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Abstract

With the extensive application of submodularity, its getieations are constantly
being proposed. However, most of them are tailored for sppecoblems. In this
paper, we focus on quasi-submodularity, a universal géinatian, which satis-
fies weaker properties than submodularity but still enjayefable performance
in optimization. Similar to the diminishing return propedf submodularity, we
first define a corresponding property called #irgle sub-crossinghen we pro-
pose two algorithms for unconstrained quasi-submodulaetfan minimization
and maximization, respectively. The proposed algorithetsrn the reduced lat-
tices inO(n) iterations, and guarantee the objective function valuesstictly
monotonically increased or decreased after each iterafiboreover, any local
and global optima are definitely contained in the reducdité&s. Experimental
results verify the effectiveness and efficiency of the psggbalgorithms on lattice
reduction.

1 Introduction

Given a ground seV = {1,2,--- ,n}, a set function®” : 2 — R is said to be submoduldrl[8] if
VX,Y CN,
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FX)+FY)>F(XNnY)+ F(XUY).
An equivalent definition is given as followinge., VA C B C N,i € N\ B,
F(ilA) = F(i| B),

whereF (i|A) £ F(A +1i) — F(A) is called the marginal gain éfwith respect tod. It implies that
submodular functions capture tHaninishing returnproperty. To facilitate our presentation, we use
F(A+i)torefertoF (AU {i}), andF (A — i) to refer toF' (A \ {i}).

Submodularity is widely applied in economics, combinaterand machine learning, such as wel-
fare allocation|[[2B], sensor placement|[17], feature $&led4], and computer visior [20], to name
but a few.

With the wide application of submodularity, it has many gatieations. For example, Singh et al.
[27] formulate multiple sensor placement and multimodatdiee selection as bisubmodular function
maximization, where the objectives have multiple set argitsi Golovin and Krause [[L3] introduce
the concept of adaptive submodularity to make a sequencéayitime decisions with uncertain

responses. Feigel[6] proposes maximizing subadditivetifumeon welfare problems to capture the
complement free property of the utility functions. Howevalt the mentioned generalizations of
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submodularity enjoy benefits in special application scesgmultiset selection, adaptive decision,
and complement free allocation).

In this paper, we study a universal generalization. Subraoitylis often viewed as the discrete ana-
logue of convexityl[2ll]. One of the most important genewdlians of convexity is quasi-convexity

[2]. Quasi-convex functions satisfy some weaker propgrtieit still benefit much from the op-

timization perspective. More specifically, quasi-convexstraints can be easily transformed to
convex constraints via sublevel sets, and quasi-convémattion problems can be solved through
a series of convex feasibility problems using bisectionhods [2]. Considering the celebrated
analogue between submodularity and convexity, a naturastepn is whether submodularity has
similar generalizations which satisfy weaker propertigsdiill enjoy favorable performance in op-

timization? In this paper, we positively answer this questand refer to this generalization as
qguasi-submodularity.

As aforementioned, quasi-submodularity is a weaker ptgpean submodularity. Similar to the di-
minishing return property of submodular functions, we fitefine a corresponding property called
single sub-crossing. Then we propose two algorithms foonstrained quasi-submodular mini-
mization and maximization, respectively. Our theoretimahlyses show that the proposed algo-
rithms strictly increase or decrease the objective functialues after each iteration. The output
reduced lattices can be obtained(®{n) iterations, which contain all the local and global optima
of the optimization problems. The theoretical and expenitaleesults indicate that although quasi-
submodularity is a weaker property than submodularitynjogs favorable performance in opti-
mization.

The rest of the paper is organized as follows. In SecBpwe introduce the concept of quasi-
submodularity and define the single sub-crossing propértection3 and Sectiont, we present
the efficient algorithms and theoretical analyses for ustramed quasi-submodular function min-
imization and maximization, respectively. After that, weoyide some discussion in Sectién
Experimental results in Sectighverify the effectiveness of the proposed algorithms ornciatte-
duction. Finally, we introduce some related work in Secfiand give some conclusions about our
work in Sectiors.

2 Quasi-Submodularity

It is well known that the term semi-modular is taken fromitattheory [5]. A lattice is a partially
ordered set, which contains the supremum and infimum of daaheat pair. Here, we introduce a
very useful lattice.

Definition 1 (Set Interval Lattice) Given two ground setd, B, a set interval latticeC = [A, B] is
definedadU | A C U C B}. Lis notempty ifand only if C B.

In the set interval lattice, the partially order relatiordisfined as the set inclusign. A setS € £
iff AC S C B. ObviouslyvX, Y € £L,wehaveX NY, X UY € L, thusL is a lattice.

The concept of quasi-supermodularity is first proposed bigitdm and Shannon [22] in economic
fields . Quasi-supermodularity captures the monotonidithi@solutions as the problem parameters
change, and has been proved useful in game theary [19], paiiarouts [14], and discrete convex
analysisl[[23]. Following[22], we give the definition of qiasibmodularity.

Definition 2 (QSB). A set functionF : 2 — R is quasi-submodular function¥X,Y C N, both
of the following conditions are satisfied

F(XNY)>F(X)= FY)>FXUY),

F(XNY)>F(X)= F(Y) > F(XUY). (1)

The following proposition implies that the concept of quasbmodularity is a generalization of
submodularity.

Proposition 1. Any submodular function is quasi-submodular function rattvice versa.

Proof. SupposeF : 2V — R is a submodular function, anfl is not a quasi-submodular function.
Thenwe havé’(XNY) > F(X),F(Y) < F(XUY),orF(XNY) > F(X),F(Y) < F(XUY).



Both of the two cases lead B(X) + F(Y) < F(X NY) + F(X UY), which contradicts the
definition of submodularity.

A counterexample is given to prove a quasi-submodular fonchay not be a submodular function.
SupposeV = {1,2}, F(0) =1, F({1}) = 0, F({2}) = 1.5,andF' ({1, 2}) = 1. ltis easy to check
that F’ satisfies the definition of QSB. Biit is not a submodular function, sinég{1})+ F({2}) <
F(0) + F({1,2}). Actually, F' is a supermodular function. O

Similar to the diminishing return property of submodulandtions, we define a corresponding prop-
erty for quasi-submodularity, and name itsiisgle sub-crossing

Definition 3 (SSBC) A set functionF : 2V — R satisfies the single sub-crossing property if
VA C B C N, i€ N\ B, both of the following conditions are satisfied

F(A) > F(B) = F(A+1i) > F(B+1), @
F(A)> F(B) = F(A+41i) > F(B+1).

As mentioned before, submodularity and diminishing retoroperty are equivalent definitions.
Analogously, quasi-submodularity and single sub-cragpioperty are also equivalent.

Proposition 2. Any quasi-submodular function satisfies the single subsing property, and vice
versa.

Proof. Supposer’ : 2V — R is a quasi-submodular functiot’A € B C N, i € N\ B, let
X =B,Y =A+1iin (D). Itis obvious that" satisfies the SSBC property.

On the other hand, suppoge satisfies the SSBC property/X,Y C N, we denoteY \ X =
{#1,42,--- ,ix}. Based on the SSBC property A X NY) > (>)F(X), then we havé" (X NY +
i1) > (>)F(X +41). Similarly, we haveF' (X NY + i1 +i3) > (>)F(X + i1 + i2). Repeating
the operation until, is added, we geF'(Y') > (>)F(X UY). O

Note that in the proof above, if we exchangeandY', i.e,let X = A 44, Y = B, we will get
F(A) > F(A+i)= F(B) > F(B+1),
F(A) > F(A+1i)= F(B) > F(B+1).
We can rewrite it using the marginal gain notatioa, VA C BC N, i € N\ B,
F(i]A) < (<) 0= F(i|B) < (<) 0. 3)

Note that althougtX andY” are symmetric and interchangeabldih (1), we get a reprasemtvhich
is different with the SSBC property. Actually.]1(3) is a weakendition than[{lLl). The proposed
algorithms work on the weaker notidd (3), and the results latdd for quasi-submodularity.

3 Unconstrained Quasi-Submodular Function Minimization

In this section, we are concerned with general unconstiaguesi-submodular minimization prob-
lems, where the objective functions are given in the form afig oracle. Generally, we do not
make any additional assumptions (such as nonnegative, tmmoe@osymmetric, etc) except quasi-
submodularity.

Very recently, lyer et al.[[15] propose a discrete Majoii@atMinimization like submodular func-

tion minimization algorithm. In[[15], for each submodulanttion, a tight modular upper bound
is established at the current working set, then this boundifremized as the surrogate function
of the objective function. But for quasi-submodular funatithere is no known superdifferential,
and it can be verified that the upper boundslin| [15] are no lobgends for quasi-submodular
functions. Actually, without submodularity, quasi-subuhtarity is sufficient to perform lattice re-

duction. Consequently, we design the following algorithm.

X is alocal minimum means: € X, F(X —i) > F(X),andvj € N\ X, F(X + j) > F(X).

Algorithm 1 has several nice theoretical guarantees. First, the d@eainction values are strictly
decreased after each iteration, as the following lemmastat



Algorithm 1 Unconstrained Quasi-Submodular Function Minimizatio@&FMin)

Input: Quasi-submodular functiofl, N = {1,2,...,n}, Xo C N, t + 0.
Output: X; as a local optimum O)f?ci% F(X).

. At lterationt, findU; = {u € N\ X; | F(u|X;) < 0}. Y; « X; UUy.
: F|nth = {d S Xt | F(d|}/t — d) > O} Xt+1 — }/t \Dt

CIf X1 = X, (iff Uy = Dy = 0), stop and outpuk;.

: t+ t+ 1. Back to Stepl.

A WNP

Lemma 1. After each except the last iteration of Algorithmthe objective function value of the
working set is strictly monotonically decreased, i%,,F (X;4+1) < F(X}).

Proof. We proveF(Y;) < F(X;). F(Xi41) < F(Y;) can be proved using a similar approach.
Supposd/; # 0. DefineU* € argminycy,. =y F(X: UU), andY;* = X, U U*. According

to the algorithmyyu € U, \ U*, F(u|X;) < 0. SinceX; C Y/, andu ¢ Y;*, based on the
SSBC property, we havE(u|Y;*) < 0. This impliesF(Y,*™) < F(X; U (U* +u)) < F(X; U
U*) = F(Y[F). Note thatF(Y;!) = min,cy, F(X; +u) < F(X;) = F(Y?). We then have
F(Y;) = Fy") < Py/" 1Y) <o < F(YP) = F(Xy). O

If we start fromX, = Qo £ (), after one iteration, we will gek; = Q; = {i | F(i|0) < 0}.
Similarly, if we start fromX, = Sy = N, we willgetX; = S; = {i | F(i|N —14) < 0}. Based
on the SSBC property, we haweé € N, F(i|})) < 0 = F(i|N —i) < 0,i.e, @1 € S;. Thus
the reduced lattic€ = [Q1, S1] C [, N] is not empty, and we show that it contains all the global
minima.

Lemma 2. Any global minimum of'(X) is contained in the latticel. = [Q4,51], i.e., VX, €
argminy ¢y F(X), Q1 € X, € 51,

Proof. We prove@; C X.. X. C S; can be proved in a similar way. Suppa@e ¢ X., i.e,
Ju € Q1, u ¢ X.. According to the definition of);, F'(u|0) < 0. Sincel C X,, based on the
SSBC property, we havE(u|X.) < 0, which impliesF'(X. + u) < F(X,). This contradicts the
optimality of X,. O

If we start Algorithm1 from X, = Qo = (), suppose we ged; aftert iterations. It is easy to
check that, due to the SSBC property, in each iteratignonly adds elements. So we get a chain
0 =Qy C QL C -+ CQ C - C Qy, where@, is the final output when the algorithm
terminates. Similarly, if we start frolxy = Sy = N, we can get another chay. C --- C S; C

--- C 81 € Sy = N. We then prove that the endpoint sets of the two chains forattize, which
contains all the local minima aof'.

Lemma 3. Any local minimum of'(X) is contained in the lattic&€ = [Q, S ].

Proof. Let P be a local minimum. In the proof of Lemn2awe use singleton elements to construct
contradictions, so we hav@, C P C S;. Supposé&); C P C S;, we then prove); ;1 C P C
Si11. First, we suppos€;1 € P. Becaus&); 1 = Q; UU;, Ju € Uy, u € P. According to the
definition of U, F(u|Q;) < 0. Since@, C P, based on the SSBC property, we hadvg@:|P) < 0.
This indicatesF'(P + u) < F'(P), which contradicts the local optimality d?. HenceQ;+1 C P.
And P C S, can be proved in a similar way. O

Moreover, the two endpoint sefs; and.S;. are local minima.
Lemma 4. @+ andS_ are local minima ofF'(X).

Proof. We prove for@Q. The S, case is similar. According to the algorithivif € N \ Q,
F(ilQ+) > 0. If 35 € @4, such thatF(j|Q+ — j) > 0, then we can supposewas added
into @ at a previous iteration. Since@; — j C Q4+ — j, based on the SSBC property, we have
F(j|Q¢ — j) > 0. This contradicts the proof of Lemnia O



Because a global minimum is also a local minimum, Lengmesults in the following theorem.

Theorem 1. Any global minimum of’(X) is contained in the lattic&€ = [Q+, 5], i.e.,VX, €

4 Unconstrained Quasi-Submodular Function Maximization

Unconstrained submodular function minimization probleas be exactly optimized in polynomial
time [25]. Yet unconstrained submodular maximization is-INfPd [7]. The best approximation
ratio for unconstrained nonnegative submodular maxinunas 1 /2 [3], which matches the known
hardness result[7]. As a strict superset of submodular, cem®nstrained quasi-submodular maxi-
mization is definitely NP-hard.

lyer et al. [15] also propose a discrete Minorization-Maiation like submodular maximization
algorithm. They employ the permutation based subdifféaéf&] to construct tight modular lower
bounds, and maximize the lower bounds as surrogate fursctiith different permutation strate-
gies, their algorithm actually mimics several existing rpgimation algorithms, which means their
algorithm does not really reduce the lattices in optim@atin addition, for quasi-submodular cases,
it also can be verified that the lower bounds[inl[15] are no érrigpunds, and quasi-submodular
functions have no known subdifferential. Thus, even gdizéng their algorithm is impossible.

We find Buchbinder et all[3] propose a simple linear time agjpnation method. The algorithm
maintains two working sets§; andS,, andS; C S,. At the start,5; = # andSy = N. Then at
each iteration, one element S, \ .S is queried to compute its marginal gains over the two working
sets,i.e, F(i|S1) andF(i|S2 — i). If F(i|S1) + F(i|S2 — i) > 0, thenS; < Sy + 4, otherwise

So < Sy — i. After n iterations, the algorithm output$, = S,. This algorithm is efficient and
reaches an approximation ratiolgf3. However, the approximate algorithm may mistakenly remove
a certain element € X, from S,, or add an element ¢ X, into S;. Here, X, is referred to as a
global maximum. Consequently, the working lattices of tlaégorithm may not contain the global
optima.

By contrast, we want to reduce the lattices after each iterathile avoid taking erroneous steps.
Fortunately, we find that if we simultaneously maintain tworking sets at each iteration, and
take steps in a "crossover” method, quasi-submodularitypravide theoretical guarantees that the
output lattices definitely contain all the global maximanide, we propose the following algorithm.

Algorithm 2 Unconstrained Quasi-Submodular Function MaximizatioQ 8FMax)
Input: Quasi-submodular functioRl, N = {1,2,...,n}, Xo < 0, Yo « N, ¢ + 0.
Output: Lattice[ X, Y;].

. At lterationt, find Uy = {u € Y; \ X | F(u|Y; — u) > 0}. X¢4q < Xt U Us.

D FindDy = {d e Y; \ X, | F(d|X;) < 0}. i1y < Y; \ D,.

:If X1 = X andY; 1, =Y, stop and outputXy, Y;].

: t+ t+ 1. Back to Stepl.

A WN P

To ensure the result lattice is not empty, we prove that &feh iteration Algorithn2 maintains a
nonempty lattice as the following lemma shows.

Lemma 5. At each iteration of Algorithn2, the lattice[ X}, Y;] is not empty, i.e¥t, X; C ;.

Proof. According to the definition, we hav&, C Y. SupposeX; C Y;, we then proveX;,; C
Yiy1. Becausely, D; C Y; \ X, if we proveU; N D; = 0, X341 C Yiyq will be satisfied.
According to the algorithniyu € Uy, F(u|Y; — u) > 0. SinceX; C Y; — u, andu ¢ Y; — u, based
on the SSBC property, we hav&u|X;) > 0, which impliesu ¢ D;. O

Algorithm 2 also has several very favorable theoretical guaranteeast, Bie objective function
values are strictly increased after each iteration, asath@fing lemma states.

Lemma 6. After each except the last iteration of Algorithzn the objective function values of
endpoint sets of latticeX;, ;] are strictly monotonically increased, i.&/, F(X;+1) > F(X;) or
F(Y1) > F(Y).



Proof. We proveF (X;41) > F(X;). F(Y;+1) > F(Y;) can be proved using a similar approach.
Supposd/; # . DefineU* € argmaxycy,. 1=, F(X: UU), andX} = X; U U*. According

to the algorithmyu € U, \ U*, F(u|Y; — u) > 0. SinceXf C Y, — u, andu ¢ Y; — u, based
on the SSBC property, we hav&(u|X[) > 0. This indicatesF(X}™) > F(X; U (U* + u)) >
F(X,UU*) = F(XF). Note thatF'(X}) = max,cp, F(X; +u) > F(X;) = F(X?). We then
haveF (X, 1) = P(X]Vh > F(x[V™Y > ... > F(X?) = F(X)). O

After the first iteration of Algorithn®, we getX; = {i | F(i|N —4) > 0}, andY; = {i | F'(i|0) >
0}. Based on Lemma, we haveX; C Y;. Thus the reduced latticé = [X1,Y3] C [, N] is not
empty, and we show that it contains all the global maxima.

Lemma 7. Any global maximum of'(X) is contained in the lattice. = [X3,Y7], i.e., VX, €
argmaxyc y F(X),X;: CX.Ch.

Proof. We proveX; C X,.. X. C Y; can be proved in a similar way. Suppose ¢ X., i.e,
Ju € X1, u € X,.. According to the definitionF'(u|N — u) > 0. SinceX, C N — u, based
on the SSBC property, we hav&u|X,) > 0, thatisF (X, + «) > F(X,). This contradicts the
optimality of X,. O

At each iteration of Algorithn2, due to the SSBC property; only adds elements ang only
removes elements. Thus we ha¥e C X;; andY;11 C Y;, i.e, Vi, [Xiq1, Yig1] C [X4, Vel
We denote the output lattice of Algoriththas[ X, Y, ]. Then[X,Y,] is the smallest lattice in
the chain which consists of the working latticéx’, , Y] C --- C [X,Y;] C --- C [X1, V1] C
[Xo,Ys] = [0, N]. Based on Lemma, [ X, Y, ] is not empty, then we prove that it contains all the
global maxima off".

Theorem 2. Suppose Algorithr outputs latticg X, Y. ]. Any global maximum af (X) is con-
tained in the lattice = [ X, Y, ], i.e., VX, € argmaxycy F(X), X1 C X, C Y.

Proof. Based on Lemma, we haveX; C X, C Y;. SupposeX; C X, C Y;, we then prove
X1 € X, C Y. First, we suppos&X; 1 ¢ X.. BecauseX;; = X; U U, sodu € Uy,
u ¢ X.. According to the definition ot/;, F(u|Y; — u) > 0. SinceX, C Y; — u, based on the
SSBC property, we havE(u|X.) > 0. This impliesF(X, + u) > F(X.), which contradicts the
optimality of X .. HenceX;,1 C X,. And X, C Y;,; can be proved in a similar way. O

Note that the proofs of Lemmaand Theoren2 also work for local maximum cases, since we use
singleton elements to construct contradictions.

Lemma 8. Any local maximum of'(X) is contained in the lattic&€ = [ X, Y, ].

Lemmas indicates that ifX; (Y. ) is a local maximum, it is the local maximum which contains th
least (most) number of elements. Unfortunately, findingcallonaximum for submodular functions
is hard [7], let alone quasi-submodular cases. Nonethéégsrithm 2 provides an efficient strategy
for search interval reduction, which is helpful becausertituction is on the exponential power.
In the experimental section, we show the reduction can bt quirprising. Moreover, when an
objective function has a unique local maximum, which is aleoglobal maximum¥ . = Y., our
algorithm can find it quickly.

Theorem 3. Algorithm?2 terminates inO(n) iterations. The time complexity @&(n?).

Proof. After each iteration, at least one element is removed fraarctirrent working lattice, so it
takesO(n) iterations to terminate. At each iteration, all the elerseéntthe current working lattice
need to be queried once. Hence, the total complexity of Agar2 is O(n?). O

5 Discussions

In Algorithm 1, @4 and S, are local minima. While in Algorithn2, X, andY; may not be
local maxima. Is it possible to find a lattice for quasi-suldlmlar maximization, where the endpoint
sets are local maxima? We give an example to show that sudhice lmay not exist. Suppose



N = {1,2}, F(0) = (N) = 1, andF({1}) = F({2}) = 1.5. Itis easy to check that' is

submodular, thus quasi-submodular. The set of local maxird1},{2}}. There is no local
maximum which contains or is contained by all the other lavakima, sincg[1} and{2} are not
comparable under the set inclusion relation.

As aforementioned, unconstrained quasi-submodularifumataximization is NP-hard. While for
unconstrained quasi-submodular function minimizationether there exists a polynomial time al-
gorithm or not is open now.

6 Experimental Results

In this section, we experimentally verify the effectivemand efficiency of our proposed algorithms.
We implement our algorithms using the SFO toollioX [16] andidta All experiments are run on a
single core Intelj 2.8 GHz CPU with4GB RAM.

We list several widely used quasi-submodular functionstardsettings of our experiments as the
following:

e Iwata’s functionF'(X) = |X||N \ X| — >_ (5¢ — 2n) [9]. The ground set cardinality is

iEX
set to ben = 5000.

e The COM (concave over modular) functidi{ X ) = /w1 (X )+w2(N\X), wherew, and
wo are randomly generated j0, 1]™. This function is applied in speech corpora selection
[15]. The ground set cardinality is set to he= 5000.

e The half-products functio®’(X) = > a(i)b(j) — ¢(X), wherea, b, c are modular

1,j€X,1<j

functions, andi, b are non-negative. This function is employed in formulasiafi many
scheduling problems and energy modgls [1]. SiAds quasi-supermodular, we minimize
F through equivalently maximizing the quasi-submodularction —F, i.e, min I’ =
—max (—F). nis set to bel 00.

e The linearly perturbed functions. We consider the pertdrizeility location function
F(X) = L(M,X) + o(X), whereL(M, X) is the facility location function.M is a
n x d positive matrix.c is an-dimensional modular function which denotes the pertugbin
noise of facility. We setr = 100, d = 400, and randomly generatel in [0.5, 1]"*, the
perturbing noiser in [—0.01,0.01]™.

e The determinant functiol’(X) = det(Kx ), whereK is a realn x n positive definite
matrix indexed by the elements &f, and K x = [K;;]; jex IS the restriction of to the
indices of X. This function is used to represent the sampling probghifideterminantal
point processes [18]. We set= 100.

e The multiplicatively separable functiafi(X) = II¥_, F;(X;). One example is the Cobb-
Douglas production functiod’(X) = II?" ,w(¢)*, wherew > 0 anda; > 0. This
function is applied in economic fields [28]. We set= 2000.

We are concerned with the approximation ratio of an optitwraalgorithm. We compare the
approximation ratio and running time of UQSFMax with MM&%6]1 For MMax, we consider the
following variants: random permutation (RP), randomizechl search (RLS), and randomized bi-
directional greedy (RG). For UQSFMax, we use it as the pregssing steps of RP, RLS and RG,
and denote the corresponding combined methods as URP, GRHIJRG.

For lwata'’s function and COM functiom, = 5000. In such an input scale, the exact branch-and-
bound algorithm[[11] cannot terminate because of the expiiaddime complexity. Actually, since
the reduced lattices are quite small, we use the branchbandd method on the reduced lattices to
obtain the exact optima.

Table 2 presents the approximation ratios while TaBlshows the running time. According to
the comparison results, we find that using our UQSFMax as tbprpcessing steps of other ap-
proximation methods can reach comparable or better appaiidn performance while improve the
efficiency, since the UQSFMax can efficiently reduce thedeapaces of other approximation al-
gorithms, and the reduced lattices definitely contain alltital and global optima as shown in the
previous theoretical analysis.



Table 1: Average lattice reduction rates.

Algorithm UQSFMax | UQSFMin
Iwata’s function 99.9% 99.9%
COM function 99.5% 100.0%
half-products function 51.2% 48.8%
linearly perturbed function 99.3% 99.8%
determinant function 87.0% 72.6%
Multiplicatively separable function 100.0% 100.0%

Table 2: Approximation ratios of different algorithms anshétions.

Algorithm RP | URP || RLS | URLS || RG | URG
Iwata’s function 0.94| 1.00| 0.99| 1.00 || 0.98| 1.00
COM function 0.99| 1.00 | 0.99| 1.00 || 0.99]| 1.00

half-products function | 0.96| 0.97 || 0.95| 0.94 | 0.96| 0.99
linearly perturbed function 0.99| 1.00 || 0.99| 1.00 || 0.99| 1.00

Table 3: Running time (seconds) of different algorithms aumdtions.

Algorithm RP | URP RLS | URLS RG URG
Iwata’s function 96.18| 2.42 || 240.62| 2.47 || 194.30| 2.41
COM function 43.85] 7.01 | 194.52] 6.91 || 366.43] 7.16

half-products function | 0.35 | 0.22 || 0.98 0.52 9.96 | 4.59
linearly perturbed function 1.37 | 0.06 || 3.12 0.06 15.92 | 0.06

Note that for non-submodular functions (determinant fiomcand multiplicatively separable func-
tion), at present we have no efficient method to get appradmptima. So we cannot calculate the
approximation ratios and we just record the average lattidaction rates. We also record the rates
of other functions for completeness.

The average lattice reduction rates are shown in Tablkhis result also matches the running time.
For example, the average lattice reduction rate for halfipcts function i$1.2%, and the running
time of URG is about a half of the running time of RG. For mirdation, we have similar lattice
reduction results, which are also presented in Table

7 Related Work
In this section, we introduce some related work of quasirsadtularity.

7.1 Quasi-Supermodularity

Quasi-supermodularity stems from economic fields. Milgamad Shannori [22] first propose the
definition of quasi-supermodularity. They find that the nmaizier of a quasi-supermodular function
is monotone as the parameter changes. In combinatorighizatiion, for quasi-submodular func-
tions, this property means the set of minimizers has a nesttadture, which is the foundation of
the proposed UQSFMin algorithm.

Theorem 4 (Reformulated from[22]) Given a quasi-submodular functidn: 2% — R. VA, B C
N, AC B,354 € argmingc 4 F(S5), Sp € argmingc 5 F(S5), s.t.S4 C Sp.

Proof. SupposeSs € argmingc 4 F(S), Sp € argmingcp F(S). We havel'(S4) < F(Sa N
Sp/) because o4 C A, SanNSp C AandF(S4) = mingca F(S). According to quasi-



submodularity, we havé"(S4 U Sp) < F(Sp/). DenoteSg = S4 U Sp.. It is obvious that
Sp € argmingcp F'(S) andSa C Sp. O

Based on the theorem above, suppose we start fom 0, if 3i € N\ X, F(X + i) < F(X),
then we can seX + X + i. This theorem ensures that there exists a chain structuminihizers.
This is a general principle. First, it works in submodulesses for submodularity is a strict subset of
guasi-submodularity. Moreover, when the superdiffeedini [15] is not superdifferential for non-
submodular quasi-submodular functions, such as the detentfunction and the multiplicatively
separable functions, this principle can also hold.

In[22], only quasi-submodular function minimization (apgvalently, quasi-supermodular function
maximization) is considered. For quasi-submodular funmctnaximization, there is no existing
study.

7.2 Discrete Quasi-Convexity

Another related direction is discrete quasi-convexity, [24], which departs further from combina-
torial optimization. In this paper, we consider set funetig.e., functions defined of0, 1}™. While
in [24], quasi L-convex function, which is defined &ft, is proposed.

In [24], quasi L-convex function is a kind of integer-valuishction. When we restrict its domain
from Z™ to {0,1}", quasi L-convex function reduces to quasi-submodulartfanc Meanwhile,
their results based dA™ domain extension reduces to trivial cases in combinatopémization.
Hence, we view quasi L-convexity [24] as a generalizatioguasi-submodularity based on domain
extensionij.e., extending the domain froff0, 1}" to Z".

7.3 Submodularity

As a special case of quasi-submodularity, submodularibulshbe the most related work to
qguasi-submodularity. lyer et all [15] propose the supédihtial based discrete Majorization-
Minimization like algorithm, which performs lattice redian for submodular function minimiza-

tion. While the preliminary preservation algorithm [10dthe same effect for submodular function
maximization.

As a weaker notion than submodularity, quasi-submoduylhags no superdifferential, but it is also

sufficient for lattice reduction. Thus the proposed UQSFMugorithm can be viewed as a general-
ization of the MMin algorithm([[15]. One should note that @rtbere is no known superdifferential

for quasi-submodular function, our proof based on sublsiogpssing property is quite different

from the superdifferential based MMin algorithm. Genefajuasi-submodular function optimiza-

tion is much harder than submodular function optimization.

Goldengorin[[10] proposes the preliminary preservatiggoathm (PPA), which is based on the
preservation rules [12]. The preservation rule is anothtarpretation of the maximizers of sub-
modular functions using set interval lattice partition. lida the superdifferential, we find that
the preservation rules perfectly hold for not only submadélinctions but also quasi-submodular
functions. This provides an elegant principle for quadirsodular function maximization. Us-
ing preservation rules for quasi-submodularity can alsd ® the proposed UQSFMax algorithm.
Thus we view UQSFMax as a generalization of PPA from subnarduinction maximization to
guasi-submodular function maximization.

7.4 Applications

Unlike submodularity, quasi-submodularity is not wellekim. Nonetheless, there are several appli-
cations related to quasi-submodularity scattered in diffefields.

In rent seeking game, every contestant tends to maximizprblsability of winning for a rent by
adjusting his bidding. The payoff function of each contesta quasi-submodular on his bidding
and the total bidding of all the contestants (also callegjfagator”). Rent seeking game is a kind of
aggregative quasi-submodular game, where each playerdfganction is quasi-submodular. We
refer readers ta [26] for more details and examples of aggregquasi-submodular games.



In minimum cut problems with parametric arc capacities,nsalularity implies nested structural
properties([14]. While quasi-submodularity also leadsh $ame properties. But how to employ
the properties to find an efficient max flow update algorithngfieasi-submodular functions is open
at present[14].

8 Conclusions

In this paper, we go beyond submodularity, and focus on aeus@l generalization of submodular-
ity called quasi-submodularity. We propose two effectind afficient algorithms for unconstrained
guasi-submodular function optimization. The theoretazlyses and experimental results demon-
strate that although quasi-submodularity is a weaker ptgpigan submodularity, it has some good
properties in optimization, which lead to lattice reduntishile enable us to keep local and global
optima in reduced lattices.

In our future work, we would like to make our algorithms ex&mt quasi-submodular function
minimization and approximate for quasi-submodular funttnaximization if it is possible, and try
to incorporate the constrained optimization into our fraumek.
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