32�32 pixels.

� USPS: It consists of gray-scale handwritten digit images. We use
a popular subset which contains 9298 handwritten digit
images in total provided by Deng Cai.4 The size of each image
is 16�16 pixels with 256 gray levels.

Fig. 1 shows some sample images from the above data sets.
In this experiment, we compare DMELM with ordinary ELM,

the ℓ2-norm regularized ELM (RELM) and discriminative graph

regularized ELM. Each image data set is partitioned into the
different gallery and probe sets, and for these data sets we
randomly select lORL ¼ f2;3;4;5g, lPIE ¼ f5;10;15;20g, lCOIL20 ¼
f2;4;6;8g and lUSPS ¼ f3;5;10;15g samples per class for training
and the rest for testing. Though the training and testing sets are
randomly chosen, they are kept the same for all algorithms to keep
fair comparison. Before classification, samples are projected to
Ntr�1 (Ntr is the number of training examples) dimensional PCA
subspace for all ELMs. The setting of specific parameters in
DMELM will be described in Section 4.1.3.

4.1.2. Experimental results
Tables 2, 3, 4, and 5 show the experimental results of different

ELMs on these four data sets, respectively. It can be found that
DMELM consistently achieves the best performance over all the
data sets.

From the results, we can see that all ELMs can be effectively
trained when given more training samples and thus the accuracy
differences among them are minor. However, when given a small
amount of training samples, DMELM can obtain better general-
ization performance than the other ELMs. For example, in the ORL

Fig. 2. Sample images from Extended Yale B and AR. (a) Sample images of 2 subjects in Extended Yale B. (b) Sample images of 2 subjects in AR.

Table 6
The classification results (%) of different classification methods on Extended Yale B and AR.

Extended Yale B #dim¼84 #dim¼150 #dim¼300

NN 85.8 90.0 91.6
LRC 94.5 95.1 95.9
SVM 94.9 96.4 97.0
SRC 95.5 96.8 97.9
CRC_RLS 95.0 96.3 97.9
GELM 95.6 97.8 98.8
DMELM 96.0 98.1 99.2

AR #dim¼54 #dim¼120 #dim¼300

NN 68.0 70.1 71.3
LRC 71.0 75.4 76.0
SVM 69.4 74.5 75.4
SRC 83.3 89.5 93.3
CRC_RLS 80.5 90.0 93.7
GELM 83.0 90.3 93.6
DMELM 85.7 91.3 94.1

The accuracies of the first five methods are from [53].

3 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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classification experiment, DMELM and ELM have significant dif-
ference in accuracy (10%), which is caused by that DMELM
explores more side information from the data set such as the
discriminative and manifold structure than ELM.

These experimental results reveal a number of interesting points:

(1) The stability of learning algorithm is important. The ordinary
ELM may encounter the singularity problem which can be
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Fig. 3. Performance of ELM to different number of hidden neurons. (a) ORL, (b) PIE, (c) COIL20, (d) USPS.
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Fig. 6. Movie clips to evoke different types of emotional states. (from [55]).
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avoided by introducing the ℓ2-norm regularization. The ℓ2-
norm constraint can shrink values of output weight matrix,
which yields better generalization performance. Thus, the
performance of RELM is better than that of ELM.

(2) The label consistency is important besides the training error.
Actually, the graph regularization in GELM depicts the mani-
fold information on class level. By enforcing the label consis-
tency property that samples from the same class should have
similar outputs, GELM obtains obvious accuracy improvement
w.r.t. ELM and RELM.

(3) Both discriminative information and manifold structure of
data are important for classification. Our experimental results
demonstrated that the unified graph Laplacian defined in
DMELM which simultaneously considers the discriminative
and manifold information is much more effective than that in
GELM. The learned output weights can obtain the strong
discriminative ability and vary smoothly along the data mani-
fold to some extent.

Further, we show the effectiveness of DMELM by comparing it
with some state-of-the-art classification methods by following the
pipeline in [15]. For fair comparison, the experimental paradigm is
the same as that in [53] and the data sets are Extended Yale B and
AR face data sets. These classification methods widely used in face
recognition are nearest neighbor classifier (NN), linear regression
classifier (LRC), support vector machine (SVM), sparse
representation-based classification (SRC) [54], and collaborative
representation-based regularized least square (CRC_RLS) [53]. The
characteristics of these two data sets are stated as follows:

� Extended Yale B5: The Extended Yale B contains 2414 frontal
face images of 38 subjects. We used the cropped and normal-
ized face images of size 54�48, which were taken under
varying illumination conditions. We randomly split the data
set into two halves. One half, which contains 32 images for
each subject, was used as training set, and the other half was
used for testing.

� AR6: It contains 100 subjects and each subject has 26 face
images taken in two sessions. For each session, there are 13 face
images. In our experiment, a subset (with only illumination and
expression changes) was chosen. For each subject, 7 images
from session 1 were used for training, with the other 7 images
from session 2 for testing. The images were cropped to 60�43.

Some sample images from these two data sets are shown in Fig. 2.
Table 6 demonstrates the results versus feature dimensions by

NN, LRC, SVM, SRC, CRC_RLS and DMELM on the Extended Yale B
and AR data sets, respectively. It can be seen that regardless of
different dimension settings, DMELM always results in the best
performance over these state-of-the-art classification methods.

Even the accuracy is nearly saturated, DMELM still can obtain the
superiority to GELM. Especially for result when dimension is 54 on
AR, DMELM gets approximately 3% improvement. This shows that
by leveraging the power of exploiting the two properties, the
learned ELM output mapping can yield better generalization
performance.

4.1.3. Parameter sensitivity analysis
There are five parameters in the proposed DMELM model: the

number of hidden neurons L, the parameters λ1 for discriminative
manifold regularizer, λ2 for ℓ2-norm regularizer, parameters k1
and k2 for the sizes of within-class and between-class graphs. In
this section, we analyze the sensitivity of DMELM w.r.t. these
parameters.

Based on the results in [6], the performance of ELM is not very
sensitive to the number of hidden neurons, which is still an open
problem in ELM research. We also conduct experiments on the
four data sets used in Section 4.1.1 and Fig. 3 shows the sensitivity
of ELM versus different number of hidden neurons. We can easily
find that the performance of ELM is very stable w.r.t. different
number of hidden neurons (only slight fluctuation when the size
of training set is pretty small). Therefore, similar to [15], we simply
set the number of hidden neurons a near optimal value as 5�
numDim for ORL, PIE, COIL20, Extended Yale B and AR and 10�
numDim for USPS.

For the remaining four parameters, we divide them into two
groups based on their different properties in DMELM: λ1 and λ2
are in group 1, k1 and k2 are in group 2. We evaluate the
sensitivity of DMELM w.r.t. these two groups on PIE data set. We
vary λ1 and λ2 in candidates f2�10;…;210g, k1 in candidates
f1;2;…; lPIE�1g and k2 in f5;15;…;95g.

Fig. 4 shows the sensitivity of DMELM w.r.t. different combina-
tions of λ1 and λ2 with different number of training samples per
subject. As we can see, for each setting of training and testing data,
there is a large flat area near the optimal value on the landscape,
which means DMELM is insensitive to the combination of para-
meters λ1 and λ2. For example, DMELM consistently achieves good
performance for λ1 ¼ f24;25;…;210g and λ2 ¼ f23;24;…;210g when
lPIE ¼ 20 and we can select parameter combination (λ1, λ2) from
these candidate values. Generally, large λ1 values are encouraged
to emphasize the local discriminative information of data.

Fig. 5 shows the sensitivity of DMELM w.r.t. different combina-
tions of k1 and k2 with different number of training samples per
subject. It is obvious that the performance of DMELM is very stable
w.r.t. different combinations of k1; k2Þ.

Thus, we fixed (λ1, λ2) as (100, 104), k1¼minðl;3Þ and k2¼ 20
for all the image data sets in previous experiments.

4.2. EEG-based emotion recognition

EEG signals, which record the brain neural activities along the
scalp, can provide researchers a reliable channel to investigate
human emotional states. In this experiment, the proposed DMELM

Hint of 
start 

15 sec 

Movie
Clip Rest 

10 sec 4 min 

Session 1 Session 2 Session 3 … Session N 

Fig. 7. Procedure of stimuli playing.

5 http://vision.ucsd.edu/�/ExtYaleDatabase/ExtYaleB.html
6 http://www2.ece.ohio-state.edu/aleix/ARdatabase.html
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Table 7
EEG-based emotion recognition results (%) of different models on six subjects.

Subject A Session 1 Session 2 Session 3

β γ Total β γ Total β γ Total

SVM 84.10 81.50 82.59 65.46 67.27 75.65 57.15 59.54 59.90
ELM 80.71 79.12 81.50 63.15 63.29 65.90 59.39 58.09 57.37
RELM 84.39 82.23 83.96 66.47 69.51 70.16 64.96 61.56 61.78
GELM 85.19 86.64 84.39 66.18 75.07 70.09 66.26 61.92 63.95
DMELM 85.19 88.01 85.26 68.71 75.87 72.40 68.93 65.32 65.39

Subject B Session 1 Session 2 Session 3

β γ Total β γ Total β γ Total

SVM 90.17 89.52 88.15 69.44 70.66 65.82 78.97 77.24 71.82
ELM 84.61 86.63 82.59 68.42 65.25 65.39 80.20 72.11 69.94
RELM 88.08 90.17 88.15 69.73 67.77 68.28 81.65 77.46 73.92
GELM 88.08 90.90 89.45 69.65 69.22 69.15 82.30 77.75 79.48
DMELM 89.96 91.19 92.63 71.89 69.73 72.47 84.39 79.55 79.33

Subject C Session 1 Session 2 Session 3

β γ Total β γ Total β γ Total

SVM 77.24 76.37 76.52 90.03 89.45 91.11 58.60 59.18 61.20
ELM 74.93 71.46 71.97 86.56 82.73 81.79 51.81 57.15 55.35
RELM 77.67 76.81 79.34 90.46 90.32 91.04 52.53 58.82 59.54
GELM 79.19 80.92 82.37 90.75 89.96 92.99 54.62 58.45 67.85
DMELM 78.25 77.82 83.53 92.34 90.46 93.14 59.61 60.26 60.48

Subject D Session 1 Session 2 Session 3

β γ Total β γ Total β γ Total

SVM 92.99 90.68 96.68 88.09 91.98 91.04 97.18 96.32 97.25
ELM 92.34 91.91 89.67 86.78 90.03 89.02 87.64 87.93 92.70
RELM 95.30 94.08 96.60 92.70 93.35 95.88 95.16 95.59 97.11
GELM 96.89 96.60 96.68 95.30 96.89 96.89 96.82 95.74 96.53
DMELM 97.18 96.89 97.11 95.74 97.25 96.82 96.82 96.32 97.54

Subject E Session 1 Session 2 Session 3

β γ Total β γ Total β γ Total

SVM 67.12 76.89 70.01 53.90 70.66 60.19 63.08 63.29 73.99
ELM 67.05 75.79 68.14 57.95 68.35 61.85 61.99 61.85 66.84
RELM 72.54 78.18 71.39 72.25 72.54 73.05 70.52 64.02 70.09
GELM 74.64 80.35 73.19 74.35 73.92 73.19 73.77 66.98 74.57
DMELM 76.37 81.36 75.94 75.07 76.66 75.43 75.65 68.14 71.10

Y.Peng,B.-L.Lu
/
N
eurocom

puting
174

(2016)
265

–277
274



will be evaluated on EEG-based emotion recognition that was
compared with linear kernelized SVM, ELM, RELM and GELM.

4.2.1. Data sets
The EEG data consists of three types of emotional states

(positive, neutral and negative), which were previously evoked
by watching corresponding types of movie clips. The stimuli are
popular movies in Chinese, which are Just Another Pandora's Box,
Lost in Thailand, World Heritage in China, After Shock and Back to
1942. Posters of these movies are shown in Fig. 6.

Three men and three women aged between 20 and 27 were
involved in the EEG collection experiment. Each subject had three
sessions experiment, with about one week interval. There are 15
movie clips in each session and 5 clips for each state. Each movie
clip lasts about 4 min to show a vivid and relatively complete story.

A 62-channel electrode cap according to the extended interna-
tional 10–20 system and ESI NeuroScan system were used to
record the EEG data with sampling rate 1000 Hz. Movie clips were
played with a 10 s rest and 15 s hint between consecutive clips.
During the rest, subjects were asked to fill a form as feedback to
show whether the emotional states were successfully evoked.
Fig. 7 is the experimental procedure.

The differential entropy (DE) [56], which is defined as

hðXÞ ¼ �
Z
X
f ðxÞlog ðf ðxÞÞ dx

¼
Z þ1

�1

�1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�ðx�μÞ2=2σ2
log

1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�ðx�μÞ2=2σ2
� �

dx

¼ 1
2
log ð2πeσ2Þ;

was extracted on the five frequency bands of EEG. They are δ(1–
3 Hz), θ(4–7 Hz), α(8–13 Hz), β(14–30 Hz) and γ(31–50 Hz). Short-
time Fourier transform with 1 s non-overlapping Hanning window
was used to calculate the average DE features of each channel on
these bands. Each band has 62 channels and thus 310 dimensional
features were obtained for each sample. Since the effective
experimental time lasted for 57 min, we finally got 3400 samples
for each session. Linear dynamic system was used to remove the
rapid changes of EEG features and get more reliable samples [57].
We chose 2000 samples as training set and the remainder in the
same session as test set.

4.2.2. Experimental results
According to our previous research [55,58], β and γ band

features are more relevant to the emotion than the others. There-
fore, we only report the results of different algorithms on β, γ and
all frequency bands features to avoid a too large table. The number
of hidden neurons in ELMs is set as three times of input dimen-
sion. The combination of (k1; k2) in DMELM is (20,20). The other
involved parameters (C in SVM, λ in RELM, (λ1; λ2) in GELM and
DMELM) are searched from f2�10;2�9;…;210g and then the best
results are reported. Table 7 shows the EEG-based emotion
recognition results of different algorithms on the six subjects.
The best results across different algorithms with each frequency
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Average results (%) of different algorithms on EEG-based emotion recognition.

Freq. band Mean7Std

β γ Total

SVM 75.24714.00 76.84712.76 76.62713.12
ELM 72.96712.61 73.51712.02 72.71712.23
RELM 77.79712.79 78.17713.02 78.10712.72
GELM 79.07712.94 79.93713.24 80.25711.92
DMELM 80.59712.17 80.82712.66 81.01712.24
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band feature are shown in boldface. Obviously, DMELM consis-
tently performs better the other algorithms in most cases. The
average results of different algorithms are presented in Table 8.
When using all frequency band features, the average accuracy
across all subjects of DMELM (81.01%) gets nearly 1% improvement
w.r.t. GELM (80.25%), which suggests the effectiveness of exploit-
ing local discriminative information. As an effective and efficient
algorithm, RELM (78.10%) obtains 1.5% improvement w.r.t. SVM
(76.62%) but with much less time cost. The performance of
ordinary ELM is inferior to that of SVM which may be caused by
the singularity problem in calculating the matrix inverse. Similar
results can be found when using β and γ frequency bands features.

Fig. 8 shows the average confusion matrices of the five algo-
rithms based on 310 DE features. We can see that the positive and
neutral states are much easier to be recognized while the negative
state is difficult to estimate. The DMELM can respectively obtain
5% and 7% accuracy improvements when estimating the negative
state w.r.t. GELM and SVM.

5. Conclusion

In this paper, we have proposed a discriminative manifold
extreme learning machine, termed DMELM, which simultaneously
takes the discriminative information and manifold structure of
data into account. We constructed the within-class graph and
between-class graph to depict the discriminative information in
local neighborhood around each data point. DMELM was formu-
lated by incorporating a graph regularizer into ELM objective,
which is based on a unified graph Laplacian matrix of both graphs.
Our experimental results demonstrated that the proposed DMELM
achieves excellent performance in both image classification and
EEG-based emotion recognition.

Most existing ELM models are focusing on supervised learning
scenarios while little effort was made to extend ELM into unsupervised
learning field. Thus, for our future work, it is of great significance to put
ELM into learning applications with only unlabeled data.
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