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Abstract. To enhance the performance of affective models and reduce
the cost of acquiring physiological signals for real-world applications, we
adopt multimodal deep learning approach to construct affective models
with SEED and DEAP datasets to recognize different kinds of emotions.
We demonstrate that high level representation features extracted by the
Bimodal Deep AutoEncoder (BDAE) are effective for emotion recogni-
tion. With the BDAE network, we achieve mean accuracies of 91.01 %
and 83.25 % on SEED and DEAP datasets, respectively, which are much
superior to those of the state-of-the-art approaches. By analysing the
confusing matrices, we found that EEG and eye features contain comple-
mentary information and the BDAE network could fully take advantage
of this complement property to enhance emotion recognition.

Keywords: EEG · Emotion recognition · Multimodal deep learning ·
Auto-encoder

1 Introduction

Nowadays, many human machine interface (HMI) products are used by ordinary
people and more HMI equipments will be needed in the future. Since emotional
functions of HMI products play an important role in our daily life, it is necessary
for HMI equipments to be able to recognize humans emotions automatically.

Many researchers studied emotion recognition from EEG. Liu et al. used
fractal dimension based algorithm to recognize and visualize emotions in real
time [1]. Li and Lu used EEG signals of gamma band to classify two kinds of
emotions, and their results showed that gamma band was suitable for emotion
recognition [2].

Duan et al. found that differential entropy features are more suited for emo-
tion recognition tasks [3]. Wang et al. compared three different kinds of EEG fea-
tures and proposed a simple approach to track the trajectory of emotion changes
c© Springer International Publishing AG 2016
A. Hirose et al. (Eds.): ICONIP 2016, Part II, LNCS 9948, pp. 521–529, 2016.
DOI: 10.1007/978-3-319-46672-9 58



522 W. Liu et al.

with time [4]. Zheng and Lu employed deep neural network to classify EEG signals
and examined critical bands and channels of EEG for emotion recognition [5].

To fully use information from different modalities, Yang et al. proposed an
auxiliary information regularized machine, which treats different modalities with
different strategies [6].

In [7], the authors built a single modal deep autoencoder and a bimodal
deep autoencoder to generate shared representations of images and audios.
Srivastava and Salakhutdinov extended the methods developed in [7] to bimodal
deep Boltzmann machines to handle multimodal deep learning problems [8].

As for multimodal emotion recognition, Verma and Tiwary carried out emo-
tion classification experiments with EEG singals and peripheral physiological
signals [9]. Lu et al. used two different fusion strategies for combining EEG and
eye movement data: feature level fusion and decision level fusion [10]. Liu et al.
employed bimodal deep autoencoders to fuse different modalities and the authors
tested the framework on multimodal facilitation, unimodal enhancement, and
crossmodal learning tasks [11].

To our best knowledge, there is no research work reported in the litera-
ture to deal with emotion recognition from multiple physiological signals using
multimodal deep learning algorithms. In this paper, we propose a novel multi-
modal emotion recognition method using multimodal deep learning techniques.
In Sect. 2, we will introduce the bimodal deep autoencoder. Section 3 presents
data pre-proessing, feature extraction and experiment settings. The experiment
results are described in Sect. 4. Following discusses in Sect. 5, conclusions and
future work are in Sect. 6.

2 Multimodal Deep Learning

2.1 Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) is an undirected graph model, which has
a visible layer and a hidden layer. Connections exist only between visible layer
and hidden layer and there is no connection either in visible layer or in hidden
layer. Assuming visible variables v ∈ {0, 1}M and hidden variables h ∈ {0, 1}N ,
we have the following energy function E:

E(v,h; θ) = −
M∑

i=1

N∑

j=1

Wijvihj −
M∑

i=1

bivi −
N∑

j=1

ajhj (1)

where θ = {a,b,W} are parameters, Wij is the symmetric weight between
visible unit i and hidden unit j, and bi and aj are bias terms of visible unit and
hidden unit, respectively. With energy function, we can get the joint distribution
over the visible and hidden units:

p(v,h; θ) =
1

Z(θ)
exp(E(v,h; θ)), and

Z(θ) =
∑

v

∑

h

exp(E(v,h; θ)) (2)
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where Z(θ) is the normalization constant.
Given a set of visible variables {vn}Nn=1, the derivative of log-likelihood with

respect to weight W can be calculated from Eq. (2):

1
N

N∑

i=1

∂ log p(vn; θ)
∂Wij

= EPdata
[vihj ] − EPmodel

[vihj ]

Various algorithms can be used to train a RBM, such as Contrastive Divergence
(CD) algorithm [12]. In this paper, Bernoulli RBM is used. We treat the visual
layer as the probabilities and we use CD algorithm to train RBMs.

2.2 Model Construction

The proposed multimodal emotion recognition framework using deep learning is
depicted in Fig. 1. There are three steps in total. The first step is to train the
BDAE network.

We call this step feature selection. The second step is supervised training,
and we use the extracted high level features to train a linear SVM classifier.
And the last step is a testing process, from which the recognition results are
produced.

The BDAE training procedures, including encoding part and decoding part,
are shown in Fig. 2. In encoding part, we first train two RBMs for EEG features

EEG Signal EEG Features

Eye Signal Eye Features

{

High level
  Features

Classifiers

Fig. 1. The proposed multimodal emotion recognition framework. Here the BDAE
network is used to generate high level features from low level features or original data
and a linear SVM is trained with extracted high level features.
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(a) Building two RBMs, an EEG RBM and an Eye RBM
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(b) Two hidden layers are concatenated togather, and an 
upper RBM is built.
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Fig. 2. The structure of Bimodal Deep AutoEncoder.

and eye movement features, respectively. As shown in Fig. 2(a), EEG RBM is
for EEG features and eye RBM is for eye movement features. Hidden layers are
indicated by hEEG and hEye, and W1,W2 are the corresponding weight matrices.
After training these two RBMs, hidden layers, hEEG and hEye, are concatenated
together. The concatenated layer is used as the visual layer of an upper RBM, as
depicted in Fig. 2(b). Figure 2(c) shows the decoding part. When unfolding the
stacked RBMs to reconstruct input features, we keep the weight matrices tied,
and W1,W2, and W3 and WT

1 ,WT
2 , and WT

3 in Fig. 2(c) are tied weights. At
last, we used unsupervised back-propagation algorithm to fine-tune the weights
and bias.

3 Experiment Settings

3.1 The Datasets

The SEED dataset1, which was first introduced in [5], contains EEG signals
and eye movement signals of three different emotions (positive, negative, and
neutral). These signals are collected from 15 subjects during watching emotional
movie clips. There are 15 movie clips and each clip lasts about 4 min long. The
EEG signals, recorded with ESI NeuroScan System, are of 62 channels at a
sampling rate of 1000 Hz and the eye movement signals, collected with SMI ETG
eye tracking glasses, contain information about blink, saccade fixation, and so
on. In order to compare our proposed method with the existing approach [10],
we use the same data as in [10], that is, 27 data files from 9 subjects. For every
data file, the data from the subjects watching the first 9 movie clips are used as
training samples and the rest ones are used as test samples.

1 http://bcmi.sjtu.edu.cn/∼seed/index.html.

http://bcmi.sjtu.edu.cn/~seed/index.html
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The DEAP dataset was first introduced in [13]. The EEG signals and periph-
eral physiological signals of 32 participants were recorded when they were watch-
ing music videos. The dataset contains 32 channel EEG signals and 8 peripheral
physiological signals. The emotional music videos include 40 one-minute long
small clips and subjects were asked to do self-assessment by assigning values
from 1 to 9 to five different status, namely, valence, arousal, dominance, liking,
and familiarity. In order to compare the performance of our proposed method
with previous results in [14,15], we did not take familiarity into consideration.
We divided the trials into two different classes according to the assigned values.
The threshold we chose is 5, and the tasks can be treated as four binary clas-
sification problems, namely, high or low valence, arousal, dominance and liking.
Among all of the data, 90 % samples were used as training data and the rest
10 % samples were used as test data.

3.2 Feature Extraction

For SEED dataset, both Power Spectral Density (PSD) and Differential Entropy
(DE) features were extracted from EEG data. These two kinds of features con-
tain five frequency bands: δ (1–4 Hz), θ (4–8 Hz), α (8–14 Hz), β (14–31 Hz),
and γ (31–50 Hz). For every frequency band, the extracted features are of 62
dimensions and there are 310 dimensions for EEG features in total. As for eye
movement data, we used the same features as in [10], and there are 41 dimen-
sions in total including both PSD and DE features. The extracted EEG features
and eye movement features were then rescaled to [0,1] and the rescaled features
were used as the inputs of BDAE network.

For DEAP dataset, we used the downloaded preprocessed data directly as
the inputs of BDAE network to generate shared representations of EEG signals
and peripheral physiological signals. First, the EEG signals and peripheral phys-
iological signals were separated and then the signals were segmented into 63 s.
After segmentation, different channel data of the same time period (one second)
are combined to form the input signals of BDAE network. And then, shared
representation features were generated by the BDAE network.

3.3 Classification

The shared representation features generated by BDAE network are used to train
a linear SVM classifier. Because of the variance between EEG signals collected
from different people at different time, the BDAE model is data-specified, which
means that we will build a BDAE model for each data and there are 27 BDAE
models built for SEED dataset and 32 BDAE models for DEAP dataset. Network
parameters, including hidden neuron numbers, epoch numbers, and learning rate,
are chosen with grid searching.

4 Results

We compare our model with two other experimental settings. When only single
modality is available, we classify different emotions with PSD and DE features by
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Fig. 3. Multimodal facilitation results on SEED dataset. Here the first two bars denote
single modality, the rest bars denote multimodal with different fusion strategies and
the fourth Fuzzy bar denotes the best result in [10].

Table 1. Accuracies of BDAE model on SEED dataset (%).

Feature δ + eye θ + eye α + eye β + eye γ + eye All

PSD Ave. 85.12 83.89 83.18 83.23 82.92 85.10

Std. 11.09 13.13 12.68 13.65 13.59 11.82

DE Ave. 85.41 84.64 84.58 86.55 88.01 91.01

Std. 14.03 11.03 12.78 10.48 10.25 8.91

SVM. When multimodal information is available, features of different modalities
are linked directly and different emotions are recognized with the concatenated
features by SVM.

SEED Results. Figure 3 shows the summary of multimodal facilitation experi-
ment results. As can be seen from Fig. 3, the BDAE model has the best accuracy
(91.01 %) and the smallest standard deviation (8.91 %).

Table 1 is the detailed experimental results of the BDAE model. The last
column means that we linked all five frequency bands of EEG features and eye
movement features directly. We examined the BDAE model three times and the
recognition accuracies shown in Table 1 were averaged.

DEAP Results. In the literature, Rozgic et al. treated the EEG signals as a
sequence of overlapping segments and a novel non-parametric nearest neighbor
model was employed to extract response-level feature from these segments [14].
Li et al. used Deep Belief Network (DBN) to automatically extract high-level
features from raw EEG signals [15].

The experimental results on the DEAP dataset are shown in Table 2. Besides
baselines mentioned above, we also compared the BDAE results with results in
[15] and [14]. As can be seen from Table 2, the BDAE model improved recognition
accuracies in all classification tasks.
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Table 2. Comparison of six different approaches on DEAP dataset (Accuracy, %).

Method Valence Arousal Dominance Liking

EEG only 52.6 53.01 55.0 55.0

Others only 63.9 59.6 62.5 60.7

Linking 61.5 58.6 59.7 60.0

Rozgic et al. [14] 76.9 69.1 73.9 75.3

Li et al. [15] 58.4 64.3 65.8 66.9

Our Method 85.2 80.5 84.9 82.4

5 Discussion

From the experimental results, we have demonstrated that the BDAE network
can be used to extract shared representations from different modalities and the
extracted features have better performance than other features.

From Table 3(a), we can see that EEG features are good for positive emo-
tion recognition but are not good for negative emotions. As a complement, eye
features have advantage in negative emotion recognition which can be seen from
Table 3(b). When linking EEG and eye features directly, positive emotion accu-
racy is improved compare with situation where only eye features exist and nega-
tive emotion accuracy is also enhanced compared with when only EEG features
are used. The BDAE framework achieves an even better result. The BDAE
model has the highest accuracies in all three kinds of emotions, indicating that
the BDAE model can fully use both EEG features and eye features.

Table 3. Confusing matrices of single modality and different modality merging
methods
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6 Conclusions and Future Work

This paper has shown that the shared representations extracted from the BDAE
model are good features to discriminate different emotions. Compared with
other existing feature extraction strategies, the BDAE model is the best with
accuracy of 91.01 % on SEED dataset. For DEAP dataset, the BDAE network
largely improves recognition accuracies on all four binary classification tasks.
We analysed the confusing matrices of different methods and found that EEG
features and eye features contain complementary information. The BDAE frame-
work could fully take advantage of the complementary property between EEG
and eye features to improve emotion recognition accuracies.

Our future work will focus on invesgating the complementarity between EEG
features and eye movement features and explaining the mechanism of multimodal
deep learning for emotion recognition from EEG and other physiological signals.
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