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Abstract— This paper presents a new emotion recognition
method which combines electroencephalograph (EEG) signals
and pupillary response collected from eye tracker. We select
15 emotional film clips of 3 categories (positive, neutral and
negative). The EEG signals and eye tracking data of five
participants are recorded, simultaneously, while watching these
videos. We extract emotion-relevant features from EEG signals
and eye tracing data of 12 experiments and build a fusion
model to improve the performance of emotion recognition. The
best average accuracies based on EEG signals and eye tracking
data are 71.77% and 58.90%, respectively. We also achieve
average accuracies of 73.59% and 72.98% for feature level
fusion strategy and decision level fusion strategy, respectively.
These results show that both feature level fusion and decision
level fusion combining EEG signals and eye tracking data can
improve the performance of emotion recognition model.

I. INTRODUCTION

In the past few decades, an increasing number of research-
es on emotion recognition have been done since emotion
recognition has great significance and wide applications,
especially its crucial role in human-machine interaction sys-
tems. Possible applications of emotion recognition cover a
vast scope, whether at a professional, a personal or a social
level. For driving safety, we can design an affective user
interface to monitor drivers’ emotional and cognitive states
and response to drivers to regulate their emotions.

In the practice of emotion recognition, various signals
have been adopted, which can be roughly classified into two
categories: non-physiological and physiological signals. The
early works are more based on non-physiological signals,
such as text, facial expression, speech and gesture [1].
Recently, more researches are done based on physiological
signals since the physiological signals, such as electroen-
cephalography (EEG), pupillary diameter (PD), electromyo-
gram (EMG), and electrocardiogram (ECG), seem to be more
effective and reliable. Among them, electroencephalograph
(EEG) which record brain activities in central nervous sys-
tem, has been proved providing informative characteristics in
responses to the emotional states [2]. Numerous researchers
studied on emotion recognition using EEG [3] [4] [5]. Fur-
thermore, previous studies [6] [7] have shown that pupil size
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discriminates during and after different kinds of emotional
stimuli, which implies that the measurement of pupil size
variation may be a potentially useful input signal. Some
early attempts [8] of adopting pupillary response in emotion
recognition have also arisen recently. Soleymani et al. [2]
presented a user-independent emotion recognition method
using EEG, pupillary response and gaze distance, which
achieved the best accuracies of 68.5 percent for three labels
of valence and 76.4 percent for three labels of arousal.

Emotion representations studied in affective computing do
not always match emotions defined by psychologists (e.g.
Ekman’s six basic emotions) and need more quantitative
information to describe. Therefore, the aim of our study is
how to model and recognize emotions using various sensor
technologies and physiological signals. In this paper, we
investigated the relation between subjects EEG and pupillary
response in response to multimedia and three categories
of emotions, namely, positive, neutral and negative. Then
we develop a multimodal method for emotion recognition
where both EEG and pupillary responses are used together
as input signals. From the experiment results, we show that
the performance of the fusion model combining EEG and
eye tracking features outperform previous methods based on
unimodal signals.

II. EXPERIMENTS

A. Stimuli

In our experiment, 15 emotional film clips were selected
to elicit three emotions: positive, neutral and negative. Each
emotion had 5 video clips for a session and each clip
lasted for around 4 minutes. In order to elicit the emotions
of Chinese subjects efficiently, we chose these video clips
from Chinese movies which were representative and popular,
including Tangshan Earthquake, Just Another Pandora’s Box,
Lost in Thailand, Flirting Scholar and World Heritage In
China.

B. Subjects

In our experiment, there were total 5 subjects participated
in the emotion experiments (two females and three males
whose ages range from 22-24). All of them were students
from Shanghai Jiao Tong University, who had normal hearing
and normal vision and were right-handed. They all were
informed the destination of this experiment before the experi-
ment started and in good spirits when performing experiment.
Most participants performed the experiments three times and
some participants for twice with an interval time of one week
or longer.
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C. Procedure

The experiments were arranged in the morning or early
afternoon. Before experiments, subjects were asked to fill in
a form containing basic information and sleep quality. The
EEG signals were recorded using an ESI NeuroScan System
at a sampling rate of 1000 Hz from a 62-channel electrode
cap according to the international 10-20 system. The eye
tracking data was recorded using SMI eye track glasses with
30 Hz of temporal resolution to collect pupillary information
including pupil diameter. We also recorded the frontal face
videos in the experiments. Fig. 1 shows the protocol of the
EEG experiment. There are totally fifteen sessions in one
experiment. The movie clips are played with a fixed order.
There is a 5s hint before each clip and 45s for self-assessment
and 15s for rest after each clip in one session. For self-
assessment, participants were told to report their emotional
reactions to each film clip by completing the questionnaire
for the feedback.

Session K-2 Session K-1 Session K Session K+1 Session K+2

Hint of 
start

Movie 
clip

Self-

5 sec 4 min 45 sec

Rest

sec15 
assessment

Fig. 1. The protocol of the experiment

III. METHODS
The framework of our experiment processing is shown in

Fig. 2. For EEG data, we extracted different features from
five frequency bands. For eye tracking data, we extracted
mean values, standard deviations and spectral powers of
frequency bands from pupil responses. We applied fusion
methods of feature level fusion and decision level fusion
combining features from EEG signals and eye tracking data.

Fig. 2. The framework of our experiment processing

A. Preprocessing

In order to filter the noise and remove the artifacts, the
EEG data was then processed with a bandpass filter between

0.5Hz to 70Hz. And in order to accelerate the computation,
raw EEG data were downsampled to 200Hz and segmented
into different trials.

B. Feature Extraction

1) EEG Signals: In order to transform the raw sequence
signals into frequency domain features, which are highly cor-
related with emotion relevant processing, we used short-time
fourier transform with a non-overlapped Hanning window of
4s. Four different features, power spectral density (PSD), dif-
ferential entropy (DE), differential asymmetry (DASM) and
rational asymmetry (RASM) were extracted and compared.

According to five frequency bands: delta (1-3Hz); theta
(4-7Hz); alpha (8-13Hz); beta (14-30Hz); gamma (31-50Hz),
we computed the traditional PSD features. Differential en-
tropy feature is defined as follows [9],
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where X submits the Gauss distribution N(µ, σ2), x is a
variable and π, and e are constant. According to [10], in
a certain band, DE is equivalent to the logarithmic power
spectral density for a fixed length EEG sequence. DASM
and RASM are defined as:

DASM = h(Xleft)− h(Xright) (2)

RASM = h(Xleft)/h(Xright) (3)

where Xleft and Xright are DE features of left-hemisphere
and right-hemisphere shown in Fig. 3. The electrodes of left-
hemisphere and right-hemisphere are shown in blue and red
color, respectively, and data from the middle eight electrodes
are not included for the asymmetry features.
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Fig. 3. The electrode distribution used in asymmetry features

2) Eye Tracking Data: In our experiment, pupil diameter
was chosen as the feature for emotion classification. Pupil di-
ameter has been discovered to change in different emotional
states [11]. However, the pupil diameter is highly dependent
on the luminance of the video clip. So it couldn’t be used for
emotion recognition directly. In this paper, we first builded
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a light reflex model to approximately remove the luminance
influences. The major changes of pupil diameter comes from
lighting. And we assumed that the pupil in response to the
lighting follows similar patterns in the experiments due to
the controlled light environment. Here, we used principal
component analysis (PCA) to build the light reflex model.

Suppose Y is the M × N matrix representing pupil
diameters to the same video clip from N subjects and M
samples. Then Y = A + B + C, where A is luminance
influences which is prominent, and B is emotional influences
which we want and C is the noises. We use principal
component analysis to decompose Y . We extract the first
principal component from PCA to approximate the pupil
response for the lighting changes during the experiments.
Let Yrest be the emotion relevant pupil response. We define
Yrest = Y −Y1. Then we extracte PSD and DE features from
four frequency band (0-0.2Hz; 0.2-0.4Hz; 0.4-0.6Hz; 0.6-
1Hz) [2] of the preprocessed pupil responses using short-time
fourier transform with a non-overlapped Hanning window of
4s.

C. Feature Smoothing
When recording EEG signals, noises are easily introduced

during the experiments. Here, we assume that the emotional
state is defined in a continuous space and emotional states
change slowly. In order to filter out noises and emotion
unrelevant features, we applied a moving average filter with
window length of five for eye tracking feature smoothing and
linear dynamic system (LDS) approaches for EEG feature
smoothing.

D. Classification
To evaluate the model, we divided data from the same

experiment into two parts, the first nine sessions as training
data and the rest six sessions for testing containing totally
more than 800 samples each experiment. In this study, we
employed support vector machine (SVM) as classifier. For
SVM, we employed linear kernel and searched the parameter
space to find the optimal value.

E. Multimodal Fusion
Signals from different modalities can be fused at both

the feature level and the decision level. Here, we applied
these two fusion strategies and evaluated their performance.
For feature level fusion, the feature vectors from different
approaches were concatenated to form a larger feature vector.
In our experiment, We selected differential entropy features
from EEG data and pupil response, and train the fusion
model combining EEG features and eye tracking features.

For decision level fusion, two classifiers were trained with
different features, respectively, and were fused to generate a
new classification using some principles or learning algo-
rithms. We applied two principles in decision level fusion in
our studies. One was called max strategy which selected the
higher probabilistic outputs of classifiers trained with a single
modality separately as final results. Another was called sum
strategy which summed up probabilities of same emotions
from different frequency bands and selected higher one.

IV. RESULTS

A. EEG Based Classification

Table I shows the performance of different kinds of
features on Delta, Theta, Alpha, Beta and Gamma frequency
bands. The features were smoothed by linear dynamic system
(LDS) and SVM was trained to classify the emotional
states (positive, neutral, and negative). For each experiment,
first nine sessions were used for training data and the rest
six sessions for testing. In Table I, ASM features are a
concatenation of DASM and RASM. As we can see, Delta
and Gamma frequency bands perform better than Theta and
Alpha frequency bands, and total frequency band has a stable
and prominent accuracy. Also we can find that, differential
entropy (DE) features get best accuracies in almost all
frequency bands except theta band (47.98% of DE features
is less than 51.87% of PSD features). This result makes
it reasonable that we select DE feature to fuse with pupil
diameter feature.

TABLE I
THE PERFORMANCE (%) OF CLASSIFIERS USING DIFFERENT KINDS OF

FEATURES ON DELTA, THETA, ALPHA, BETA, GAMMA AND TOTAL

FREQUENCY BANDS

Feature Frequency Bands
Delta Theta Alpha Beta Gamma Total

PSD Mean 51.60 51.87 54.74 53.23 51.36 59.04
Std 19.56 14.48 16.58 18.06 16.10 20.31

DE Mean 70.51 47.98 60.18 64.29 68.73 71.77
Std 12.18 15.19 12.94 23.05 20.30 12.03

DASM Mean 61.08 43.42 49.98 46.96 64.12 68.37
Std 22.45 19.45 15.59 15.21 22.94 23.86

RASM Mean 61.44 44.90 48.69 48.18 62.71 66.03
Std 22.90 12.14 14.62 15.93 21.11 24.62

ASM Mean 65.18 44.78 50.29 45.19 63.92 67.91
Std 22.32 13.87 15.91 12.77 22.19 24.45

B. Pupil Diameter based Classification

Fig. 4 shows the average pupil diameter of each exper-
iment. From the results, we can see that pupil diameter
changes in different emotional states. In most experiments we
can find that the pupil diameter is biggest during sorrow ses-
sions and smallest during calm sessions except experiment
1. The pupil diameters of positive and negative emotions are
larger than those of neutral emotion. which is consistent with
previous psychology literatures [11]. This result shows a cor-
relation between pupil diameter and emotion and therefore
we can extract emotion relevant features from pupil diameter
to classify different emotions.

Table II shows the performance of using different features
from pupil diameter. As we can see, DE features perform
much better than PSD features because DE features have
the balance ability of discriminating patterns between low
and high frequency energy. Although the average accuracy
achieved with pupil response features (58.90%) is not better
than EEG features (71.77%), the dimensionality of eye
tracking features is much less than EEG features. Comparing
to EEG data, the dimensionality of eye tracking was only 8
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Fig. 4. The average pupil diameter of each experiment

for each sample (pupil diameter has 2 dimensions and each of
dimension has 4 frequency bands) while the dimensionality
of EEG features was 310 (EEG has 62 channels and each
channel has 5 frequency bands). Therefore this result is
considered acceptable and is potential to improve.

TABLE II
THE PERFORMANCE % OF USING DIFFERENT FEATURES FROM PUPIL

DIAMETER

Exp Feature Accuracy Exp Feature Accuracy

1 PSD 65.43 7 PSD 33.95
DE 86.42 DE 61.73

2 PSD 56.79 8 PSD 46.91
DE 70.37 DE 50.62

3 PSD 54.94 9 PSD 43.83
DE 56.79 DE 59.88

4 PSD 60.49 10 PSD 36.42
DE 63.58 DE 59.88

5 PSD 37.65 11 PSD 44.44
DE 48.77 DE 50.62

6 PSD 33.95 12 PSD 34.57
DE 47.53 DE 50.62

Mean PSD 45.78 Std PSD 11.03
DE 58.90 DE 10.25

C. Fusion Results

Table III showed the results of the EEG based DE feature,
decision level fusion using max strategy, decision level fusion
using sum strategy and feature level fusion. From Table III,
we see that decision level fusion using max strategy and fea-
ture level fusion performed better than single modality like
EEG or pupil diameter, which achieved average accuracies
of 72.98% and 73.59%, respectively.

V. CONCLUSION

In this paper, we designed an emotion experiment and
collected EEG signals as well as eye tracking data of total 12
experiments, simultaneously, while subjects were watching
emotional film clips (positive, neutral and negative). Here,

TABLE III
THE ACCURACIES (%) OF 12 EXPERIMENTS USING FUSION

STRATEGIES FROM DIFFERENT MODALITIES

EEG (DE) Max Strategy Sum Strategy Feature Fusion
1 83.09 83.09 83.09 93.59
2 68.22 68.22 51.31 78.72
3 68.22 67.93 51.02 68.22
4 85.13 68.22 85.13 83.97
5 51.31 51.31 51.31 77.55
6 83.09 83.09 83.09 83.09
7 51.31 68.22 68.22 58.02
8 83.09 83.09 83.09 83.38
9 68.22 83.09 68.22 63.56

10 68.22 68.22 68.22 69.10
11 68.22 68.22 68.22 40.82
12 83.09 83.09 65.89 83.09

Mean 71.77 72.98 68.90 73.59
Std 12.03 10.09 12.85 14.43

we extracted different features including PSD, DE, DASM,
RASM and ASM features for EEG signals and PSD, DE
features for eye tracking data. From the results, we showed
that EEG and pupil diameter were efficient cues to recognize
emotions. Then we employed two fusion strategies (feature
level fusion and decision level fusion) to build emotion
recognition models which achieved the best classification
accuracies of 73.59 % and 72.98 %, respectively.
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