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Abstract

Individual differences across subjects and non-
stationary characteristic of electroencephalography
(EEG) limit the generalization of affective brain-
computer interfaces in real-world applications. On
the other hand, it is very time consuming and
expensive to acquire a large number of subject-
specific labeled data for learning subject-specific
models. In this paper, we propose to build per-
sonalized EEG-based affective models without la-
beled target data using transfer learning techniques.
We mainly explore two types of subject-to-subject
transfer approaches. One is to exploit shared struc-
ture underlying source domain (source subject) and
target domain (target subject). The other is to train
multiple individual classifiers on source subjects
and transfer knowledge about classifier parameters
to target subjects, and its aim is to learn a regression
function that maps the relationship between feature
distribution and classifier parameters. We compare
the performance of five different approaches on an
EEG dataset for constructing an affective model
with three affective states: positive, neutral, and
negative. The experimental results demonstrate that
our proposed subject transfer framework achieves
the mean accuracy of 76.31% in comparison with a
conventional generic classifier with 56.73% in av-
erage.

1 Introduction

Affective brain-computer interfaces (aBCIs) [Mühl et al.,
2014a] introduce affective factors into conventional brain-
computer interfaces [Chung et al., 2011]. aBCIs provide rele-
vant context information about users affective states in brain-
computer interfaces (BCIs) [Zander and Jatzev, 2012], which
can help BCI systems react adaptively according to users’ af-
fective states, rather in a rule-based fashion. It is an efficient
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way to enhance current BCI systems with an increase of infor-
mation flow, while at the same time without additional cost.
Therefore, aBCIs have attracted increasing interests in both
research and industry communities, and various studies have
presented their efficiency and feasibility [Mühl et al., 2014a;
2014b; Jenke et al., 2014; Eaton et al., 2015]. Although the
large progress has been obtained about development of aB-
CIs in recent years, there still exist some challenges such as
the adaptation to changing environments and individual dif-
ferences.

Until now, most of studies emphasized choices of fea-
tures and classifiers [Singh et al., 2007; Jenke et al., 2014;
Abraham et al., 2014] and neglected to consider individual
differences in target persons. They focus on training subject-
specific affective models. However, these approaches are
practically infeasible in real-world scenarios since they need
to collect a large number of labeled data. In addition, the
calibration phase is time-consuming and annoying. An in-
tuitive and straightforward way to dealing with this problem
is to train a generic classifier on the collected data from a
group of subjects and then make inference on the unseen
data from a new subject. However, the existing studies in-
dicated that following this way, the performance of generic
classifiers were dramatically degraded due to the structural
and functional variability between subjects as well as the
non-stationary nature of EEG signals [Samek et al., 2013;
Morioka et al., 2015]. Technically, this issue refers to the
covariate-shift challenges [Sugiyama et al., 2007]. The alter-
native way to dealing with this problem is to personalize a
generic classifier for target subjects in an unsupervised fash-
ion with knowledge transfer from the existing labeled data in
hand.

The problem mentioned above has motivated many re-
searchers from different fields in developing transfer learn-
ing and domain adaptation algorithms [Duan et al., 2009;
Pan and Yang, 2010; Chu et al., 2013]. Transfer learning
methods try to transfer knowledge from source domain to tar-
get domain with few or no labeled samples available from
subjects of interest, which refer to inductive and transductive
setups, respectively. Figure 1 illustrates the covariate-shift
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Figure 1: Illustration of the covariate-shift challenges of con-
structing EEG-based affective models. Here, two sample sub-
jects (subjects 1 and 2) are with three classes of emotions and
EEG features are different in conditional probability distribu-
tion across subjects.

challenges of constructing EEG-based affective models. Tra-
ditional machine learning methods have a prior assumption
that the distributions of training data and test data are inde-
pendently and identically distributed (i.i.d.). However, due
to the variability from subject to subject, this assumption can
not be always satisfied in aBCIs.

In this work, we adopt transfer learning algorithms in a
transductive setup (without any labeled samples from target
subjects) to tackle the subject-to-subject variability for build-
ing EEG-based affective models. Let X 2 X be the EEG
recording of a sample (X, y), here y 2 Y represents the cor-
responding emotion labels. In this case, X = RC⇥d, C is
the number of channels, and d is the number of time series
samples. Let P (X) be the marginal probability distribution
of X . According to [Pan and Yang, 2010], D = {X , P (X)}
is a domain, which in our case is a given subject from which
we record the EEG signals. The source and target domains in
this paper share the same feature space, XS = XT , but the re-
spective marginal probability distributions are different, that
is, P (XS) 6= P (XT ). The key assumption in most domain
adaptation methods is that P (YS |XS) = P (YT |XT ).

Recently, Jayaram and colleges made a timely survey on
current transfer learning techniques for BCIs [Jayaram et al.,
2016]. Morioka et al. proposed to learn a common dictio-
nary shared by multiple subjects and used the resting-state
activity of a previously unseen target subject as calibration
data for compensating for individual differences, rather than
task sessions [Morioka et al., 2015]. Krauledat and colleges
proposed a zero-training framework for extracting prototyp-
ical spatial filters that have better generalization properties
[Krauledat et al., 2008]. Although most of these methods are
based on the variants of common spacial patterns (CSP) for
motor-imagery paradigms, some studies focused on passive
BCIs [Wu et al., 2013] and EEG-based emotion recognition
[Zheng et al., 2015].

In this paper, we propose to personalize EEG-based affec-

tive models by adopting two kinds of domain adaptation ap-
proaches in an unsupervised manner. One is to find a shared
common feature space between source and target domains.
We apply Transfer Component Analysis (TCA) and Kernel
Principle Analysis (KPCA) based methods proposed in [Pan
et al., 2011]. These methods are adopted to learn a set of
common transfer components underlying both the source do-
main and the target domain. When projected to this subspace,
the difference of feature distributions of both domains can
be reduced. The other is to construct individual classifiers
and learn a regression function that maps the relationship be-
tween data distribution and classifier parameters, which refers
to Transductive Parameter Transfer (TPT) [Sangineto et al.,
2014]. We evaluate the performance of these approaches on
an EEG dataset, SEED1, to personalize EEG-based affective
models.

2 Methods

2.1 TCA-based Subject Transfer

Transfer component analysis (TCA) proposed by Pan et al.
learns a set of common transfer components between source
domain and target domain [Pan et al., 2011] and finds a
low-dimensional feature subspace across source domain and
target domain, where the difference of feature distributions
between two domains can be reduced. The aim of this
transfer learning algorithm is to find a transformation �(·)
such that P (�(XS)) ⇡ P (�(XT )) and P (YS |�(XS)) ⇡
P (YT |�(XT )) without any labeled data in target domain (tar-
get subjects). An intuitive approach to find the mapping
�(·) is to minimize the Maximum Mean Discrepancy (MMD)
[Gretton et al., 2006] between the empirical means of the two
domains,

MMD(X 0
S , X

0
T ) = || 1

n1

n1X

i=1

�(xs
i )�

1

n2

n2X

i=1

�(xt
i)||2H, (1)

where n1 and n2 represent the sample numbers of source do-
main and target domain, respectively. However, �(·) is usu-
ally highly nonlinear and a direct optimization with respect
to �(·) can easily get stuck in poor local minima [Pan et al.,
2011].

TCA is a dimensionality reduction based domain adapta-
tion method. It embeds both the source and target domain
data into a shared low-dimensional latent space using a map-
ping �. Specially, let the Gram matrices defined on the source
domain, target domain and cross-domain data in the embed-
ded space be KS,S , KT,T , and KS,T , respectively. The kernel
matrix K is defined on all the data as

K =


KS,S KS,T

KT,S KT,T

�
2 R(n1+n2)⇥(n1+n2). (2)

By virtue of kernel trick, the MMD distance can be rewritten
as tr(KL), where K = [�(xi)>�(xj)], and Lij = 1/n2

1 if
xi, xj 2 XS , else Lij = 1/n2

2 if xi, xj 2 XT , otherwise,

Lij = �(1/n1n2). A matrix
⇠
W 2 R(n1+n2)⇥m transforms

1http://bcmi.sjtu.edu.cn/⇠seed/index.html
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the empirical kernel map K to an m-dimension space (where
m ⌧ n1 + n2). The resultant kernel matrix is

⇠
K = (KK�1/2

⇠
W (

⇠
W

>
K�1/2K)) = KWW>K, (3)

where W = K�1/2
⇠
W . With the definition of

⇠
K in Eq.(3),

the MMD distance between the empirical means of the two
domain X 0

S and X 0
T can be rewritten as

Dist(X 0
S , X

0
T ) = tr((KWW>K)L) = tr(W>KLKW ).

(4)
A regularization term tr(W>W ) is usually added to control
the complexity of W , while minimizing Eq.(4).

Besides reducing the difference of the two distributions, �
should also preserve the data variance that is related to the tar-
get learning task. From Eq.(3), the variance of the projected
samples is W>KHKW , where H = In1+n2 � (1/(n1 +
n2))11> is the centering matrix, 1 2 Rn1+n2 is the column
vector with all 1’s, and In1+n2 2 R(n1+n2)⇥(n1+n2) is the
identity matrix.

Therefore, the objective function of TCA is

min
W

tr(W>KLKW ) + µtr(W>W )

s.t. W>KHKW = Im,
(5)

where µ > 0 is a regularization parameter, and Im 2 Rm⇥n

is the identity matrix. According to [Pan et al., 2011], the
solutions W are the m leading eigenvectors of (KLK +
µI)�1KHK, where m  n1 + n2 � 1. The algorithm of
TCA for subject transfer is summarized in Algorithm 1. We
recommend the readers to refer to [Pan et al., 2011] for the
detailed descriptions of TCA. After obtaining the transfor-
mation matrix W , standard machine learning methods can be
used in this feature subspace.

Algorithm 1 TCA-based Subject Transfer
input : Source domain data set DS = {(xs

i , y
s
i )}

n1
i=1, and

target domain data set DT = {xt
j}

n2
j=1.

output : Transformation matrix W .
1: Compute kernel matrix K from {xs

i}
n1
i=1 and {xt

j}
n2
j=1,

matrix L, and the centering matrix H .
2: Eigendecompose the matrix (KLK + µI)�1KLK and

select the m leading eigenvectors to construct the trans-
formation matrix W .

3: return tranformation matrix W .

2.2 KPCA-based Subject Transfer

Kernel PCA [Schölkopf et al., 1998] projects the original
D-dimensional feature space into an M -dimensional feature
space with a nonlinear transformation �(x), where M � D.
For KPCA-based subject transfer, we concatenate the source
and target data as the training data and construct the kernel
matrix. The kernel principal components are then computed
using singular value decomposition. Each sample xi is pro-
jected to a point �(xi) in lower dimensional subspaces. The
algorithm of KPCA-based subject transfer is summarized in
Algorithm 2.

Algorithm 2 KPCA-based Subject Transfer
input : Source domain data set DS = {(xs

i , y
s
i )}

n1
i=1, and

target domain data set DT = {xt
j}

n2
j=1.

output : The kernel principal components pk.
1: Concatenate the source and target domain data sets as the

training data set, {xi}n1+n2
i=1 = [{xs

i}
n1
i=1; {xt

j}
n2
j=1].

2: Construct the kernel matrix from the training data set
{xi}n1+n2

i=1 .
3: Compute the vectors ak.
4: Compute the kernel principal components pk.
5: Return the kernel principal components pk.
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Figure 2: The framework of the transductive parameter trans-
fer (TPT) approach adopted in this work.

2.3 Transductive Parameter Transfer

The transductive parameter transfer (TPT) approach is firstly
proposed by Sangineto and colleges for action units detection
and spontaneous pain recognition [Sangineto et al., 2014].
The TPT approach consists of three main steps as illustrated
in Figure 2. First, multiple individual classifiers are learned
on each training dataset Ds

i . Second, a regression function
is trained to learn the relation between the data distributions
and classifiers’ parameter vectors. Finally, the target classi-
fier is obtained using the target feature distribution and the
distribution-to-classifier mapping.

We adopt the TPT approach to personalize EEG-based af-
fective models in this paper. In the first phase, we train mul-
tiple individual classifiers on each source dataset Ds

i . Here,
we use linear support vector machine (SVM) as a classifier.
✓i = [w0

i, bi] defines the hyperplane in the feature space. The
objective function is as follows,

min
w,b

1

2
kwk2 + �L

ns
iX

j=1

l(w0
x

s
j + b, ysj ), (6)

where l(·) is the hinge loss.
In the second step, a regression function f is learned for

the mapping: D ! ⇥ with the source data distributions.
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Since the data distributions and the optimal corresponding
hyperplanes are relevant, we can predict the hyperplane and
construct the classifier on target data without any label infor-
mation via learning this mapping. To quantify the similar-
ity between pairs of datasets Xi and Xj , a kernel function
(Xi, Xj) is adopted. In this implement, we use the density
estimation kernel [Blanchard et al., 2011], which is defined
as follows,

(Xi, Xj) =
1

nm

nX

p=1

mX

q=1

X (xp,xq), (7)

where n, m are cardinality of Xi, Xj , respectively, and X (·)
is a Gaussian kernel. After computing the kernel matrix,
the mapping function f can be learned using the Multiout-
put Support Vector Regression framework [Tuia et al., 2011].

Finally, the parameter vector of the target classifier can be
predicted by ✓t = f(Xt) without any label information from
target subjects. Given the target features x and the classi-
fier parameters ✓, the label can be predicted by the decision
function: y = sign(w0

tx+ bt). The algorithm of TPT-based
subject transfer is summarized in Algorithm 3. For more de-
tails about the TPT algorithm, we recommend the readers to
refer to [Sangineto et al., 2014].

Algorithm 3 TPT-based Subject Transfer
input : Source domain data sets Ds

1, ...,Ds
N , target domain

data set Xt, and some regularization parameters for SVMs.
output : The parameter vector of target classifier: wt, bt.

1: Construct individual classifiers: {✓i = (wi, bi)}Ni=1.
2: Create a training set T = {Xs

i ,✓i}Ni=1.
3: Compute the kernel matrix K, Kij = (Xs

i , X
s
j ).

4: Given K and T , learn f(·) using multioutput support
vector regression.

5: Compute (wt, bt) = f(Xt)
6: Return wt, bt.

3 Experiment Setup

3.1 EEG Dataset for Constructing Affective

Models

We adopt film clips as stimuli to elicit emotions in the labora-
tory environment, since film clips contains both visual and au-
ditory stimuli. A preliminary study is conducted using scores
(1-5) to select a pool of film clips to elicit three emotions:
positive, neutral, and negative. Each clip is well edited for its
coherent context for corresponding emotion and time length
of about four minutes. Finally, 15 emotional film clips with
high ratings are chosen from the materials. For the experi-
mental protocol, each experiment consists of 15 sessions with
15 different film clips. For each session, there is a 5 s hint for
starting before each clip, a 45 s self-assessment, and a 15 s
rest after each clip. There are totally 15 subjects (8 females,
mean: 23.27, std: 2.37) participated in our experiments. They
are all informed about the experiments and instructress before
the experiments. They are required to elicit their own corre-
sponding emotions while watching the film clips. Only the

data with right elicited emotions are used in further analysis.
EEG data are recorded simultaneously with a 62-electrode
cap according to the international 10-20 system using ESI
Neuroscan system. The original sampling rate is 1000 Hz.
The impedance of each electrode is lower than 5 k⌦.

3.2 Data Preprocessing and Feature Extraction

For data preprocessing, since there is often contamination
of electromyography (EMG) signals from facial expressions
and Electrooculogram (EOG) signals from eye movements in
EEG data [Fatourechi et al., 2007], the raw EEG data is pro-
cessed with a bandpass filter between 1 Hz and 75 Hz and
the data with serious noise and artifacts are discarded. The
62-channel EEG signals are further down-sampled to 200 Hz
and EEG features are extracted with each segment of the pre-
processed EEG data with a non-overlapping 1 s time window.

For feature extraction, we employ differential entropy (DE)
features [Duan et al., 2013; Zheng and Lu, 2015], which show
superior performance than conventional power spectral den-
sity (PSD) features. According to [Zheng and Lu, 2015], for
a fixed length EEG sequence, the DE feature is equivalent to
the logarithm of PSD in a certain frequency band. Therefore,
the DE features can be calculated in five frequency bands (�:
1-3 Hz, ✓: 4-7 Hz, ↵: 8-13 Hz, �: 14-30 Hz, and �: 31-50
Hz), which are widely used in EEG studies using Short-term
Fourier transform. The total dimension of a 62-channel EEG
segment is 310.

3.3 Evaluation Details

We adopt a leave-one-subject-out cross validation method for
the evaluation. Each time, we separate the data from one sub-
ject as the target domain and the resting data from other 14
subjects as the source domain. For the baseline method, we
concatenate data from all available subjects as training data
and train a generic classifier with linear SVM. A variant of
SVM called Transductive SVM (T-SVM) is also developed
to learn a decision boundary and maximize the margin with
unlabeled data [Collobert et al., 2006]. We use the implement
of T-SVM in SVM light [Joachims, 1999].

For TCA and KPCA, it is practically infeasible to include
all the data from available subjects due to limits of memory
and time cost for singular value decomposition. Therefore,
we randomly select a subset of samples (5000 samples) from
14 subjects as training data. For kernel functions, we employ
linear kernels. We will evaluate how the performance varies
with respect to the dimensionality of new feature space. The
regularization parameter µ is set to 1, the same as [Pan et
al., 2011]. After TCA and KPCA project the original fea-
tures into low-dimensional subspace using transfer compo-
nents, standard linear SVMs are trained on the new extracted
features. The value of the regularization parameter for TPT is
0.1. To deal with multi-class classification task, we adopt the
one vs one strategy to avoid label unbalance problem. All the
algorithms are implemented in MATLAB.

4 Experiment Results

In this section, we carry out experiments to demonstrate
the effectiveness of the proposed methods for personalizing
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Figure 3: Comparison of KPCA and TCA approaches for dif-
ferent dimensionality of the subspace.

EEG-based affective models. All results are conducted using
a leave-one-subject-out evaluation scheme. First, we eval-
uate how the performance of KPCA and TCA approaches
varies with the dimensionality of the low-dimensional feature
subspace and choose the best dimensions. Figure 3 depicts
the accuracy curve with respect to varying dimensions. TCA
achieves better performance than KPCA in lower dimensions
(less than 30) and reaches the peak accuracy with 63.64%
in the 30-dimensional subspace. In contrast, the accuracies
of KPCA approximately increase with the increasing dimen-
sions. The saturation is reached at about 35-dimension point.
Regarding the accuracy, TCA outperforms KPCA slightly
(63.64% vs 61.28%).

We compare the performance of different subject transfer
methods. Figure 4 shows the accuracies of different methods
(Generic classifiers, KPCA, TCA, T-SVM, and TPT) for to-
tal 15 subjects and Table 1 presents the mean accuracies and
standard deviations. The generic classifiers perform poorly
with a mean accuracy of only 56.73% due to the fact that this
method directly includes all source samples for the training.
Since there exist some individual differences across subjects
and some training samples from irrelevant subjects included,
all these factors may bias the optimal hyperplane and dra-
matically degrade the performance of subject transfer, which
refers to some negative transfer. TCA and KPCA learn a set
of transfer components underlying both the source and tar-
get distributions. The feature distributions of both domains
are similar in the new low-dimensional subspace. Both TCA
and KPCA methods outperform the generic classifiers, indi-
cating the efficient knowledge transfer through feature reduc-
tion. T-SVM archives comparative accuracies among these
methods with the mean accuracy and standard deviation of

Stats. Generic KPCA TCA T-SVM TPT
Mean 0.5673 0.6128 0.6364 0.7253 0.7631

Std. 0.1629 0.1462 0.1488 0.1400 0.1589

Table 1: The mean accuracies and standard deviations of the
five different approaches.

72.53%/14.00%, respectively. T-SVM learns the decision
boundary in a semi-supervised manner and weights all the
training instances equally, which may still introduce some ir-
relevant source data during training.

TPT method outperforms the other four approaches with
the highest accuracy of 76.31% and achieves a significant im-
provement in comparison with generic classifiers (one way
analysis of variance, p < 0.01). TPT method can measure
the similarity between pairs of data distributions from differ-
ent subjects and learn the mapping function from data dis-
tributions and classifier parameters. Therefore, it can extract
the relevant information to determine the decision function
and bypass the bias caused by irrelevant information. Be-
sides accuracy, we compare the generalization performance
of KPCA, TCA, and TPT approaches. The KPCA and TCA
need to construct the kernel matrix using source and target
domains and find the manifold subspaces where the differ-
ences between them can be reduced. Their limitation is high
memory and time cost for training. They can not constantly
benefit from the increasing samples in the source domain. In
contrast, TPT keeps individual classifiers for different source
subjects. The new regression function can be trained only
on the kernel matrix. It is incremental while data from a
new training subject is available. Therefore, TPT approach
is more feasible in practice regarding both the performance
and incremental learning property.

The confusion matrices of the five approaches are shown
in Figure 5. Each row of the confusion matrix represents the
target class and each column represents the predicted class.
The element (i, j) is the percentage of samples in class i that
is classified as class j. For generic method, the accuracies
for three emotions are almost similar. For TCA and KPCA,
they have an improvement for classifying positive emotions
with the accuracies of 75.88% and 66.23%, respectively. Be-
sides the improved performance of recognizing positive emo-
tions, T-SVM has a significant increase in performance for
recognizing neutral emotions (71.52%). TPT has highest ac-
curacies for classifying all of the three emotions among these
approaches. Comparing the accuracies of different emotions,
we can find that positive emotions can be more easily rec-
ognized using EEG with the comparatively high accuracy of
85.01%. Negative emotions are often confused with neu-
tral emotions (25.76%) and vice versa (10.24%). These re-
sults indicate that the neural patterns of negative and neutral
emotions are similar. In summary, the experimental results
demonstrate the efficiency of the TPT approach for construct-
ing personalized affective models from EEG.

5 Conclusion and Future Work

In this paper, we have proposed a novel method for per-
sonalizing EEG-based affective models with transfer learn-
ing techniques. The affective models are personalized and
constructed for a new target subject without any label infor-
mation. We have compared the performance of five differ-
ent methods: TPT, T-SVM, TCA, KPCA, and conventional
generic classifiers. The experimental results have demon-
strated that the transductive parameter transfer approach sig-
nificantly outperforms the other approaches in terms of the
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Figure 4: The accuracies of the five different methods (Generic classifiers, KPCA, TCA, T-SVM, and TPT) for each subject.

Figure 5: The confusion matrices of the five methods.

accuracies, and a 19.58% increase in recognition accuracy is
achieved. TPT can capture the similarity between data dis-
tributions taking advantages of kernel functions and learn the
mapping from data distributions to classifier parameters with
the regression framework. For the future work, we will eval-
uate the performance of our proposed approaches for more
categories of emotions as well as the publicly available EEG
datasets.
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